
ISBN 978-80-261-0892-4, © University of West Bohemia, 2020

Monitoring of system memory usage
embedded in FPGA

Víctor Asanza Armijos, Nathaly Sánchez Chan, Rommel Saquicela, Luis Macas Lopez
Facultad de Ingeniería en Electricidad y Computación, FIEC

Escuela Superior Politécnica del Litoral, ESPOL
Guayaquil, Ecuador

{vasanza, nssanche, rsaquice, luianmac}@espol.edu.ec

Abstract – At this moment in the field of FPGA, only
RAM tests have been carried out to evaluate its
performance but these works have not focused on
tracking memory usage in real time, this paper proposes
a design for monitoring the memory of an embedded
system, in the logical part, making use of the
communication between the FPGA and the HPS. In
addition, the HPS has implemented a web service that
allows to visualize a graph of the monitoring in real
time. The proposed design can be an introduction to the
development of applications that can be specifically
monitored for a component of the embedded system in
FPGA, because FPGA is currently being used for
different purposes such as machine learning, real-time
image processing, mining of Bitcoins, among others.
These applications are quite robust, which implies a
high demand for processing for the embedded system.

Keywords- FPGA; HPS; Embedded System; RAM;
DE10 Standard.

I. INTRODUCTION

All types of microprocessors use Random-Access
Memory (RAM) as temporary storage for execution of
processes and tasks, this is because it is much faster to
access it. For monitoring and performance tests is
necessary to verify its high availability and fault
tolerance [1].

Current Printed Circuit Board (PCB), such as the
DE10 Standard Development Kit designed by Terasic
company, incorporate chips with portions of System
on Chip (SoC) and Hard Processor System (HPS) so
they can create and implement two embedded systems
in real time, each can work independently or together
with their own Central Processing Unit (CPU) [2].
One of the advantages of communication between
these two systems is that not only they can share
physical resources, they can also verify response times
and application execution [3].

Currently, the use of Field Programmable Gate
Array (FPGA) has increased quite high because it is
simpler and cheaper than CPU / Graphics Processing
Unit (GPU) implementations. It can be reprogrammed
at any time to perform a different task than the one
that was being executed initially [4]. In addition, this
allows the same algorithm to be modified to make it
much more robust and complex, in order to obtain

better results [5].

As indicated above, there are already many designs
implemented in both complex and simple FPGA.
However, it has not been observed any project in
which the communication between FPGA and HPS is
verified, nor the monitoring of one with respect to the
other. To make this communication possible, there are
physical and logical bridges between the two parties,
these bridges provide the possibility of working in
many ways, among which can be master-slave or
parallel and independent work, the latter is the one that
was implemented in this design using shared memory
that is accessed by Nios II from FPGA and Advanced
RISC Machine (ARM) processor from HPS [6].

II. RELATED WORKS

There are several related work areas that talk about
testing RAM modules in FPGA based on SRAM using
a minimum number of test configurations but these
works focus only on functional tests in the part of
physics that makes up the RAM of the FPGA. This
work is responsible for monitoring the RAM of the
embedded system that is in the FPGA part. In addition,
this monitoring of memory usage can be viewed from
a webpage hosted on the hard processor of the DE10
standard card [3, 7].

To carry out the RAM memory monitoring of the
embedded system from the hard processor the device
tree was created, which allows to configure a kernel at
runtime. To use device trees, it is needed a textual
representation called Device Tree Source (DTS). The
DTS is compiled into a binary representation called
Device Tree Blob (DTB). The DTB is delivered to the
kernel at boot time. Device Tree Compiler (DTC) is
compiled as part of the Linux kernel compilation and
is also available as part of the SoC FPGA Embedded
Development Suite (SoC-EDS), this operation is
detailed on [8].

One of the main objectives in real-time
applications is to use memory in a optimized way
during the execution of tasks based on SoC
architecture. Wang et al. Demonstrated in their work
that real-time Electrocardiogram (ECG) signal
monitoring systems can be performed using an FPGA
with two 8GB Dual Data Rate Synchronous Dynamic
Random Access Memories (DDR3 SDRAM) , 72 Mb
Static Random Access Memory (SRAM) and its
system clock frequency is 156.25 MHz [9]. Supported by Escuela Superior Politécnica del Litoral

(ESPOL) and NationalSecretariat of Higher Education, Science,
Technology and Innovation of Ecuador (SENESCYT).

Authorized licensed use limited to: Univ of West Bohemia in Pilsen. Downloaded on November 05,2020 at 07:09:55 UTC from IEEE Xplore. Restrictions apply.

III. METHODOLOGY

For the monitoring of the RAM in the FPGA part
of the DE10 Standard card, a 50MHz global clock was
used. The size of the configured RAM is 65536 bytes,
the core used is the Nios II/e version, that also uses a
Very High Speed Integrated Circuit Hardware
Description Language (VHSIC-HDL) block which
does the work of a “for” or “while” cycle to access
memory addresses in write or read mode, all this
project was carried out on the DE10 Standard card
which has a Cyclone V 5CSXFC6D6F31C6 chip [10].

Fig. 1. Representation of communication between FPGA and HPS.

Algorithms were implemented in both the logic
and the HPS portion. In the latter, a web server was
also installed which allows visualizing by means of a
graph the memory usage.

A. FPGA implementation
Using the Eclipse Kepler Software, the algorithm

was implemented which will execute Nios II to access
the input and output peripherals. In the same way, the
use of the RAM when writing in it. Additional
software allows the creation of a .hex file that is
recorded in memory to run the algorithm once it starts
[9].

 The Nios II microprocessor performs several tasks
in parallel and independently, the execution of these
depends on the interaction with the peripherals Input /
Output (I/O), when the microprocessor executes some
task it uses the memory to store temporary data during
its execution. All tasks interact with the peripherals
available on the DE10 Standard card, are shown in the
Fig. 1 and were described below:

• Task 1 and 2 read values of the switches, write
on the 7-segment display and turn on the
Light-Emitting Diode (LED). This is shown in
Fig. 2.

• Task 3 and 4 write directly in the memory
registers and on the display. To write in
several memory addresses, a VHDL block was
used in order to travel through them and thus
be able to write faster since the Nios II no
longer has that execute the process. Shown in
Fig. 2.

• There is an additional task known as the main
one that is always running which is
responsible for validating the execution of the
tasks detailed above.

B. HPS implementation
Since the system embedded in FPGA works in

parallel to the HPS, in this last one runs a Linux OS
based on Debian, in which an algorithm written in C
language was implemented that accesses the logical
part, reads the memory and begins to see the changes
of the same while the Nios II microprocessor makes
use of it when executing tasks and interacting.

Fig. 2. Flow chart of the Nios II process.

Fig. 3. Process flow chart in Linux (HPS)

Authorized licensed use limited to: Univ of West Bohemia in Pilsen. Downloaded on November 05,2020 at 07:09:55 UTC from IEEE Xplore. Restrictions apply.

To perform the correct monitoring, the algorithm
verifies at high speed the changes in the memory
registers and according to these changes a percentage
is calculated allowing to validate its memory usage.

Fig. 3 shows the process flow of values saved in a
JSON file to be able to visualize them in real time on a
web page in graphic form and with this perform a
better analysis. In addition, about 1670 samples were
taken from the memory records during the execution
of each of the tasks and then compared between them.

IV. RESULTS

The system allowed to observe the variations of
the SRAM memory records incorporated in the FPGA
part when it is running of several and different tasks
like interactions with 42% of I/O peripherals as shown
in table 1, write and read in memory. This also
allowed estimate a percentage of use and a time of
execution of the tasks, as well as the time that in that
the Nios II processor writes in random and specific
records, in parallel the ARM from the HPS is
validating this writing by reading these records at high
speed. As a contrast a similar algorithm was carried
out in the part of the HPS to write in the Double Data
Rate 3 (DDR3) and verify its usage with respect to the
SRAM.

TABLE I. RESOURCES USED OF FPGA

Name Used Total Percentage
Logic utilization
(in ALMS)

1544 41910 4.00%

Total pins 210 499 42.00%
Total block
Memory bits

53580
8

5662720 9.00%

Total PLLs 1 15 7.00%
Total DDLs 1 4 25.00%

Fig. 4 shows the average percentage of SRAM
consumed by each of the tasks when they are
executed. The task2 consumes much more since it is
written directly in the records, while the others only
interact with the peripherals who already have their
own addresses on the card and should not load all
these in memory.

Fig. 4. Average SRAM usage when executing tasks.

In addition to the task4, that fulfills the main role,
it consumes a little more than the one of the

peripherals since it has to validate the execution of the
other tasks so it must load the entire code in memory
every time it is executed.

Fig. 5. Shows the time [ms] it takes for memory to
load the data of each of the tasks when they are
executed, and proportionally it is observed that the
tasks that consume the most memory are the ones that
take the longest time in loading your data into it.

Fig. 5. Task Execution Time in SRAM

At the beginning, DDR3 memory usage by task 0
remains constant, because no instance of the webpage
has been opened, but as several instances open, the
percentage of memory usage increases. To perform
tasks 1, 2, 3 and 4, the memtest tool was used, which
covers the amount of memory that was put in it, this
will make the use of DDR3 memory vary according to
the amount that is being used for the execution of each
of the tasks. For the task1 100MB, task2 118MB,
task3 65MB and task4 115MB were placed, the
percentage of DDR3 memory that was used to execute
each task as shown in Fig. 6.

Fig. 6. Task usage percentage in DDR3

Fig. 7. shows the average time it takes for the
DDR3 to reserve space to proceed to write on it, you
can see that in the initial state of the OS only serving
clients that connect to the web server the average time
is the lowest of all hovering around 113 ms, again it is
observed that as more space is required to write more
time it takes to reserve this space.

V. DISCUSSION AND CONCLUSIONS

Thanks to the chips that have a portion of SoC and
HPS such as the Cyclone V and taking advantage of
the resources that the DE10 Standard card has, it was
possible to implement these applications that work in
parallel, which allows to use the HPS to monitor the
embedded system in FPGA. All this is possible thanks

Authorized licensed use limited to: Univ of West Bohemia in Pilsen. Downloaded on November 05,2020 at 07:09:55 UTC from IEEE Xplore. Restrictions apply.

to the communication established between the two
parties.

Fig 7. Average Execution Time in DDR3

Fig. 8 shown the SRAM is working in the logical
part executing several tasks and it is validated that as
time passes the memory usage increases. In addition,
the writing times will depend on the amount of
memory to be written and this varies according to the
task that is being executed by the user or those that he
has programmed in the Nios II.

 Fig. 8. Comparison in Usage of memory vs. Time

As for the DD3, it is executing the Linux OS as a
basis and additionally, a size proportional to the size of
the SRAM is reserved for the respective comparisons,
so it is observed that it has a higher memory usage and
longer response times.

Fig. 9. Comparison of memory usage

It should be considered in this comparison that the
DD3 in addition to running the OS, also has the web

server implemented which memory usage varies
according to the clients that are connecting to the
webpage where it can be seen the memory monitoring
of the embedded system. Also, thanks to the part of the
HPS it is possible to monitor the memory of the
embedded system without affecting its memory usage.

Fig. 9 shown the SRAM is not under the same
workload since it is only responsible for storing what
Nios II needs for the execution of the tasks.

Finally, it was consider that the HPS portion to be
very important for a clean monitoring not only of the
SRAM but also of any core that is implemented in the
FPGA portion, since if this application is implemented
on a chip that only has FPGA the application would
affect the memory usage and performance of it,
therefore you could not have completely reliable
results.

REFERENCES

[1] Michael Daum (2017). GSRD v13.1 - Device Tree Generator.

[online] RocketBoards.org. Available at:
https://rocketboards.org/foswiki/view/Documentation/Device
TreeGenerator131 [Accessed 25 Sep. 2019].

[2] Terasic. (2017). LINUX X64 INSTALLATION. En DE10
Standard Control Panel(14-39). United statess: Terasic.com

[3] Renovell, M., Portal, J., Figueras, J. et al. SRAM-Based
FPGAs: Testing the Embedded RAM Modules (1999) 14:
159. https://doi.org/10.1023/A:1008326111919

[4] Wei Kang Huang ; F.J. Meyer ; Xiao-Tao Chen ; F.
Lombardi, et al. Testing memory modules in SRAM-based
configurable FPGAs (1997).
https://ieeexplore.ieee.org/abstract/document/619399

[5] Intel FPGA (2015). Combining a Nios II ELF executable into
a Hardware Project SOF file. [video] Available at:
https://www.youtube.com/watch?v=joFaxLY-rUE [Accessed
26 Aug. 2019].

[6] Cyclone V Hard Processor System Technical Reference
Manual. (2018). 4th ed. [ebook] San Jose, CA 95134.
Available at:
https://www.intel.com/content/dam/www/programmable/us/e
n/pdfs/literature/hb/cyclone-v/cv_54005.pdf [Accessed 26 Jul.
2019].

[7] Intel.com. (2019). Intel SoC FPGA Embedded Development
Suite User Guide. [online] Available at:
https://www.intel.com/content/www/us/en/programmable/doc
umentation/lro1402536290550.html [Accessed 26 Jul. 2019].

[8] Using Linux on the DE1-SoC. (2017). [ebook] Intel
Corporation-FPGA University Program. Available at:
https://software.intel.com/en-us/fpga-academic [Accessed 26
Jul. 2019].

[9] Wang, X., Zhu, Y., Ha, Y., Qiu, M., & Huang, T. (2017). An
FPGA-based cloud system for massive ECG data analysis.
IEEE Transactions on Circuits and Systems II: Express
Briefs, 64(3), 309-313.

[10] C. Cedeño Z., J. Cordova-Garcia, V. Asanza A., R. Ponguillo
and L. Muñoz M., "k-NN-Based EMG Recognition for
Gestures Communication with Limited Hardware Resources,"
2019 IEEE SmartWorld, Ubiquitous Intelligence &
Computing, Advanced & Trusted Computing, Scalable
Computing & Communications, Cloud & Big Data
Computing, Internet of People and Smart City Innovation
(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI),
Leicester, United Kingdom, 2019, pp. 812-817.

Authorized licensed use limited to: Univ of West Bohemia in Pilsen. Downloaded on November 05,2020 at 07:09:55 UTC from IEEE Xplore. Restrictions apply.

