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Abstract 

One of the key requirements for technological systems that are used to secure inde-
pendent housing for seniors in their home environment is monitoring of daily living 
activities (ADL), their classification, and recognition of routine daily patterns and habits 
of seniors in Smart Home Care (SHC). To monitor daily living activities, the use of a 
temperature,  CO2, humidity sensors, and microphones are described in experiments in 
this study. The first part of the paper describes the use of  CO2 concentration measure-
ment for detecting and monitoring room´s occupancy in SHC. In second part focuses 
this paper on the proposal of an implementation of Artificial Neural Network based 
on the Levenberg–Marquardt algorithm (LMA) for the detection of human presence 
in a room of SHC with the use of predictive calculation of  CO2 concentrations from 
obtained measurements of temperature (indoor, outdoor) Ti, To and relative air humid-
ity rH. Based on the long-term monitoring (1 month) of operational and technical 
functions (unregulated, uncontrolled) in an experimental Smart Home (SH), LMA was 
trained through the data picked up by the sensors of  CO2, T and rH with the aim to 
indirectly predict  CO2 leading to the elimination of  CO2 sensor from the measurement 
process. Within the realized experiment, input parameters of the neuronal network and 
the number of neurons for LMA were optimized on the basis of calculated values of 
Root Mean Squared Error, the correlative coefficient (R) and the length of the meas-
ured training time ANN. With the use of the trained network ANN, we realized a strictly 
controlled short-term (11 h) experiment without the use of CO2 sensor. Experimental 
results verified high method accuracy (>95%) within the short-term and long-term 
experiments for learned ANN (1.6.2015–30.6.2015). For learned ANN (1.2.2014–
27.2.2014) was verified worse method accuracy (>60%). The original contribution is 
a verification of a low-cost method for the detection of human presence in the real 
operating environment of SHC. In the third part of the paper is described the practical 
implementation of voice control of operating technical functions by the KNX tech-
nology in SHC by means of the in-house developed application HESTIA, intended for 
both the desktop system version and the mobile version of the Windows 10 operating 
system for mobile phones. The resultant application can be configured for any build-
ing equipped with the KNX bus system. Voice control implementation is an in-house 
solution, no third-party software is used here. Utilization of the voice communication 
application in SHC was proven on the experimental basis with the combination of 
measurement  CO2 for ADL monitoring in SHC.

Keywords: Voice recognition, Additive noise, KNX, ETS, C#, Smart home care, Activities 
of daily living, Levenberg–Marquardt algorithm, Bland–Altman method
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Introduction

Monitoring the activities of daily living (ADLs) and detection of deviations from previ-

ous patterns is crucial to assessing the ability of an elderly person to live independently 

in their community and in early detection of upcoming critical situations. “Aging in 

place” for an elderly person is one key element in ambient assisted living (AAL) tech-

nologies [1]. For recognition [2–15] and classification of ADL [16, 17] are used various 

mathematical methods such as Hidden Markov Model (HMM), Linear Discriminant 

Analysis (LDA) and Support Vector Machines (SVM) [18, 6], Artificial Neural Networks 

(ANN) [11] or adaptive-network-based fuzzy inference system (ANFIS) [19, 20]. For 

detection of ADL in SHC it is possible to use RFID [21], PIR [22],  CO2 [23] sensors or 

presence sensors, on the basis of which probability models of the people’s behavior in SH 

[24] can be built, respecting the privacy [25] of SHC residents [26]. One of the ways of 

performing the ADL is motion detection [27, 28] and falls of seniors [29, 30] which may 

end tragically in the case of late intervention. �erefore, it is necessary to design such a 

technology solution system that will allow a range of services including data collection 

and analysis of long-term trends in behaviors and physiological parameters (e.g. relating 

to sleep or daily activity); warnings, alarms and reminders; and social interaction [31]. 

An example might be the technology system AAL [32]. �e proposed technology sys-

tems need to be based on the real needs of SHC residents [1]. For the comfort and a 

feeling of safety [33] of the SH residents, sensors are designed to use of advanced mobile 

devices in diverse scenarios, by developing wearable sensors, and by using numerous 

sensors embedded in the environment in SHC [34]. For example, Liu investigates the 

importance of spatiotemporal reasoning and uncertainty reasoning in the design of 

Smart Homes. Accordingly, a framework for applying a methodology referred as Rule-

based Inference Methodology using the Evidential Reasoning in conjunction with Smart 

Home Framework considering spatiotemporal aspects of ADL is outlined [35]. Noury 

solved a very interesting way of ADL implementation in SH by detecting the energy con-

sumption of the SH [36]. Another alternative for the effective implementation of ADL 

monitoring can also be used to the IoT concept within the SH inclusion in the concept of 

Smart Cities [37].

�e objective of the article is to describe and evaluate new approaches to the technical 

solution for monitoring the presence of persons in individual rooms of intelligent build-

ings (IB) (SH, SHC) to determine the occupancy of the monitored spaces with the pos-

sibility of using the information obtained to determine the ADL by existing technology 

systems that can be used in the SHC.

�e aim of the first part of the article is the use and processing of information from 

operationally measured non-electrical quantities determining the indoor environment 

in the SHC using operational technological units for the determination of the ADL in 

a real-world SHC environment. To obtain an overview of the occupancy of individual 

rooms of the SHC (time of arrival, time of departure, number of persons), the indirect 

measurement of  CO2 concentration (ppm) with operational  CO2 (ppm) sensors is used.

�e aim of the second part of the article is to use ANN to predict the measured 

quantities for the purpose of monitoring the ADL in a real-world SHC environment. It 

describes the process of using the multilayer forward ANN to predict the course of  CO2 

concentration from the measured temperature Ti (°C), relative humidity rH (%) in the 
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interior of the SHC in the selected room R104 and from the outdoor temperature read-

ings To (°C), with the gradient algorithm of error backpropagation using the Levenberg–

Marquardt (LMA) prediction. For the classification of prediction quality, a correlation 

analysis (correlation coefficient R), calculated RMSE (Root Mean Squared Error) and 

Mean Absolute Percentage Error (MAPE) and Bland–Altman method are used.

�e third part of the article aims to connect and test the created HESTIA applica-

tion for visualization and voice control of operational technical features using real-world 

KNX technology to determine the ADL. As complementary information for more pre-

cise determination of activities of SHC inhabitants, the presence of persons in the SHC 

room is monitored using the  CO2 sensor and the prediction of the  CO2 course from the 

measured Ti (°C), the relative humidity rH (%) in the interior of the selected room of 

the SHC and the measured outdoor temperature To (°C) using the above methods. �e 

applications described below may be used for detecting ADL in the SHC.

Description of the used technologies

�e Smart two-floor wooden house (hereafter Smart Home; floor area of: 

12.1 m × 8.2 m; (Fig. 1) was built as a training centre of the Moravian-Silesian Wood 

Cluster (MSWC). �e wooden house (SHC) was built to a passive standard in accord-

ance with standards ČSN 75 0540-2 and ČSN 730540-2(2002).

Description of the used technologies

For heating, cooling and forced ventilation, BACnet (Building Automation and Controls 

Network) technology is used in the SHC. Lighting, blinds and mains sockets are con-

trolled by KNX technology, which is interconnected with BACnet (Fig. 2).

Visualization and archiving of measured values of non-electric quantities are realized 

in the master visualization system Desigo Insight, for example measurement of tempera-

ture, humidity,  CO2 for monitoring and control of the indoor environment of individual 

Fig. 1 Smart home—wooden house, training center of the Moravian-Silesian wood cluster (MSWC)
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rooms of SHC. To perform the evaluation of the measured non-electrical quantities, the 

values of  CO2, temperature (T) and relative humidity (rH) in selected rooms have been 

chosen and measured by means of air quality sensor QPA 2062. �e technical param-

eters of the sensor are as follows:

  • Temperature indoor Ti, (sensor (QPA 2062), (within 0 and 50 °C/−35 to 35 °C, accu-

racy ±1 K) implemented in BACnet technology) and Temperature outdoor T0, (sen-

sor AP 257/22, measuring range −30…+80 °C, resolution: 0.1 °C), implemented in 

KNX technology).

  • Relative humidity (rH) measurement (sensor (QPA 2062), (within 0 and 100%, accu-

racy ±5%), implemented in BACnet technology),

  • CO2 measurement (sensor (QPA 2062), (within 0 and 2000 ppm, accuracy ±50 ppm, 

implemented in BACnet technology).

For the actual experiment room R104 was used (Fig. 3) in the SHC.

First part—use of  CO2 sensors for determining the presence and occupation 

of a room in the SHC

Monitoring of ADL or occupancy of the SHC rooms serves to more accurately and 

efficiently regulate the operational-technical functions in the SHC (reduction of oper-

ating costs and energy consumption, comfort of controlling operational technical func-

tions in the SHC and object security) and for indirect monitoring of daily activities of 

seniors in order to prevent borderline and critical situations (fall of an elderly person, 

injury, death). In connection with ADL monitoring, carbon dioxide  (CO2) concentra-

tions can be used in occupied SHC rooms. �e actual measurement of  CO2 is primarily 

performed in order to control the quality of the indoor environment (air) in individual 

SHC rooms, to ensure hygienic conditions and to control the HVAC in the SHC. Air 

quality in rooms has a significant impact on personal well-being and people’s attention. 

Fig. 2 Smart Home building—block scheme of the building automation technology part (including com-
munication modules for the building heating technology part and the heat storage technology part)
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Higher  CO2 concentrations lead to premature fatigue, while prolonged exposure may 

lead to headaches or other ailments [38]. �e concentration of  CO2 is the most common 

contaminant in indoor building environments. In interiors of buildings there is always 

higher concentration than outside. �e main source of the increase in  CO2 concentra-

tion in the interior of the IB is above all human. During breathing, oxygen and  CO2 are 

exchanged.  CO2 production is in direct proportion to physical activity. �e carbon diox-

ide concentration is given in ppm (parts per million) [39].

From the measured values of  CO2 concentration (Fig. 4) in room R104 it is possible 

to determine the time of arrival or departure of a person to/from the monitored space 

(Fig. 5). �is is based on the assumption that if the  CO2 increases then there is a person 

Fig. 3 Ground floor of the SHC with indication of the sensors used for measuring temperature, relative 
humidity and  CO2 in room R104

Fig. 4 Measured waveform of  CO2 (ppm) in R104 of SHC (1.2.2014–27.2.2014)



Page 6 of 34Vanus et al. Hum. Cent. Comput. Inf. Sci.  (2017) 7:30 

present (source of  CO2). When the person leaves the monitored space, the increase in 

 CO2 concentration:

  • stagnates or remains constant (Fig. 5), points 2–3, 5–6, 7–8, 15–16, 18–19, 20–21, 

24–25; i.e. closed windows, doors, no forced ventilation,

  • rapid decrease (Fig. 5), points 19–20, 23–24), open window or doors,

  • gradually (Fig. 5), points 4–5, 9–10, 11–12, closed windows, doors, no forced ventila-

tion.

It is also possible to determine, based on the dispersion of  CO2 concentration, the 

manner of dispersion of  CO2 in the space of the room [opening the window, switching 

on forced ventilation, natural scattering of  CO2 (ppm)] (Fig. 6).

Results �rst part

�e experiments described above (Figs. 4, 5, 6) have shown that  CO2 can be used for 

ADL monitoring, occupancy detection and classification of determination of behaviour 

of the occupants of the SHC, SH or IB. Information obtained during the measurement of 

 CO2 (ppm) can also be used to determine the indoor environment quality of each space 

in the SHC, SH or IB.

Discussion

Information about the quality of the internal environment in an IB is provided by tem-

perature sensors (indoor, outdoor) Ti, To (°C) and air humidity sensors rH (%). �is 

information is crucial for the comfort and occupancy of separate rooms of IB. �e cost 

of high-quality temperature and air humidity sensors is approximately in the range of 

Fig. 5 Measured waveform of  CO2 (ppm) in R104 of SHC (1.2.2014–27.2.2014). (dd.mm.yyyy hh:mm:ss): 1 
arrival (5.2.2017 7:42:00), 2 departure (5.2.2017 7:53:00)—closed window, 3 arrival (5.2.2017 8:12:00), 4 depar-
ture (5.2.2017 8:22:00)—closed window, between points 5 (5.2.2017 8:34:00) and 6 (5.2.2017 8:43:00) stagna-
tion of  CO2 concentration (ppm), 6 arrival (5.2.2017 8:43:00), 7 departure (5.2.2017 8:53:00), 8 arrival (5.2.2017 
9:03:00), 9 departure (5.2.2017 9:14:00), 10 arrival (5.2.2017 9:24:00), 11 departure (5.2.2017 9:34:00), 12 arrival 
(5.2.2017 9:44:00), 13 departure (5.2.2017 9:55:00), 14 arrival (5.2.2017 10:03:00), 15 departure (5.2.2017 
10:14:00), 16 (5.2.2017 10:23:00), 17 arrival (5.2.2017 10:35:00), 18 departure (5.2.2017 10:54:00), 19 doors open 
(5.2.2017 11:04:00), 20 doors close (5.2.2017 11:14:00), 21 arrival (5.2.2017 11:24:00), 22 departure (5.2.2017 
11:34:00), 23 doors open (5.2.2017 11:44:00), 24 doors close (5.2.2017 11:54:00) 25 arrival (5.2.2017 12:24:00) 26 
departure (5.2.2017 12:35:00)
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Euro units. �e cost of sensors for the measurement of  CO2 moves the price a rank 

higher to several tens of Euro. In the Czech Republic (CR), the emphasis is placed on the 

utilization of a good thermal insulation for large buildings, which can finally provide cer-

tain energy savings. �is is realized for big office buildings, schools, hospitals, residential 

dwellings, family houses and blocks of flats. �e internal environment of reconstructed 

insulated buildings is continuously getting worse with the increase in  CO2 concentra-

tions and humidity rH. Many investors in the CR do not take this fact into account. To 

decrease the concentration of  CO2 in a room we can easily open a window and a door, or 

to use a forced ventilation as the part of a complex solution provided by HVAC technol-

ogy (Heating, Ventilation and Air Conditioning). Regarding the technology utilization in 

connection with the automatization of buildings, it is necessary to provide the measure-

ment of  CO2 concentration before the implementation of HVAC controlled technology.

Second part—the optimized arti�cial neural network model with Levenberg–

Marquardt algorithm for detecting human presence in SHC

Different types of sensors and technological equipment with regard to robustness, 

quality, design, capital and operating costs are used to determine the movement, loca-

tion and time of occurrence of persons for the purpose of indirectly determining the 

space occupancy of intelligent buildings IB (administrative buildings, schools, hospi-

tals, homes for the elderly, households), and to optimize the management of opera-

tional and technical functions in IB (lighting, blinds, HVAC). To detect the movement 

of people or for monitoring ADL within the building, the PIR motion sensors, pres-

ence sensor, GPS sensor or Smart Phones is possible using (Table 1) [40]. For bedrid-

den patients in hospitals, it is possible to use RFID sensors [41] or barcode labels. To 

obtain additional information on the occupancy of the individual rooms of an IB, the 

values from the operational sensors measuring the  CO2 concentration (ppm) can be 

measured, which are used to control forced ventilation in the building. Building heat-

ing, ventilation, and air conditioning (HVAC) systems are considered to be a prime 

Fig. 6 Measured waveform of  CO2 (ppm) in R104 of SHC (1.2.2014–27.2.2014). (dd.mm.yyyy hh:mm:ss): 
1 arrival (6.2.2017 9:14:00), 2 departure (6.2.2017 9:24:00), 3 arrival (6.2.2017 9:34:00), 4 departure (6.2.2017 
10:45:00), 5 arrival (6.2.2017 11:15:00), 6 departure (6.2.2017 12:05:00), t1—open doors (6.2.2017 13:16:00–
14:07:00), t2 (6.2.2017 14:07:00–8.2. 2017 11:06:00) closed windows and doors, forced ventilation off—natural 
dispersion of  CO2 concentration in the space of room R104



Page 8 of 34Vanus et al. Hum. Cent. Comput. Inf. Sci.  (2017) 7:30 

tool for energy conservation due to their significant contribution to commercial build-

ings’ energy consumption. For example, Yang evaluates occupancy modeling using 

twelve ambient sensor variables with results which demonstrate that 20% of gas and 

18% of electricity could be saved effectively if occupancy-based demand-response 

HVAC control is implemented in IB [42]. In energy efficiency analysis, user behavior 

detection related to the dynamic demands of energy is a critical aspect of support-

ing the intelligent control scheme of a Building Management System. According to 

Zhao, occupancy of anomalous user behavior tends to be figured out from multiple 

time-series records of occupancy [43]. For prediction and subsequent classification of 

automatic human activity recognition (AR), the regression method of Artifical Neural 

Networks (ANN), Hidden Markov models [43–45] decision trees method [46], meth-

ods using Bayesian networks [47], Conditional Random Fields (CRF) or a sequential 

Markov Logic Network (MLN) [48] can be used.

Biswas described, that the artificial neural network has emerged as a key method 

to address the issue of nonlinearity of building energy data and the robust calcula-

tion of large and dynamic data [49]. Pantazaras used incorporating  CO2 concentra-

tion as a factor in predictive models may unlock further optimization opportunities 

in controller applications, especially in buildings with highly varied occupancy, such 

as institutional buildings with the results, which suggest that there is indeed potential 

for at least short-term prediction using a very simple identification procedure [50]. 

Leung presents an investigation into the use of occupancy space electrical power 

demand to mimic occupants’ activities in building cooling load prediction by intel-

ligent approach, where the effect of individual behaviour on cooling load demand is 

less significant at building level than at office level and the proposed cooling demand 

prediction approach is able to predict daily peak loads satisfactory which would be 

useful for system dimensioning. [51]. Moon was developed temperature control algo-

rithm to apply a setback temperature predictively for the cooling system of a resi-

dential building during occupied periods by residents, where Levenberg-Marquart 

training method was employed for model training [52]. �e purpose of Mba work was 

to apply the artificial neural network (ANNs) with Levenberg–Marquardt algorithm 

for an hourly prediction, 24-672 h in advance of (IT) and (IH) in buildings found in 

hot humid region with results, which testified that ANN can be used for hourly IT 

and IH prediction [53]. Using the neural network to predict the energy consumption 

of the building resulted in some shortcomings, which were solved of Dinghao’s pro-

posed model (a new algorithm which combined genetic algorithm with the Leven-

berg–Marquardt algorithm) for qualified of predict short-term energy consumption 

in buildings accurately and efficiently [54], [55]. Yuce presents an ANN approach to 

predict energy consumption and thermal comfort level of an indoor swimming pool 

with ANN (Levenberg–Marquardt algorithm) based prediction approach for a spe-

cific HVAC system [56].

Based on the above-described scientific works, it was selected ANN with the Leven-

berg–Marquardt algorithm for prediction of measured waveform  CO2 from measured 

temperature and relative humidity waveforms.
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Preparation of experimental data

Within experiments, we used the BACnet technology (Building Automation and 

Controls Network) for the operational control of HVAC in SHC. To determine the 

occupancy of each room (coming time, time of leaving, the number of people) in 

SHC, are in this article uses indirect measurements of  CO2 concentration (ppm) 

using operational sensors  CO2 (ppm) [(sensor QPA 2062), (within 0 and 2.000 ppm, 

accuracy ±50  ppm)] In this part of the article is described how to determine the 

appropriate method of prediction of the  CO2 concentration from the measured val-

ues of the indoor temperature T (°C) in a SHC room [(sensor QPA 2062) (within 0 

and 50 °C/−35 to 35 °C, accuracy ±1 K)], indoor rH (%) [(sensor QPA 2062), (within 

0 and 100%, accuracy ±5%)] and outdoor temperature T (°C) ((sensor AP 257/22, 

measuring range −30…+80 °C, resolution: 0.1 °C), the sensor is implemented in KNX 

technology) using the gradient algorithm of the back-propagation of error for the 

adaptation of the multilayer feedforward ANN using prediction—the LMA method 

[57, 58], (Fig. 7).

For the actual experiments the measured values of Ti, T0, rH and  CO2 in room R104 in 

the period 1.2.2014–27.2.2014 (transition winter–spring) and 1.6.2015–30.6.2015 (tran-

sition spring–summer) were used:

Training and test dataset

�e goal of testing is to verify whether the results achieved from the training data can be 

verified in the future for other input data files. �e training set is created directly from 

the measured values of temperature Ti (°C), relative humidity rH (%) in room R104 and 

outdoor temperature To (°C). �e output (target) dataset is created by the measured val-

ues of  CO2 (ppm). �e measured values in February 2014 and June 2015 were selected. 

For February 2014 this represented 38,880 samples with the following distribution:

  • Training—70%, 27,216 samples, which are presented to the network during training, 

and the network is adjusted according to its error.

  • Validation—15%, 5832 samples, which are used to measure network generalization, 

and to halt training when generalization stops improving.

  • Testing—15%, 5832 samples, which have no effect on training and so provide an 

independent measure of network performance during and after training.

Fig. 7 The architecture of designed ANN
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For June 2015 this represented 41,760 samples with the following distribution:

  • Training—70%, 29,232 samples.

  • Validation—15%, 6264 samples.

  • Testing—15%, 6264 samples.

�e data is sampled in 1 min intervals. Before the actual learning, the training dataset 

was normalized using the min–max method.

where min(x1···xi) is the smallest value in the set (x1···xi) and max(x1···xi) is the largest 

value in the set (x1···xi).

�e min–max method was used to eliminate possible errors during ANN LMA train-

ing. After training the neural network and simulation with training or test data, the out-

put from the neural network had to be denormalized according to the original range 

of the training input values. �e ANN training process is illustrated in Fig. 8. Figure 9 

shows the process of measuring and processing data in connection with the BACnet 

technology used in the SHC.

For the actual testing, normalized measured data was used for precisely defined time 

intervals of short experiments per 1000 samples from days:

  • 16.6.2015 (6:40–23:18),

  • 18.2.2014 (7:00–23:40),

  • 7.2.2017 (12:29)–8.2.2017 (5:09).

�e test set is created directly from the measured values of temperature Ti (°C), rela-

tive humidity rH (%) in room R104 and outdoor temperature To (°C). �e output (tar-

get) dataset is created by the measured values of  CO2 (ppm). �e data was tested on 

trained ANN (1.6.2015–30.6.2015) and ANN (1.2.2014–27.2.2014). �at means that for 

the ANN LMA trained on measured values from June 2015 (Table 2) the test data was 

the measured values in the period 16.6.2015 (6:40–23:20), (Table 6), and for the ANN 

(1)
′

x i =

xi − min(x1···xi)

max(x1···xi) − min(x1···xi)
,

Fig. 8 Block diagram of the ANN learning process in training mode
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LMA trained on measured values from February 2014 (Table  4) the test data was the 

measured values in the period 18.2.2014 (7:00–23:40), (Table 7).

Choice of diagnostic tools, their application and evaluation

�e quality of diagnostic tools that are presented by Artificial Intelligence methods can 

be specified by many different requirements. Quality is usually measured using mean 

squared error (MSE), mean absolute percentage error (MAPE), and root mean squared 

error (RMSE). �e mean squared error (MSE) is given by the equation:

(2)MSE =

1

n

n
∑

i=1

(

yi − y∗

i

)2
,

Fig. 9 Simplified block scheme of utilized technology in SHC with prediction of  CO2

Table 2 Comparison of  learning quality ANN (LMA), [1.6.2015–30.6.2015 (data normal-

ized)]

Number of neurons (−) Time t (hh:mm:ss) MSE training (ppm) R training (−)

10 0:02:19 1.155 × 10−4 0.804

50 0:03:29 7.762 × 10−4 0.874

100 0:22:47 5.557 × 10−4 0.910

150 0:09:36 5.325 × 10−4 0.917

200 0:23:09 4.207 × 10−4 0.932

250 1:06:52 3.256 × 10−4 0.940

300 0:15:00 4.850 × 10−4 0.918

350 0:25:13 3.338 × 10−4 0.944

400 0:43:13 2.427 × 10−4 0.963

450 0:47:44 2.392 × 10−4 0.96

500 1:05:09 2.317 × 10−4 0.963

550 0:43:11 2.713 × 10−4 0.958

600 1:20:51 2.176 × 10−4 0.967

650 0:56:27 2.477 × 10−4 0.96

700 1:03:49 2.793 × 10−4 0.959
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where n is the number of measurements, yi represents the measured data (responses) of 

a real system and yi* is the model response.

�e average absolute percentage error (MAPE) is calculated from relation

�e root mean squared error (RMSE) is calculated from relation

�e force of (linear) dependence between two measured non-electrical quantities has 

been evaluated by means of the value of the Pearson´s correlation coefficient

�e correlation coefficient Rx,y can take values from the closed interval 〈−1, +1〉. �e 

more the absolute value of the correlation coefficient approaches 1, the stronger the 

dependence of the random quantities is.

Backpropagation algorithm

�e backpropagation algorithm is a gradient algorithm with which multilayer forward 

networks are adapted. Backpropagation is like a teacher’s instruction when the calcu-

lated output of the network is compared to the desired output. Subsequently, with the 

backward propagation of the signal, the weights are adjusted so that the net responds 

with the desired output to the pattern. It has been shown that such networks are able 

to approximate any continuous function with the required accuracy and therefore have 

a wide use, for example, for regression analysis [59]. In general, backpropagation is 

the most widely used algorithm in the field of neural networks in general. It is used in 

approximately 80–90% of applications [60]. �e backpropagation optimization process is 

used for forward neural networks with hidden layers and is designed to classify data that 

is generally not linearly separable [61].

�e learning process (Fig. 8) of backpropagation can be divided into four main parts 

[88]:

1. Initialization: All weights in the network are set to random values within the recom-

mended range 〈−0.3; 0.3〉.

2. Pattern introduction: A pattern from the training set is selected and presented to the 

input of the neuron network. �e output of the individual neurons is then calculated 

by the layers from the input to the network outputs.

3. Comparison: In this step the energy is calculated from the equation

(3)MAPE =

1

n

n
∑

i=1

∣

∣yi − y∗

i

∣

∣

y∗

i

(4)RMSE =
√
MSE.

(5)Rx,y =
Σ(xi − x̄)

(

yi − ȳ
)

√

Σ(xi − x̄)2Σ
(

yi − ȳ
)2

.

(6)E =

1

2

n
∑

i=1

(

yi − di
)2
,
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which is to be minimized by the gradient method. �e increment vector is calculated 

from the equation

�e increment vector is valid for all weights in the ANN. �e weights are adjusted by 

a λ multiple of a negative gradient value because the gradient is oriented towards the 

apex (to the maximum).

4. Error backpropagation and weight modification (in hidden layers): Weights and 

thresholds in hidden layers are calculated in a similar way to the output layer weights. 

�e error backpropagation and weight modification step is calculated for all hidden 

layers of the neural network away from the output layer to the input layer. In addition 

to the basic replication algorithm, there are a number of modifications that modify 

the weight and threshold values of the neurons in different ways. Algorithms can be 

divided into two groups. �e first group includes algorithms that use variability of 

momentum or learning step, while the second group is based on standard optimi-

zation techniques such as Newton’s method, Gauss–Newton method, Levenberg–

Marquardt method and others.

Levenberg–Marquardt algorithm (LMA)

LMA algorithm was designed to approach second-order training speed without hav-

ing to compute the Hessian matrix. When the performance function has the form of a 

sum of squares (as is typical in training feedforward networks), then the Hessian matrix 

can be approximated as and the gradient can be computed as where is the Jacobian 

matrix that contains first derivatives of the network errors with respect to the weights 

and biases, and e is a vector of network errors. �e Jacobian matrix can be computed 

through a standard backpropagation technique that is much less complex than comput-

ing the Hessian matrix. �e Levenberg–Marquardt algorithm uses this approximation 

to the Hessian matrix in the following Newton-like update: when the scalar λ is zero, 

this is just Newton’s method, using the approximate Hessian matrix. When λ is large, 

this becomes gradient descent with a small step size. Newton’s method is faster and 

more accurate near an error minimum, so the aim is to shift towards Newton’s method 

as quickly as possible. �us, λ is decreased after each successful step (reduction in per-

formance function) and is increased only when a tentative step would increase the per-

formance function. In this way, the performance function will always be reduced at each 

iteration of the algorithm [62].

�e LMA adaptively changes when the parameter upgrades between the gradient 

descent updating and the Gauss–Newton updating,

where the small values of the algorithmic parameter λ cause a Gauss–Newton updat-

ing and the large values of the algorithmic parameter λ cause a gradient descent updat-

ing. �e parameter λ is initiated to be large so that the first updates represent small 

steps in the steepest descent direction. If any iteration results in a worse approximation 

(x2(p + hlm) > x2(p)), then λ is increased. In other words, as the solution improves, λ is 

(7)�w̄ = −� · ∇E.

(8)
[

JTWJ + �I
]

hlm = JTW
(

y − ŷ
)

,
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decreased, the LMA method approaches the Gauss–Newton method, and the solution 

distinctively speeds up to the local minimum. In Marquardt´s updated relationship [57]:

�e values of λ are normalized to the values of  JT. �e Levenberg–Marquardt’s algo-

rithm was implemented in the MATLAB function.

Implementation of the practical part

Practical procedure of ANN implementation and learning along with the verification of 

the learned ANN LMA on test data is performed in the following steps:

1. Step—measurement of non-electrical quantities Ti, T0, rH and  CO2 in room R104 in 

the period 1.2.2014–27.2.2014 (transition winter–spring), 1.6.2015–30.6.2015 (tran-

sition spring–summer), 7.2.2015 using sensors connected to the BACnet technology 

in the SHC.

2. Data preprocessing–normalization.

3. Design of the prediction system.

4. Implementation of ANN, LMA.

5. Training of ANN, LMA for neuron counts in the range 10–700, measurement of 

time t(s) of ANN learning, calculation of MSE and correlation coefficient R.

6. Prediction of test data–generalization.

7. Graphic view of results.

8. Calculation of RMSE, MAPE, correlation coefficient R.

9. Evaluation of achieved results.

Results with ANN (1.6.2015–30.6. 2015)

To objectively assess the prediction quality (criterion for the LMA optimization), we 

used parameters of RMSE (Room Mean Square Error) and correlative coefficients (R). 

We continually configured the LMA values regarding numbers of neurons N from 

10 to 700. We also assessed the time necessary for N to learn to cooperate with LMA 

algorithm. �e minimum value of MSE =  2.176 ×  10−4 was calculated for ANN with 

the LMA where the configured number of neurons was 600 and the learning time was 

1:20:51 (Table 2).

�e learning time of ANN LMA is not directly proportional to the number of config-

ured neurons. For the network of ANN LMA with 600 neurons, we carried out a pre-

diction of  CO2 based on the measured temperature Ti, To and relative air humidity rH 

obtained from June 1, 2015 to 30 June 2015. Figure 10 shows the period (14 days) from 4 

June 2015 to 18 June 2015 to clarify the discussed issue.

Within the realized experiment, optimal input parameters ANN for the number 

of neurons (600) of LMA were found on the basis of MSE parameters (2.176 × 10−4), 

R-taining (0.967) and training time t (1:20: 51), (Table 2).

With the use of a trained network ANN, we carried out strictly controlled short-term 

experiment (7 h), (Fig. 11), without the use of  CO2 sensor (according to a prepared sce-

nario) under the following conditions that had to be fulfilled: SHC in a passive standard, 

(9)
[

JTWJ + �diag(JTWJ)
]

hlm = JTW
(

y − ŷ
)

.
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closed windows and doors during t1 time period, switched off air-conditioning and heat-

ing, precisely defined coming and presence in the room t1(s) and leaving t3(s) of subjects, 

etc. (Fig. 11).

In order to compare the differences between the reference and predicted signal, the 

Bland–Altman plot was utilized [63]. �e differences between the predicted signal and 

the reference traces,  x1 – x2, are plotted against the average,  (x1 + x2)/2. �e reproduci-

bility is considered to be good if 95% of the results lie within a ±1.96 SD (standard devia-

tion) range.

Figure  12 shows the Bland–Altman graph for the verification of prediction quality 

ANN LMA (600) neurons in the long-term experiment (Fig. 10), (4 June 2015–18 June 

2015). For the entire data set, 98.06% of the values lie within the ±1.96 SD range for the 

determination of human detection.

Fig. 10 Long-term experiment. A The measurement of  CO2 concentration in a room of SHC—ZOOM (1 
coming, 2 leaving, 3 coming, 4 leaving, 5 coming, 6 leaving, 7 coming, 8 leaving), B prediction error during 
transient phase—coming of a subject into SHC, C coming of a subject into the room of SHC, D prediction 
error during the transient phase—coming of a subject into SHC, E leaving of a subject from a room of SHC, 
F coming of a subject into a room of SHC, G leaving of subjects from a room of SHC, H coming, I leaving). 
Figure 12 shows the prediction and measured concentration of  CO2 (ppm) within the short-term experiment 
(16 June 2015)

Fig. 11 Short-term experiment. t1(s)—time of subjects’ stay in a particular room of SHC, t2(s)—time of the 
measurement of  CO2 concentration in a particular room of SHC, t3(s)—time without a presence of subjects 
in a room—dispersion of  CO2 concentration in a room of SHC with a closed window and switched off forced 
ventilation, A the transient phase of a prediction at the moment of subject´s coming into a room of SHC, B 
the transient phase of a prediction at the moment of subjects´ leaving from a room of SHC, C dispersion of 
 CO2 when a room is empty. Table 2 shows calculated values of RMSE parameters and R Training and meas-
ured time of learning ANN for a configured number of neurons ANN LMA for the time period 1 June to 30 
June 2015
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�e result of the Bland–Altman graph in Fig. 13 shows a higher number of outlying 

measurements in intervals from 600 to 800 (ppm) and partially in the interval from 1300 

to 1400 (ppm), which is caused by changes (transient phases) within predictions in con-

nection with the coming and leaving of a subject into a room of SHC. �e majority of 

values are shown in the interval from 500 to 600 (ppm), which demonstrates the absence 

of subjects in a monitored space. Figure 13 shows the Bland–Altman graph for the veri-

fication of prediction quality of ANN LMA (600) neurons in the short-term experiment 

(Fig. 11), (16 June 2015). For the entire data set, 96.00% of the values lie within the ±1.96 

SD range for the determination of human detection.

Results with ANN (1.2.2014–27.2. 2014)

Table  3 shows the calculated values of MAPE, RMSE and R for predicted courses of 

 CO2 on trained ANN LMA (1.6.2015–30.6.2015) for neuron counts in range 10–700. 

Comparison with Table 2 confirms that the best calculated parameters MAPE (81.52%), 

RMSE (0.0165), R coefficient (0.96), (Table  3) for predicted courses of  CO2 are for 

trained ANN LMA with 600 neurons.

Table 4 shows the measured and calculated values of MSE, correlation coefficient R, 

time t(s) of learning process of ANN LMA (for neuron counts in the range 10–700) 

for measured values Ti, T0, rH and  CO2 in room R104 of the SHC in the period 

1.2.2014–27.2.2014. ANN LMA exhibited the best learning parameters for 500 neurons 

(MSE = 6.188.10–4, R = 0.950).

Table 5 shows the calculated values of MAPE, RMSE and R for predicted courses of 

 CO2 on trained ANN LMA (1.6.2015–30.6.2015) for neuron counts in range 10–700. 

Fig. 12 The Bland–Altman graph—the long-term experiment

Fig. 13 The Bland–Altman graph—the short-term experiment
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Comparison with Table  4 confirmed that the best calculated parameters of MAPE 

(70.89%), RMSE (0.025), R coefficient (0.95), (Table 5) for predicted courses of  CO2 are 

for trained ANN LMA with 500 neurons.

Results—testing of ANN LMA

For trained ANN LMA in the period 1.6.2015–30.6.2015 (Table 2) we used the meas-

ured data in the period 16.6.2015 (6:40–23:18), (1000 samples) for testing within a short 

experiment. �e results are in Table 6.

Table 3 Comparison of  prediction quality ANN (LMA) [1.6.2015–30.6.2015 (data normal-

ized)], with tested data from interval [1.6.2015–30.6.2015 (data normalized)]

Number of neurons (−) RMSE training (ppm) R training (−)

10 0.033 0.8

50 0.028 0.87

100 0.023 0.91

150 0.023 0.91

200 0.02 0.93

250 0.018 0.95

300 0.022 0.92

350 0.019 0.94

400 0.0168 0.96

450 0.017 0.96

500 0.019 0.95

550 0.018 0.95

600 0.0165 0.96

650 0.018 0.95

700 0.017 0.96

Table 4 Comparison of  learning quality ANN (LMA) [1.2.2014–27.2.2014 (data normal-

ized)]

Number of neurons (−) Time t (hh:mm:ss) MSE training (ppm) R training (−)

10 0:00:46 2.219 × 10−3 0.79

50 0:06:48 1.183 × 10−3 0.90

100 0:05:24 1.144 × 10−3 0.90

150 0:56:29 7.762 × 10−4 0.93

200 0:24:45 8.406 × 10−4 0.93

250 0:21:47 8.487 × 10−4 0.93

300 0:35:36 7.185 × 10−4 0.94

350 0:45:14 6.739 × 10−4 0.94

400 1:09:55 6.811 × 10−4 0.94

450 1:06:52 7.256 × 10−4 0.94

500 1:32:14 6.188 × 10−4 0.95

550 0:18:42 9.006 × 10−4 0.92

600 1:09:26 6.761 × 10−4 0.94

650 0:31:09 7.525 × 10−4 0.94

700 0:58:46 7.307 × 10−4 0.94
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Comparison with Table 2 shows that for calculated parameters RMSE (0.02), R coef-

ficient (0.93), (Table 6) for predicted courses of  CO2 are the best for trained ANN LMA 

(in the period 1.6.2015–30.6.2015) with 500 neurons.

For trained ANN LMA in the period 1.2.2014–27.2.2014 (Table 3) we used the meas-

ured data in the period 18.2.2014 (7:00–23:40), (1000 samples) for testing within a short 

experiment. �e results are in Table 7.

Comparison with Table 4 shows that for calculated parameters RMSE (0.049), R coef-

ficient (0.67), (Table 7) for predicted courses of  CO2 are the best for trained ANN LMA 

(in the period 1.2.2014–27.2.2014) with 300 neurons.

Table 5 Comparison of  prediction quality ANN (LMA) [1.2.2014–27.2.2014 (data normal-

ized)] with tested data from interval [1.2.2014–27.2.2014 (data normalized)]

Number of neurons (−) RMSE training (ppm) R training (−)

10 0.047 0.80

50 0.034 0.90

100 0.033 0.90

150 0.028 0.93

200 0.029 0.93

250 0.029 0.93

300 0.028 0.93

350 0.025 0.95

400 0.026 0.94

450 0.027 0.94

500 0.025 0.95

550 0.030 0.92

600 0.026 0.94

650 0.028 0.94

700 0.027 0.94

Table 6 Comparison of  prediction quality ANN (LMA) [1.6.2015–30.6.2015 (data normal-

ized)] with tested data [16.6.2015 (6:40–23:18)]

Number of neurons (−) RMSE training (ppm) R training (−)

10 0.054 0.67

50 0.047 0.59

100 0.027 0.88

150 0.029 0.85

200 0.024 0.90

250 0.022 0.91

300 0.025 0.89

350 0.024 0.90

400 0.021 0.92

450 0.021 0.92

500 0.020 0.93

550 0.023 0.90

600 0.021 0.92

650 0.021 0.92

700 0.022 0.91
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Discussion

�e second part of the paper describes and experimentally documents the procedure for 

the use of a multilayer forward ANN to predict the course of  CO2 concentration from the 

measured Ti (°C), relative humidity rH (%) in the interior of the selected room R104 of 

the SHC and from the outdoor temperature To (°C), with the gradient error propagation 

algorithm using the Levenberg–Marquardt predictive method (LMA). For the classifi-

cation of prediction quality, a correlation analysis (correlation coefficient R), calculated 

RMSE (Root Mean Square Error) and MAPE (Mean Absolute Percent Error) and Black-

Altman method were used. �e best results were achieved by ANN LMA trained on the 

measured values in the period 1.6.2015–30.6.2015. �e achieved results approached R 

>95% for 600 neurons (Tables 2, 3), or during the actual test R = 0.93 for 500 neurons 

(Table 6). ANN LMA, trained for measured values in the period (1.2.2015–27.2.2015), 

achieved comparable results (R = 0.95) for the number of neurons 500 (Tables 4, 5). �e 

results of prediction testing of ANN LMA (1.2.2015–27.2.2015) however, were not as 

successful (R = 0.67) for 300 neurons (Table 7).

Third part—implementation voice communication in SHC with KNX technology

For voice communication with the control system aimed at control of operating techni-

cal functions and electric appliances [64, 65, 66, 67–69] in SHC and in intelligent build-

ings, it is necessary to provide for an application with a visualization platform employing 

the existing high-quality speech command recognizer with high efficiency of recogni-

tion in the real SHC environment with additive noise, which can be used to support 

the independent living of seniors in their home environment. Brooks confirmed that 

user—centered design and the use of technology—Smart furniture with voice interac-

tion, which can be used to enhance daily living [70]. Hamill describes the development 

and testing of an automated, hands-free, dialogue-based speech recognition interface for 

personal emergency response systems—PERS prototype with the mounted microphone 

Table 7 Comparison of  prediction quality ANN (LMA) [1.2.2014–27.2.2014 (data normal-

ized)] with tested data [18.2.2014 (7:00–23:40)]

Number of neurons (−) RMSE training (ppm) R training (−)

10 0.076 0.10

50 0.064 0.39

100 0.061 0.40

150 0.051 0.61

200 0.050 0.63

250 0.053 0.59

300 0.049 0.67

350 0.047 0.65

400 0.047 0.66

450 0.050 0.61

500 0.047 0.65

550 0.053 0.59

600 0.047 0.66

650 0.050 0.63

700 0.049 0.65
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array, an open-source automatic speech recognition engine, and a ‘yes’ and ‘no’ response 

dialog modeled after an existing call center protocol [71]. Hossain proposes smart home 

health care system for the realization of smart cities to full fill the needs of elderly peo-

ple, where a patient’s condition is monitored by using multimodal inputs, specifically, 

speech and video. Video cameras and microphones are installed in the SHC; these sen-

sors constantly capture video and speech of the patient and transmit them to a dedi-

cated cloud [72]. Johnson in the study, where was described older adults’ perceptions 

and reactions to SHC technologies/applications at the Gator-Tech SHC has followed 

results: Overall, most participants responded favorably toward the smart door and voice 

activation than any other smart technology/application [73]. Portet was aiming at test-

ing the four important aspects in SHC: voice control, communication with the outside 

world, domotics system interruption human activity and electronic agenda. Portet said 

that voice interface seemed to have great potential to ease the daily life of the elderly and 

weak people and would be better received than the more intrusive solution [74]. Tang 

was describing how they implemented augmented reality of voice control & web server 

to control SHC and electrical appliances for elderlies and disabled [75]. Vanus designed 

[76] and tested [77] the voice communication with the control system in SHC. Zhuang 

et al. [78] described a fall detection system to distinguish noise coming from falls from 

other noise in the smart home environment. In their system, they only use a far-field 

microphone to identify various sounds. �en a Gaussian Mixture Models (GMM) Super 

vector is used to model each fall or noise segment by applying Euclidean distance to 

measure the pairwise difference between audio segments. A Support Vector Machine 

built on a GMM Super vector kernel is used to classify audio segments into falls and 

various types of noise [79].

In this part of the paper is described the practical implementation of the newly devel-

oped visualization desktop application HESTIA, type Universal Windows Platform 

(UWP), for Windows 10 implemented on the wooden house (SHC) at VŠB-TU Ostrava 

for voice control of operating technical functions by means of the KNX technology with 

detection of occupancy of the room R104 using  CO2 sensor.

Implementation of the created HESTIA visualization application

�e practical implementation is dedicated to the implementation of own created appli-

cation Hestia 10 which allows the voice control of operating and technical functions in 

the SHC fitted with KNX bus system. �e application supports voice control and a few 

settings of the user environment. Universal Windows Platform technology and C# pro-

gramming language were selected to develop the application. �e implementation was 

based on the MVVM (Model, View a ViewModel) architectural pattern which is briefly 

described below.

HESTIA application description

Application Hestia consists of several screens. For users, the most important screen 

is that with controls; this screen contains a list of rooms and visualizes individual pre-

configured devices/appliances. �e controls are depicted based on the configuration 

screen. In the case of lighting, the lights can be switched on and off. It is also possible 

to change their brightness using buttons for dimming. As for furnishings of sunblind 
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type, the screen depicts a control which may include several functions. Another impor-

tant screen serves for setting the application. Here, the users can adjust some application 

parameters in order to adapt it to their individual needs. It is possible to set the language 

(Czech or English). Furthermore, the users can choose from two color schemes, light 

and dark. �e last setting allows them to change the font size; this facilitates the work 

with the application mostly for seniors. �ere are three font sizes to choose from—small, 

medium and large. A prerequisite for the proper functioning of the application is config-

uration. It runs on a separate screen which can be accessed from the application settings. 

For the purpose of better clarity, a list of rooms in the building is created in the first 

instance. A list of devices for each room is created afterwards. When creating devices, 

it is necessary to select the device type and enter at least one group address of some of 

the possible functions. Configuration should be performed by a person familiar with the 

KNX bus system and specific bus programming. It is necessary to know group addresses 

and device types occurring in the topology (Fig. 14).

Without this knowledge, it is not possible to provide control functionality. �e appli-

cation consists of several components (Fig. 15); the basic components are Hestia.View, 

Hestia.Model and Hestia.ViewModel, forming the frame of the MVVM architectural 

pattern.

�is is described hereinafter. Another component is KNXLib.Portable. It is a freely 

available library for communication with the KNX bus. Hestia.Speech provides voice 

recognition logic and passes the information further in the application. Hestia. Common 

Fig. 14 Group addresses created in the ETS 5 SW tool for parameterization of the individual KNX modules
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is a shared component that contains global variables and methods used across the 

application.

Voice control

For speech recognition, the SW tool of Microsoft Speech Platform SDK 11 is employed. 

�e voice recognition function consists in the conversion of the input sound track to a 

text by the Speech Recognition Engine. �e sound input is divided into segments pro-

cessed as a speech signal and subsequently converted to digital form. �e input data 

adapted in this manner is further evaluated by means of three databases—(a) Acous-

tic model, (b) Lexicon, and (c) Language model. �e acoustic model, representing the 

acoustic language expression, can be adapted to recognize specific speech traits of the 

individual users. �e lexicon contains a large number of words in the given language, 

providing information on their pronunciation. �e language model provides information 

on the ways in which words can be combined. �e sequence diagram in Fig. 16 describes 

a situation where the user vocally enters a group address in the configuration tool.

Description of voice control implementation in SHC

For the implementation of voice control in SHC at VŠB–Technical University of Ostrava, 

where KNX and BACnet technologies are used to control the operating and technical 

functions, while interoperability between technologies is ensured. To control lighting, 

blinds, and sockets, KNX modules are used (Fig. 17).

For communication with the KNX bus, it is necessary to connect KNXnet/IP router to 

the bus; the router allows sending information between the device and the bus using the 

IP protocol. In the case of wireless communication, the KNXnet/IP router must be con-

nected to a wireless router and the device (computer, mobile phone) used for request-

ing the communication with the bus must be connected to the same network as the 

KNXnet/IP router (Fig. 18).

Fig. 15 Diagram of components
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Adaptation to smartphone

�e HESTIA visualization application created for Windows 10 shares a common code. 

�e application with a PC-connected microphone is not suitable for the speaker’s mobil-

ity within SHC. �erefore, the user interface must be adapted to be displayed on various 

devices (mobile appliances). �is can be achieved by using the VisualStateManager class. 

�e screen of the mobile device used to control the building is composed on the left part 

with a list of rooms and the right part with details of the individual rooms including the 

device list. If the width of a window with the running application is reduced to under 

Fig. 16 Sequence diagram describing processing of a voice command

Fig. 17 Switchboard with the KNX technology components connected to the HESTIA application created for 
voice control of operating-technical functions in SHC
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720 pixels, only a room list is displayed; after clicking on a specific room, the user is redi-

rected to a new screen with the room details. �is functionality is implemented by the 

VisualStateManager element defined in ControlView.xaml. Two states are created in it by 

means of the VisualState element—the default and reduced states. By means of the Adap-

tiveTrigger element, conditions of using the individual states can be defined; by means 

of the Setter element, it is possible to change the values of existing elements and their 

attributes in the XAML file. VisualStateManager (Listing 1) can respond to a change both 

in the width and in the height.

<VisualStateManager.VisualStateGroups> 

<VisualStateGroup x:Name="States" CurrentStateChanged=" 

States_CurrentStateChanged"> 

<VisualState x:Name="Default"> 

<VisualState.StateTriggers> 

<AdaptiveTrigger MinWindowWidth="720" /> 

</VisualState.StateTriggers> 

</VisualState> 

<VisualState x:Name="Reduced"> 

<VisualState.StateTriggers> 

<AdaptiveTrigger MinWindowWidth="0"/> 

</VisualState.StateTriggers> 

<VisualState.Setters> 

<Setter Target="Master.Width" Value="*" /> 

<Setter Target="Detail.Width" Value="0" /> 

<Setter Target="RoomListView.SelectionMode" Value="None" />

</VisualState.Setters> 

</VisualState> 

</VisualStateGroup> 

</VisualStateManager.VisualStateGroups> 

Listing 1 VisualStateManager definitions.  

�erefore, it is possible to use in the AdaptiveTrigger element either the MinWindow-

Width or MinWindowHeight element. For a window width over 720 pixels, the screen 

appearance changes according to the attributes set in the VisualState element called 

Default. For a window width of 0–720 pixels, on the contrary, in the VisualState element 

Fig. 18 Principle block diagram of interconnection of the individual KNX bus modules ready for voice control 
by means of the HESTIA SW application created
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called Reduced. If the application is displayed in a device with a width lower than 720 

pixels or if the application window has been reduced, the width of the left part of the 

screen with the room listing is set to the full window width. By contrast, the width of the 

right part with the room detail listing the devices is set to zero value, thus not being dis-

played at all. If a room is selected at full display, that is, over 720 pixels, no room listing 

is displayed if the window is reduced, but the details of the room selected. In this case, 

it is necessary to change the currently displayed ControlView in the ControlDetailView 

directly. �is must be programmed explicitly, which can be achieved from code-behind 

upon call of the CurrentStateChanged event. �is can be called if the conditions of an 

adaptive trigger are met.

Testing the visualization part of the HESTIA application

�e application was tested on the wooden house in Room 104 of SHC. �e KNX technol-

ogy is used here to control lighting and blinds, and switch off the power supply of sockets. 

During the test of the control of operating-technical functions on the wooden house at 

VŠB-TU Ostrava, the functions of switching on/off the lighting and dimming were tested. 

For control of the blinds, the control of the upward/downward movement of the blinds, 

movement of the blinds to a certain height and change in the inclination of the blind slats 

were tested. In the case of testing the lighting switch-on/off, the Boolean values of true/

false were sent to the group address of the KNX switching actuator. Sending these values 

can be activated by pushing the on/off button on the control screen. �ese buttons are 

available at the display of a room containing a device with a group address entered for 

this function. When the on button was pushed, a telegram with the target group address 

and the true value was sent to the bus. Overhearing the telegram, the actuator with this 

group address switched on the corresponding light in the SHC room. Switch-off of the 

lights was tested similarly; the false value was sent to the bus, whereupon the light went 

out. For the dimming function (designated as dimming object in ETS), the control ele-

ments include buttons marked minus (−) and plus (+). If the plus button is pushed, a 

positive predefined value is sent to the bus and the lighting brightness increases in SHC. 

If the minus button is pushed, a negative predefined value is sent to the dimming actuator 

group address, whereupon the lighting brightness decreases. In the case of verification of 

the upward/downward movement of the blinds (designated as movement object for man-

ual mode in ETS), the buttons for upward or downward movement were pushed in the 

control application section. �e same actions occurred on the bus as in the case of switch-

ing the lights on/off. If the blinds are moved to a certain height (designated as height posi-

tion in manual mode in ETS) or inclination of the slats is adjusted (designated as slat in 

manual mode in ETS), a value within the range of 0–100% is entered in the application. 

�is value is converted to a number within the interval of 0–255; subsequently, this data 

is sent to the address configured for the given function. All of the control functions pro-

vided by the application were tested with one hundred per cent reliability.

Voice control testing

For correct recognition of the voice command, the distance from the microphone was 

important, as well as silence in the room and correct pronunciation of English terms. 

�e list of the speech commands used for control of the HESTIA SW application is as 
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follows (Fig. 19): “Go to control page”, “Select room 0–9”, “Select device 0–9”, “Light on”, 

“Light off”, “Blind up”, “Blind down”, “Change blind height”, “Write height value 0–100”. 

During application testing, influence of the additive noise in the real environment took 

effect in SHC. �e results indicated below of the efficiency of recognition of voice com-

mands (Fig. 19) fall within the range from 71 to 95%.

�e sources of additive noise in SHC include electric appliances commonly used in the 

household, such as radio, TV set, refrigerator, fume hood, vacuum cleaners, noise from 

the fan, air conditioning, etc., as well as cooking, children’s noise, flushing of toilets, door 

slamming, people talking, outdoor traffic noise in the town, etc. At present, scientific 

workplaces worldwide are trying to solve the implementation of suitable platforms for 

voice control of automation in the real environment of intelligent buildings [80–83] with 

the use of suitable methods of additive noise suppression in the real SHC environment. 

�e actual design and solution by the authors of additive noise suppression in the real 

SHC environment by the implementation of adaptive algorithms and Soft Computing 

methods in conformity with the block diagram in Fig. 18 are indicated in publications 

[84–87, 23].

Experimental part

In the last part of the paper, an experiment is conducted to determine indirect detection 

of the presence of persons in the monitored area of the SHC (room R104) by measuring 

the concentration of  CO2 in the monitored area of R104 of the SHC in combination with 

a microphone for voice control of operational–technical functions in the SHC using the 

HESTIA visual desktop application on 7.2.2017 from 12:30 to 15:00. Arrival in the room 

was recorded on 7.2.2017 at 12:45:00 on the basis of an increase in  CO2 concentration 

(Fig. 20). Departure from the room was recorded at 14:22:00 on the basis of evaluation of 

a decrease in  CO2 concentration (Fig. 20).

Figure 21 shows the course of the measured values of rH and T in the interior of R104.

Figure 22 shows the course of predicted values of  CO2 with ANN LMA. From the pre-

dicted course of  CO2, it is possible to determine arrival in the room (7.2.2017 at 12:45:00) 

based on an increase in concentration of the predicted course of  CO2. Departure from 

Fig. 19 Graph of efficiency of recognition of voice commands in SHC
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the room was recorded at 14:22:00 on the basis of evaluation of a decrease in  CO2 con-

centration (Fig. 20).

Figure 23 shows controlling of blinds with voice commands in room R104 (Figs. 3, 17) 

with indicated and confirmed times of arrival and departure in/from room R104.

Fig. 20 The course of the measured values of  CO2 (ppm) in room R104 during the test of voice-controlled 
operational–technical functions (blinds, lighting)

Fig. 21 The course of the measured values of rH (%) and T (°C) in room R 104 during the test of voice-con-
trolled operational–technical functions (blinds, lighting)

Fig. 22 The course of predicted values of  CO2 (ppm) with ANN LMA in room R104
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Figure 24 shows controlling of lighting with voice commands in room R104 (Figs. 3, 

17) with indicated and confirmed times of arrival and departure in/from room R104.

Discussion

For detecting the ADL of SHC residents, the microphone for detection speech activity 

and SW Tool HESTIA for the recognition of voice commands in combination with  CO2, 

temperature and humidity sensors to detect the presence of people in the SHC moni-

tored area has been used in this article part. Furthermore, for detecting ADL, the arti-

cle describes the experimental application of speech control of operating and technical 

functions in SHC with support to indirect monitoring of the presence of people in the 

area of SHC using  CO2 prediction from the measured values of temperature and humid-

ity within the operating measuring of the quality of the indoor environment.

Conclusions

�e paper describes new approaches to the technical solution for monitoring the pres-

ence of persons in the selected room R104 of the SHC to determine the occupancy of the 

monitored spaces with the possibility of using the obtained information to determine 

the ADL using existing technological systems that can be employed in the SHC.

Fig. 23 The course of the monitored positions of slats and blinds based on the execution of voice com-
mands (blinds up/down) in room R 104 SB slats position, BP blinds position

Fig. 24 The course of the monitored states of lights based on the execution of voice commands (lights on/
off ) in room R 104
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�e first part of the paper demonstrates the possibility of use of indirect measurement 

of  CO2 concentration (ppm) with operational  CO2 sensors (ppm) to obtain a view of 

occupancy of R 104 in the SHC (time of arrival, departure, number of persons).

In second part of the paper are described the short-term and long-term experiments 

verifying a proposed method of LMA implementation for the detection of human pres-

ence in a room of SHC with the use of prediction of  CO2 concentration from the meas-

ured temperature Ti, To and relative air humidity rH for ANN trained with LMA for 600 

neurons with a high degree of correlative coefficient R =  0.967 (Table  2). Experiment 

verified the utilization of a method for the detection of a presence of subjects in rooms 

of SHC for ADL monitoring. With regard to the short-term and long-term experiments 

(closed windows, switched off forced ventilation, switched off heating, etc.), the pro-

posed method is suitable for its utilization in SHC of a passive standard due to a smaller 

number of changes in the quality of internal environment of SHC (switch-on/switch-off 

of HVAC, window and door opening). �e advantage of the proposed method is a lower 

investment cost of IB (e.g. office building) equipment regarding sensors for the monitor-

ing of a presence of subjects in separate rooms of IB. �e disadvantage is an instabil-

ity of predictions in transient phases of technology (window opening, HVAC switch-on/

switch-off). To decrease the investment costs connected with the installation of missing 

sensors for the monitoring of  CO2 concentrations in big buildings or in huge residential 

dwellings, it is possible to use our proposed method for the prediction of  CO2 from the 

measurements of temperature Ti, To and air humidity rH, which are very often included 

in the standard equipment of IB.

�e third part of the paper deals with the development of the application for voice 

control of operating-technical functions in SHC, equipped with the KNX bus system. 

�e resultant universal application for Windows 10 can be run on both the desktop 

system version and the mobile version of the Windows 10 operating system. �e paper 

describes utilization of the MVVM architectural pattern for UWP development. �e 

application has incorporated voice control, available in the English language, which is 

used to facilitate the application control not only for the elderly and handicapped. �e 

application includes several settings facilitating work with the application for both sen-

iors and other users. �e functionality of the HESTIA application was verified in SHC, 

where the control of lighting and blinds were tested. In comparison with other works 

dealing with the creation of the environment for control of an intelligent building, the 

resultant application can be configured and thus used for any building equipped with the 

KNX bus system. Voice control implementation is an in-house solution; no third-party 

software is used here. In this part of the paper, practical verification of the possibility of 

use of a combination of a  CO2 sensor and a microphone for determination of ADL took 

place in room R104 of SHC..

Next experiments will be focused on the clarification of the proposed method by add-

ing other variables (sunshine, wind …). �e above-described technological methods for 

ADL monitoring of residents SHC will be in additional work used for classification and 

recognition of daily patterns and habits of the elderly in the SHC.
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