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Abstract

We propose the PREvent framework, which is a system
that integrates event-based monitoring, prediction of SLA
violations using machine learning techniques, and auto-
mated runtime prevention of those violations by triggering
adaptation actions in service compositions. PREvent im-
proves on related work in that it can be used to prevent
violations ex ante, before they have negatively impacted the
provider’s SLAs. We explain PREvent in detail and show
the impact on SLA violations based on a case study.

I. Introduction

The paradigm of service-oriented computing [18] has
changed the way companies do business. Nowadays, many
companies are shifting towards the Software-as-a-Service
(SaaS) model, providing coarse-grained valued-added ser-
vices as a composition of existing Web Services [10].
In this context the concept of Service Level Agreements
(SLAs), which are contracts between providers of com-
posite services and their customers [7], is very important.
SLAs govern the quality that customers can expect from
the service. Quality requirements are formulated as a
collection of Service Level Objectives (SLOs), which are
numerical target values, and penalties for not fulfilling
these objectives. For the service provider it is therefore
vital to minimize cases of SLA violation (i.e., cases where
one or more objective could not be fulfilled).

Currently, most research focuses on finding the rea-
son for SLA violations ex post (after the violation has
happened, e.g., [3], [23]). While this is certainly useful
for later analysis and improving the composition it does
not directly help preventing violations (i.e., the damage
has already been done). In this work we present an ex
ante approach, which allows for runtime prevention of

violations, before they have happened. Runtime prevention
is complementary to the ex post approaches, in that it helps
minimizing SLA violations, even if it cannot substitute
offline analysis and optimization of service compositions
entirely. We dubbed our approach PREVENT (prediction
and prevention based on event monitoring).

The main scientific contribution of this paper is a
novel end-to-end approach to automated SLA violation
prevention. We use predictions of SLA violations, which
are generated using regression from monitored runtime
data, to trigger adaptations in the service composition.
These adaptations should improve the performance for this
instance in such a way that violations are prevented. We
argue that our research improves on existing works which
consider prediction and prevention only independently.

The remainder of this paper is structured as follows. In
Section II we present a case study which we use in the rest
of the paper. In Section III we discuss our main contribu-
tion. In Section IV we present some experimental results.
Section V contains a discussion of related approaches, and
Section VI finally concludes the paper.

II. Scenario

To illustrate the core ideas of this paper we use
the case of a sports equipment reseller. This company
conducts business by ordering cheaper equipment parts
(e.g., table tennis blades, rubbers and sponges) in large
amounts directly from manufacturers, assembling them in-
house, and selling them to a limited number of business
partners (such as shops). Business is based entirely on a
Web service model, i.e., shops order products via a Web
service interface, and the business process of the reseller is
implemented using composition, integrating both internal
(e.g., assembling service, warehouse service) and external
services (e.g., shipping service, banking services). We have
illustrated this case in Figure 1. Note that the figure is
simplified for clarity.
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Figure 1. Illustrative Example

The interaction between the reseller and its customers
is governed by individually negotiated SLAs. These SLAs
contain a varying number of SLOs, with varying target
values. For simplicity we focus on a simple SLA with only
one SLO here: Processing of a single order can take no
more than 5 working days for custom-made products. For
every additional day the client is entitled to a 3% discount,
up to a maximum of 25%.

III. Automated Prevention of SLA Violations

We have carried out our work on PREVENT as part
of our ongoing VRESCO project [16]. VRESCO is a
.NET based prototype which provides a registry for Web
services metadata and QoS information (including QoS
monitoring), as well as base services for dynamic ser-
vice compositions. The VRESCO event engine (based on
NEsper1), which emits status events whenever services
are published or invoked, forms the technological basis of
much work that we discuss here. See [16] for an in-depth
description of the VRESCO system.

The overall architecture of PREVENT is sketched in
Figure 2. We have identified three different phases of
adaptation: (1) monitoring of runtime data, for which the
Composition Monitor component is responsible, (2) predic-
tion of violations, which is handled by the SLO Predictor
component, and finally (3) the identification of possible
preventative adaptation actions and application of these ac-
tions, carried out by the Composition Adaptor component.
Composition Monitor and SLO Predictor are connected via
the Metrics Database, which stores all collected runtime
data. The Composition Monitor is configured using the
Metrics Definitions Database. The SLO Predictor needs
access to the Checkpoint Database, which specifies at
which points in the execution of the composition the
prediction should take place. The Composition Adaptor

1http://esper.codehaus.org

needs the information contained in the Adaptation Actions
Database (a list of all available adaptation actions) and
SLA Database to decide if process instances are likely
to violate SLAs, and which actions can be triggered in
these cases. The SLA, Adaptation Actions and Checkpoint
Databases are considered to be inputs of our approach, i.e.,
SLA negotiation [8] or the process of identifying possible
adaptation actions and checkpoints is out of scope. The
same is true for modelling the impact models of adaptation
actions (see below). We assume that a human domain
expert is able to derive these models using e.g., Business
Intelligence techniques. We will now present details to
each of those components.

A. Event-Based Monitoring

The Composition Monitor is responsible for collect-
ing all runtime information necessary for prediction of
violations. Generally two different types of metrics are
monitorable: composition metrics are defined based on
one or a series of lifecycle events of the service compo-
sition, as produced by the VRESCO event engine (e.g.,
shipping activity has started, shipping activity has ended);
external metrics contain data which stems from outside
of the composition (e.g., the order date). The latter allow
to seamlessly integrate any kind of external information
which may influence SLA conformance.

We have depicted the PREVENT monitoring approach
in Figure 3. The core of the Composition Monitor is
the Metric Processor. On startup, the processor gets a
parsed list of all metrics to monitor and their definitions
from the Definition Parser (who has retrived this list from
the Metrics Definitions Database). For every composition
metric the processor needs to register exactly one event
listener. It defines the composition lifecycle events forming
the data basis for calculating this metric. For instance,
for the metric “Payment Preference of Customer”, a lis-
tener is generated which delivers the event issued after
the activity “Get Payment Preferences” is finished. This
event contains the necessary data in its body. The Metric
Processor retrieves the raw metric value from a given event
property path (e.g., “GetPaymentPrefsResult/Preference”),
and (optionally) applies some postprocessing operation to
this raw data. Postprocessing operations are given as scripts
in the CSScript2 language.

If the registered event listener delivers more than one
event, aggregation functions (average, sum, min, max,
count) may be used as part of the metric definition.
External metrics are provided by an external data provider,
e.g., a Web service or an external database. For these
metrics the Composition Monitor does little more than
retrieve the value from the external provider. Whenever
the metric processor measures a metric at runtime (both
composition and external metrics) it saves the value to

2http://www.csscript.net/
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the Metrics Database (identified by the ID of the current
composition instance), where the value can be looked up
by the SLO Predictor.

� �
1 <f a c t name=” a v e r a g e e x e c t i m e o r d e r e x t e r n a l l y ”
2 t y p e =” i n t e g e r ”
3 e q l =
4 ” s e l e c t b e f o r e . WorkflowId as id ,
5 ( a f t e r . WFTimestamp − b e f o r e . WFTimestamp )
6 a s d a t a
7 from BeforeWFInvokeEvent b e f o r e ,
8 Af terWFInvokeEvent a f t e r
9 where b e f o r e . WorkflowId = a f t e r . WorkflowId

10 and b e f o r e . Ac t iv i tyName = ’ o r d e r e x t e r n a l l y ’
11 and a f t e r . Ac t iv i tyName = ’ o r d e r e x t e r n a l l y ’
12 and a f t e r . B e f o r e R e f e r e r = b e f o r e . WFId”
13 a g g r e g a t i o n =” avg ” />
� �

Listing 1. Aggregated Metric Definition

Metric definitions are provided in an XML-based for-
mat. Listing 1 gives a sample metric definition, where the
metric “average exec time order externally” is defined as

the average time between the begin and end of the activity
“order externally”. Since this activity is executed in a loop
(cp. Figure 1) the event stream defined by the query (in
“eql”) may contain many events, which are aggregated
using the aggregation function “avg”. Event streams are
defined using the Esper Query Language (EQL). The final
result of the calculation is of type integer.

� �
1 <f a c t name=” t o t a l n r o f i t e m s ”
2 t y p e =” i n t e g e r ”
3 e q l =” . . . ”
4 messagePa th =” G e t P a r t L i s t R e s u l t / P a r t s ”
5 s c r i p t =
6 ” r e t u r n ( i n p u t a s s t r i n g ) . S p l i t ( ’ ; ’ ) . Length ; ”
7 />

� �

Listing 2. Metric With Postprocessing

An example of a metric with postprocessing is given
in Listing 2. This time we have omitted the event query
for brevity. We assume that it returns a single event per
composition instance. The list of items is accessible in this
event by retrieving the event property “GetPartListResult”
and, recursively, the property “Parts”. There, the part list
is stored as a simple string (a semicolon-separated list), so
we apply a simple CSScript (basically plain C# code) to
retrieve the number of items in the list.

B. Prediction of Violations

The metrics monitored by the Composition Monitor
component are used by the SLO Predictor to identify
problematic instances at runtime. We build upon our earlier
results on prediction of SLA violations [15]. Our general
approach is to predict SLO values at defined checkpoints
in the composition execution via regression from measured
and estimated runtime data.
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In Figure 4 we have sketched our prediction approach.
The Prediction Manager loads all checkpoint definitions
from the Checkpoint Database, and instantiates one Check-
point Predictor per definition. Definitions are again spec-
ified in an XML-based format. The predictor loads his-
torical process data from the Metrics Database, and uses
it to train a Prediction Model. The Prediction Model is
usually (for numerical SLOs like the one sketched in
Section II) a regression classifier, which is a black-box
function taking a list of numeric and nominal values
as input and producing a numeric value as output. The
concrete implementaton of this classifier can be specified
as part of the checkpoint definition. Internally, our system
uses the WEKA machine learning toolkit3, i.e., every
regression classifier that WEKA supports can also be used
for our approach. In our experiments we have generally
used multilayer perceptrons, a variant of artificial neural
networks [11]. At runtime, predictions are triggered if the
checkpoint in the composition has been crossed. This is
again implemented using lifecycle events emitted by the
VRESCO event engine.

Most vital for the quality of the prediction is, of course,
the available input data. Generally, there is a tradeoff to
consider between timeliness and quality of predictions.
Early predictions are less accurate, but allow for more
adaptations to be carried out (since adaptations can only be
applied to parts of the composition which have not yet been
executed at the checkpoint). In this paper we do not discuss
how to identify optimal checkpoints, however, some ideas
on this topic can be found in [15], [23]. To allow for more
timely predictions our approach leverages the concept of
Estimates. They represent data which is not yet available
in a checkpoint, but can in some way be estimated (e.g.,
the response time of a service which is to be invoked later
in the composition). Estimates are produced by external
components (Estimators), and are linked to measurable
metrics. As part of our prototype system, we provide
a limited number of default estimators, e.g., to produce

3http://www.cs.waikato.ac.nz/ml/weka/

estimates as the arithmetic mean of the last n measured
values or based on QoS information available in VRESCO.
However, oftentimes domain-specific estimators can be
implemented which provide more accurate estimations,
which in turn improve prediction quality (e.g., in the
illustrative example the shipping time can be estimated
rather accurately based on the address of the customer).

In order to be able to trigger adaptations based on
predictions of SLO violations, it is essential to know the
accuracy of the used prediction model. In [15], we defined
two quality metrics: the Mean Prediction Error ē is the
artihmetic average of the differences between predicted
(pi) and monitored (mi) values for a given number of
instances (n) (Equation 1).

ē =
∑n

i=0 |mi − pi|
n

(1)

ē tells us how far “off’ our prediction in average is
(lower ē is, therefore, better). In addition, we use the
Prediction Error Standard Deviation (denoted here simply
as σ) to describe the variability of the prediction error
(Equation 2).

σ =

√∑n
i=0(ei − ē)2

n
(2)

High σ essentially means that the actual error for an
instance can be much lower or higher than ē.

The Checkpoint Predictor triggers the Composition
Adaptor if, according to the predicted SLO value, a vi-
olation is likely to occur. For this, the predictor compares
the predicted SLO value with a given adaptation threshold
(denoted as ta). ta is defined based on the actual SLO
target value, often taking into account the mean prediction
error and/or the prediction error standard deviation of the
prediction model. For example, for the case described in
Section II, the threshold for triggering adaptations may be
the target SLO value minus 0.75 times the mean prediction
error (Equation 3).

ta = SLO − 0.75ē (3)

The concrete definition of the threshold is, of course,
depending on the preferences of the user and specific to
every service composition.

C. Preventive Adaptation

Predictions of SLO violations finally trigger adaptations
of the service composition. This is handled by the Com-
position Adaptor. This component has two main tasks.
Firstly, it knows about all possible adaptation actions.
Checkpoints are associated with exactly one SLO, and
every action is assigned to one checkpoint, however, per
SLO more than one adaptation action may be specified.
The Composition Adaptor decides at runtime which subset
of those actions are best suited to prevent a predicted

372



violation. Secondly, after deciding which actions should be
applied, the Composition Adaptor executes the identified
adaptation actions.
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Figure 5. Taxonomy of Adaptation Actions

Just like monitoring data and prediction checkpoints,
adaptation actions are specified using an XML dialect. In
Figure 5 we have given a simple taxonomy of possible
adaptation actions. Filled arrows represent actions that are
currently supported by PREVENT, actions indicated by
dashed arrows remain part of our future work.

Data Manipulations are the most simple type of adap-
tation action. In this case the service composition is in
fact not changed. Instead the data flow of the composition
is intercepted and adapted. In Listing 3 a simple data
manipulation action is defined. In this example, the input
message of the activity “ship” is intercepted, and the flag
which indicates if express (e.g., overnight) shipping should
be used is set to the constant value “true”. More complex
data manipulations can also copy or calculate values from
other messages in the workflow.

� �
1 <r e p a i r a c t i o n>
2 <d a t a M a n i p u l a t i o n A c t i o n
3 t a r g e t A c t i v i t y =” s h i p ”
4 message=” i n p u t ”
5 messagePa th =” r e q u e s t / U s e E x p r e s s S h i p p i n g ”>
6 <c o n s t a n t t y p e =” b o o l e a n ”>t r u e</ c o n s t a n t>
7 </ d a t a M a n i p u l a t i o n A c t i o n>
8 </ r e p a i r a c t i o n>

� �

Listing 3. Data Manipulation Action

More complex than data manipulation is Service Re-
binding. We currently support all kinds of 1:1 rebinding,
i.e., all cases where one service invocation is mapped to ex-
actly one different invocation. We leverage the VRESCO

mediation features to enable rebinding between services
with different interfaces (Service Rebinding With Inter-
face Mediation), however, cases where a single invocation
needs to be mapped to a composition of invocations (Sub-
stitution with Subflow) are currently not supported. Defini-
tion of rebinding actions is relatively simple (the user only
needs to specify which service instance, identified using a
VRESCO ID, she wants to use for which activity). Finally,
PREVENT allows to apply a limited number of changes to
the structure of the service composition, namely, to remove
or add activities at runtime. Conceptually, this is similar to

the idea of parameterized workflows [13]. Therefore, we
refer to these changes as Parameterization. We currently
do not support Freeform adaptation of the composition
structure, i.e., adaptations where any part of the workflow
can be substituted by any other legal workflow fragment.
Nor do we currently support Environmental Adaptations,
i.e., adaptation of the execution environment, such as
upgrading the hardware of the machine running the service
composition.

The Composition Adaptor can use two different strate-
gies to optimize the subset of adaptations which should
be applied. Using the “safe” strategy the adaptor finds the
subset which is most likely to prevent the violation (in the
end, this means applying the adaptations with the biggest
positive impact on the SLO value). Using the “minimal”
strategy the adaptor finds a subset of adaptations which is
still likely to prevent the violation, but where the actual
SLO value is as close to the adaptation threshold ta as
possible. The advantage of the latter strategy is that in
general only a minimal number of adaptation actions are
applied, which may be desirable for the service provider
if adaptations are costly. However, the disadvantage is
that sometimes (if the impact prediction is too far off)
violations that could have been prevented slip through.

� �
1 <a c t i o n name=”USE EXPRESS SHIPPING”>
2 <r e p a i r a c t i o n> . . . </ r e p a i r a c t i o n>
3 <c o n s t r a i n t s>
4 <c o n f l i c t s w i t h>USE STD SHIPPING</ c o n f l i c t s w i t h>
5 </ c o n s t r a i n t s>
6 <improvement>
7 <i m p r o v e d M e t r i c>SHIPPING TIME</ i m p r o v e d M e t r i c>
8 <i m p r o v e m e n t E s t i m a t e name=” e s t i m a t e d S h i p p i n g T i m e ”
9 t y p e =” i n t e g e r ”>

10 <e s t i m a t o r C l a s s
11 c l a s s =” E s t i m a t o r . C o n s t a n t E s t i m a t o r ” />
12 <argument v a l u e =” 1 ” />
13 <e s t i m a t e d F i e l d name=”SHIPPING TIME” />
14 </ i m p r o v e m e n t E s t i m a t e>
15 </ improvement>
16 </ a c t i o n>
� �

Listing 4. Improvements and Constraints

For both strategies the adaptor needs to estimate the
impact of a given set of adaptation actions in advance. This
can be done by reusing the same principles and techniques
that we have already used in the SLO Predictor. For this we
associate all adaptation actions with one or more improve-
ment estimates (see Listing 4). Improvement estimates are
alike to the estimates used during prediction, in that they
provide an estimation for a not-yet-known metric. They
estimate the value that a given metric will likely have after
the adaptation action has been applied. In the example
the estimation is that when using express shipping the
“shipping time” metric is always exactly “1 day”. More
complex estimations are of course also possible. Similar
to the estimates used during prediction these are delivered
by external estimator components, which are oftentimes
domain-specific. Using these improvement estimates the
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prediction is re-evaluated in the SLO Predictor, generating
a prediction of the SLO value after adaptation. Just like
the estimates used during prediction of violations, these
improvement estimates are defined as part of the adaptation
action. Note that we can use the same technique and model
to predict both violations and impact of adaptations if we
assume that every adaptation action has been applied a
reasonable number of times before.

Adaptation actions are not necessarily independent.
In general, any pair of actions can either be mutually
exclusive (see the constraint defined in Listing 4), in-
dependent or co-dependent (either both or none of the
actions need to be applied). The Composition Adaptor
takes these dependencies into account when evaluating
possible combinations of actions. Currently, the adaptor
simply enumerates all possible combinations of adapta-
tions to find the combination that is optimal according to
the given strategy. Obviously, this is only feasible for a
very small number of possible adaptation actions. More
sophisticated and scalable optimization schemes are part of
our future work and not considered here. Additionally, we
currently assume that the order of adaptation actions is not
important. We argue that this assumption is reasonable for
non-conflicting rebinding and data manipulation actions.
In the future, more complex adaptation actions will need
us to take the order of actions into account.

IV. Experimentation

To evaluate the PREVENT approach we have imple-
mented the case study described in Section II using Win-
dows Workflow Foundation [21] technology. All experi-
ments have been carried out on an Intel Xeon Dual CPU
X5450 with 3.0 Ghz and 32 GByte RAM. On this machine
we have hosted all services used in the composition,
the composition engine, VRESCO and a number of test
clients. The services emulate realistic QoS behavior (e.g.,
the response times of services follow a Monte Carlo
simulation with service-specific parameterization).

We assume that clients expect the service to follow the
SLO mentioned in Section II (however, for our experimen-
tation we map the SLO target value of 5 days to 31500 time
units). The average SLO value in the case study simulation
was 26439 time units, with a variance of 4396. The number
of violations per 100 instances (without adaptations) is
generally between 15 and 30. We have defined a check-
point before the activity “Assemble Product”, and (for the
second and third test) 5 possible adaptation actions – 3
data manipulation actions which are mutually exclusive (do
shipping with priority 2 to 4), a service rebinding action
(using a faster banking service for all payment-related
activities), and a parameterization action (skip the quality
assurance activity). Our general experimentation approach
was as follows. Before every test we have cleaned the
Metrics Database to guarantee independent tests. We then
started 20 parallel clients and let them execute 15 orders

each, resulting in an intial data set of 300 orders. This data
formed our initial database of historical process instances
(training phase). Afterwards, we commenced the actual
experiments by running 5 additional orders per client,
where we measured the predicted SLO value, the actual
measured SLO value, and the adaptations that have been
carried out. In all following plots the x-axis depicts the
100 instances monitored after the training phase. The y-
axis depicts the SLO values. We also show the target SLO
value as pink (dashed) line at 31500.
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Figure 6 shows the first test run, where we disabled
adaptation altogether (i.e., we removed all 5 adaptation
actions mentioned above). As we can see predictions (blue
x) and measured values (green +) are generally close,
so the prediction quality is good (ē is around 700 in
this experiment). However, there are some instances where
prediction is off by a larger margin, e.g., the instances 38
and 39. In this test run we predicted 24 violations, and
actually measured 27 (3 violations have not been forseen
by PREVENT).
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Figure 7. Safe Adaptation Strategy

In Figure 7 we show the impact of enabling adaptation
using the “safe” strategy. In the instances depicted with a
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filled red line adaptations have been triggered. In general,
the length of this line correpsonds to the amount of
adaptation applied (plus or minus the prediction eror),
i.e., if the line is longer more actions, or actions with
bigger impact, have been applied. Since we used the
“safe” strategy the lines are generally of similar length
(this strategy always applies the same adapatation actions,
the ones that have the biggest positive impact on the
performance). We can see that many predicted violations
have successfully been prevented using adaptation (e.g., 3,
10, 14). However, in some cases even with adaptation the
violation could not be prevented (e.g., 8). Note that in 2,
71 and 99 adaptations have been triggered even though the
actual prediction was slightly below the target value. This
is because the trigger threshold ta is slightly below the
actual target value (cp. Equation 3). In this experiment
we have predicted 18 violations, and only measured 4
violations after adaptation, i.e., about 78% of all predicted
violations have been successfully prevented.
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Figure 8. Minimal Adaptation Strategy

In Figure 8 we changed the adaptation strategy to
“minimal”. We can see that overall the impact of adaptation
is reduced (the filled red lines are shorter in average),
since PREVENT tried to apply only as much adaptation
as needed to prevent a violation. However, this has the
effect that in some cases (e.g., 18 or 44) violations are
not successfully prevented because “too little” adaptation
is done. In this experiment we predicted 20 violations, and
actually had 8 violations after adaptation. This means that
only 60% of all violations could be prevented. Note that
the “minimal” strategy might still be superior for service
providers if adaptation is expensive, i.e., if they have a
strong interest in applying only adaptation actions that are
strictly necessary.

V. Related Work

The work discussed in this paper belongs to the wider
area of SLA management. Many languages (both aca-
demic and industrial) have been published for formulating

SLAs as well as their monitoring and enforcement (e.g.,
WSLA [7] or SLAng [22]). Castellanos et al. have in-
troduced the differentiation of approaches which explain
and approaches which predict violations [5]. Most current
approaches in SLA management clearly fall into the former
class, such as recent work by Bodenstaff et al. [3], [4] or
Wetzstein et al. [23]. Contrary, PREVENT belongs more
to the latter class, for which less research is available.
To the best of our knowledge the only papers which
deal with runtime prediction of SLA violations in Web
service compositions at the time of this writing are our
own earlier work [15], as well as work by Sahai et
al. [20] and Zeng et al. [24]. All of these approaches use
some means of learning from recorded historical process
data to estimate the performance of ongoing instances.
However, none of them provide means to automatically
prevent violations after they have been detected, which
is the main contribution of this paper. Similar work on
the prediction of performance problems (in a different
domain) has been published by Duan and Babu [9]. Their
Fa tool uses Bayesian networks to proactively identify
performance problems in database systems. All of these
approaches demand for a comprehensive set of existing
process data to learn from. This kind of data can be
collected using runtime monitoring of compositions, as
presented e.g., by Baresi et al. [2] or Moser et al. [17].
The former work presents an integration of two separate
research approaches, which result in a powerful monitoring
facility for WS-BPEL based compositions. The main focus
seems to be on the definition, monitoring and correlation
of process instance data. By contrast, the latter work limits
monitoring to a defined number of QoS attributes, such as
response time or availability.

There is also a significant body of work on the adap-
tation of service compositions. Among these, we can
distringuish two main groups: (1) approaches which adapt
compositions exclusively by exchanging service bindings
(cp. the service rebinding actions in Figure 5), and (2)
approaches which are able to change the composition
structure (structural actions in Figure 5). In a very primitive
form service rebinding adaptations are already possible
using WS-BPEL directly (by using the Dynamic Partner
Link construct), however, in practice problems such as
Web service selection at runtime, QoS-based optimiza-
tion or interface differences ask for more advanced ser-
vice rebinding facilities. These problems are covered by
frameworks such as PAWS [1] or WS-Binder [19]. One
straight-forward approach to structural adaptation has been
presented by Karastoyanova et al. [13]. In this paper
the authors discuss the idea of parameterized WS-BPEL
processes, where activities can be enabled or disabled
dynamically. This approach has its merits because of its
clean design, however, it clearly cannot provide “real”
structural dynamicity, because all possible adaptations al-
ready have to be contained in the original process. More
complex adaptations are made possible by applying the
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aspect-oriented programming (AOP) paradigm to service
compositions [6], [12], [14]. The adaptation approach
implemented in PREVENT generally also belongs to this
category, even if adaptations are currently more limited
than AOP-based approaches. However, we plan to extend
our work with more complex adaptation actions as part of
our future research.

VI. Conclusion and Future Work

Preventing violations of SLAs is a main concern for
providers of service compositions aiming at satisfying
their customers. While most current research in the area
considers the explanation of violations after they have
happened we propose the PREVENT system, a framework
for runtime prediction and subsequent prevention of vi-
olations. PREVENT is based on the idea of monitoring
and analyzing runtime data to trigger adaptation actions in
endangered composition instances. Our system is based on
the VRESCO runtime environment, which provides facil-
ities used for monitoring and adaptation. We have shown
how PREVENT can be successfully used to significantly
reduce the number of violations in an illustrative case
study.

While the current incarnation of PREVENT is promis-
ing, there are still some open issues. Most importantly
our current approach does not scale to a larger number
of adaptation actions per checkpoint, since optimization is
based on full enumeration. Secondly, the adaptation actions
supported so far are somewhat limited in that complex
structural adaptations of the composition are not supported.
Finally, we currently do not take the costs of adaptations
into account (e.g., there are costs associated with using
express shipping instead of regular shipping, which may
in some cases be higher than the gain of not violation the
SLA). We plan to work on all of these issues as part of
our future work in this project.
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