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Abstract. In this paper, we present a comprehensive overview

of the property-based monitoring framework for analog and

mixed-signal systems. Our monitoring approach is centered

around the Signal Temporal Logic (STL) specification lan-

guage, and is implemented in a stand-alone monitoring tool

(AMT). We apply this property-based methodology to two

industrial case studies and briefly present some recent exten-

sions of STL that were motivated by practical needs of analog

designers.

1 Introduction

Verification of digital hardware has achieved in the past years

a high level of automation, thanks to a mature tool and method-

ology support from the electronic design automation (EDA)

industry. Formal verification techniques, such as model and

equivalence checking or theorem proving, were integrated in

numerous EDA toolkits. Despite this relative success of for-

mal verification, lighter validation techniques based on sim-

ulation/testing remain popular amongst engineers, thanks to

their simplicity. In this setting the system is seen as a “black-

box” that generates a finite set of behaviors and a monitor

checks each individual behavior against the specification for

correctness. Although incomplete, monitoring is effectively

used to catch faults in the system, without guaranteeing its

full correctness.

The ongoing tendency of speeding-up the production of

new devices of higher performance and reliability, while low-

ering their power consumption, results in the design process

becoming more vulnerable to faults. Another effect of this

trend is the integration of digital, analog and mixed-signal

(AMS) components on the same chip which adds another

level of complexity in the design process. Validation of AMS
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designs still relies mainly on simulation-based testing, com-

bined with a number of analysis techniques, such as frequency-

domain analysis, statistical measures, parameter extraction,

eye diagrams etc. Unlike digital verification, the tool support

for AMS validation is often specific to the class of properties

considered and includes wave calculators, measuring com-

mands as well as manually written scripts. These solutions

are mostly ad-hoc and support minimal automation resulting

in a time-consuming process that requires considerable (of-

ten non-reusable) user effort. The additional issue in AMS

validation is the time required for the simulation of complex

designs. A typical simulation of several nanoseconds of real-

time transient behavior of a complex AMS circuit often takes

hours or even days of simulation time.

In this paper, we provide an extensive overview of a frame-

work for validation of AMS designs, that we developed with

the aim to export some ingredients of the well-established

verification methodology from digital to AMS systems. We

adopt a property-based monitoring approach, in which the

system behavior is simulated and checked with respect to a

high-level specification expressed in a formal language. Our

framework is centered around Signal Temporal Logic (STL)

that was first introduced in [20]. STL extends the real-time

temporal logic MTL [19] with numerical predicates, and thus

allows expressing mixed-signal properties. In particular, STL

naturally supports the class of mixed-signal specifications that

involve describing temporal patterns between “events” that

happen in analog and digital transient simulation traces.

Example 1. An example of a property that can be expressed

in STL is a mixed signal stabilization property that has the

following requirements:

– The absolute value of a continuous signal x is always less

than 6
– When the (Boolean) trigger rises, within 600 time units

|x| has to drop below 1 and stay like that for at least 300
time units
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Fig. 1. Mixed signal stabilization property

This property is illustrated in Figure 1 and expressed in

STL as:

0 (|x| < 6 ∧ (↑ trigger → 1 [0,600] 0 [0,300](|x| < 1)))

Our property-based monitoring framework is supported by

the tool AMT [24], that implements the algorithms presented

in [20,22]. We have applied our validation approach to sev-

eral case studies provided by industrial partners, in particular

a FLASH memory design [24] and a DDR2 memory inter-

face [16]. Apart from an extensive summary of our previous

results on property-based monitoring of AMS systems, this

paper also presents several features that were previously un-

published: (1) the monitoring algorithms for STL with future

and past operators, strict temporal (until and since) operators

and events; and (2) a completed version of the FLASH case

study, that was only partially presented in [24].

Related work: Property-based verification of AMS sys-

tems was applied in [25], where Property Specification Lan-

guage (PSL) was used as the specification language. How-

ever, that work is restricted to discrete-time analog systems,

and does not treat continuous time. Simulation-based prob-

abilistic model-checking of temporal and frequency domain

properties of AMS systems is studied in [5]. In [13,12,14],

the authors consider multi-valued semantics for MTL and pro-

vide robust interpretation of the logic over timed sequences of

states. Real-time monitoring of the timed LTL (TLTL) logic is

studied in [4]. TLTL specifications are interpreted over finite

traces with the 3-valued semantics. The extensions of tempo-

ral logics that deal with richer properties were also considered

in monitoring tools such as LOLA [6].

The question of extending the usual approximation and

sampling theory of continuous signals and systems to those

encompassing discontinuities was addressed in [17], where a

topological framework derived from the family of Skorokhod

distances was used to handle this type of systems in a uniform

matter. Recently, a translation from hybrid data-flow models

to hybrid automata was proposed in [26], where the special

attention was given to approximations due to zero-crossings.

2 Signal Temporal Logic

Temporal logics MTL [19] and MITL [1] are popular real-

time extensions of LTL. The principal modality of MTL and

MITL is the timed until U I where I is some interval (non-

punctual in the case of MITL) with integer or rational end-

points. A formula pU [a,b]q is satisfied by a signal at any time

instant t that admits q at some t′ ∈ [t+ a, t+ b], and where p
holds continuously from t to t′. The original version of MTL

and MITL contained only future temporal operators, although

an investigation of past and future versions of MITL was car-

ried out in [2].

Signal temporal logic STL extends MTL and MITL with

numerical predicates that allow to specify analog and mixed-

signal properties. STL formulas are interpreted over Boolean

and continuous signals.

2.1 Signals

A signal over a domain D is a function w : T → D where

T is the time domain, which is either the set R≥0 of non-

negative real numbers in the case of infinite signals or an in-

terval [0, r) if the signal is of finite length. We focus on the

finite length signals where D is the set Bn × Rm of vectors

over n Boolean and m real valued variables. We abuse the

notation, and denote by u the projection of w to its Boolean,

and by ξ the projection of w to its real valued components.

Each finite Boolean signal u can be further decomposed

into a punctual signal, defined only at 0 and denoted by u̇, and

an open signal segment defined over the interval (0, r). We

will denote such signal segments as (u)r. The concatenation

of a punctual signal and an open signal segment is a finite

signal, and is simply their union. Concatenation of two finite

Boolean signals u1 and u2 defined over [0, r1) and [0, r2),
respectively, is the finite signal u = u1 · u2, defined over

[0, r1 + r2) as

u[t] =

{

u1[t] if t < r1
u2[t− r1] otherwise

A point-segment partition of T is an alternating sequence

of adjacent points and open intervals of the form

J = {t0}, (t0, t1), {t1}, (t1, t2), {t2}, . . .

with t0 = 0 and ti < ti+1. With respect to such a given time

partition, a Boolean signal u can be written as an alternating

concatenation of points and open segments:

u = u̇0 · (u0)r0 · u̇1 · (u1)r1 · · ·

where u̇i is the value of the signal at ti and (ui)ri is the seg-

ment which corresponds to the restriction of u to the inter-

val (ti, ti+1) whose duration is ri = ti+1 − ti. An interval

splitting is the act of partitioning a segment (ti, ti+1) into

(ti, t
′), {t′}, (t′, ti+1). We say that a time partition J ′ is a re-

finement of J , denoted by J ′ ≺ J if it can be obtained from

J by one or more interval splittings. A time partition is com-

patible with a signal u if the value of u is uniform in each
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Fig. 2. The coarsest partition of a well-behaving signal w

open interval, that is, the segment (ui)ri is constant for every

i.
The left and right limit of a signal u at point t are defined,

as

u[→t] = limr→t+ u[r] and u[t← ] = limr→t− u[r],

respectively. We say that a time point t is left-singular with

respect to u if u[→t] 6= u[t] and that it is right-singular if

u[t] 6= u[t← ]. A point is singular if it is either left- or right-

singular (or both). A point which is not singular is called sta-

tionary. Let us denote the sequence of singular points in u
by J (u). A signal is well-behaving if the sequence J (u) =
t0, t1, . . . is finite or countable and diverging. We consider

only finite, hence well-behaving signals.

Every well-behaving signal u with J (u) = t0, t1, . . . in-

duces a canonical time partition

Ju = {t0}, (t0, t1), {t1}, (t1, t2), {t2}, . . . ,

which is the coarsest time partition compatible with u (see

Figure 2 for an example).

Boolean signals can be combined and separated using the

standard pairing and projection operators. Let up : T → B,

uq : T → B and upq : T → B2 be signals. The pairing

function is defined as

up || uq = upq if ∀t ∈ T upq[t] = (up[t], uq[t])

and its inverse operation, projection as:

up = upq|p uq = upq|q

Note that the number of singular points in upq is at most

the sum of the number of singular points in up and uq , and

that the number of singular points in OP(up, uq), for a point-

wise extension of a Boolean operator OP is at most that of

upq . Hence well-behaving signals are closed under pairing,

projection and Boolean operations. The Minkowski sum A⊕
B of two sets is the set {a+ b : a ∈ A, b ∈ B}.

We use the notation [a, b]⊖ [c, d] = [a− c, b− d] ∩ T to

denote the Minkowski difference with saturation at zero and

t⊕ [a, b] as a shorthand for {t} ⊕ [a, b].
When considering signals of finite length |u| = r, we use

the notation u[t] = ⊥ when t ≥ |r|. The restriction of a signal

of length d is defined as

u′ = 〈u〉d iff u′[t] =

{

u[t] if t < d
⊥ otherwise

When we apply operations on signals of different lengths,

we use the convention

OP(v,⊥) = OP(⊥, v) = ⊥

which guarantees that if u = OP(u1, u2) then we have |u| =
min(|u1|, |u2|).

The d-suffix of a signal u is the signal u′ = d\u obtained

from u by removing the prefix 〈u〉d from u, that is,

u′[t] = u[t+ d] for every t ∈ [0, |u| − d).

2.2 Syntax, Semantics and Rewriting Rules

We consider the STL logic with both future and past opera-

tors. Let X = {x1, . . . , xm} be the set of real valued vari-

ables and P = {p1, . . . , pn} the set of STLpropositions. A

Boolean constraint over X is a predicate of the form x ◦ c,
where x ∈ X , ◦ ∈ {<,≤,=,≥, >} and c ∈ Q. The syntax

of an STL formula ϕ overX and P is defined by the grammar

α := p | x ◦ c
ϕ := α | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 U Iϕ2 | ϕS Iϕ2

where p ∈ P , x ∈ X , c ∈ Q is a constant and I is an inter-

val of the form [a, b], [a, b), (a, b], (a, b), [a,∞) or (a,∞)
where 0 ≤ a ≤ b are rational numbers. As in LTL, basic STL

operators can be used to derive other standard Boolean and

temporal operators, in particular the time-constrained even-

tually (1 ), once (Q ), always ( 0 ), and historically ( ` )
operators:

1 I ϕ = true U I ϕ Q I ϕ = true S I ϕ
0 I ϕ = ¬ 1 I ¬ϕ ` I ϕ = ¬ Q I ¬ϕ

The semantics of an STL formula ϕ with respect to an

n-dimensional signal w is described via the satisfiability re-

lation (w, t) |= ϕ, indicating that the signal w satisfies ϕ at

time t, according to the following recursive definition, where

T is the time domain.

(w, t) |= x ◦ c ↔ w|x[t] ◦ c
(w, t) |= p ↔ p[t] = 1
(w, t) |= ¬ϕ ↔ (w, t) 6|= ϕ
(w, t) |= ϕ1 ∨ ϕ2 ↔ (w, t) |= ϕ1 or (w, t) |= ϕ2

(w, t) |= ϕ1 U I ϕ2 ↔ ∃ t′ ∈ (t⊕ I) ∩ T (w, t′) |= ϕ2 and

∀ t′′ ∈ (t, t′) (w, t′′) |= ϕ1

(w, t) |= ϕ1 S I ϕ2 ↔ ∃ t′ ∈ (t⊖ I) ∩ T (w, t′) |= ϕ2 and

∀ t′′ ∈ (t′, t) (w, t′′) |= ϕ1

(1)

A formula ϕ is satisfied by w if (w, 0) |= ϕ. The satisfac-

tion relation can be viewed as a characteristic function χϕ

mapping signals over Bn × Rm into Boolean signals, such

that u = χϕ(w) meaning that for every t ≥ 0, u[t] = 1
if and only if (w, t) |= ϕ. The definitions of U I and S I
are strict as originally proposed in [1], meaning that ϕ1 need

not hold at t and neither at the moment t′ when ϕ2 becomes

true. Note also that when I is left-open with a bound a, the

truth of ϕ2 at t + a does not count for satisfaction. Note that

we define strong finitary semantics for ϕ1 Uϕ2, whose satis-

faction requires ϕ2 to be satisfied before the end of the finite

length signal. A more detailed discussion about interpretation

of temporal logic over finite traces can be found in [22].
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Untimed strict temporal operators U and S can be ex-

pressed using the timed operators where the interval is (0,∞)
Similarly, we can define non-strict untimed temporal opera-

tors U and S (which are the commonly-used interpretations

of U and S in LTL) in terms of the strict ones.

ϕ1 U ϕ2 = ϕ1 U (0,∞) ϕ2

ϕ1 S ϕ2 = ϕ1 S (0,∞) ϕ2

ϕ1 U ϕ2 = ϕ2 ∨ (ϕ1 ∧ (ϕ1 U ϕ2))
ϕ1 S ϕ2 = ϕ2 ∨ (ϕ1 ∧ (ϕ1 S ϕ2))

Note that U differs from U [0,∞).

In what follows we show that some of the timed operators

(U I and S I , each with all types of intervals) can be written

in terms of simpler ones, which will allow us to simplify our

monitoring procedures for STL. We start with the following

lemma, proved also in [11,21], which shows that the timed

until can be expressed by a combination of untimed until and

timed eventually.

Lemma 1 (U I can be expressed by U and 1 I ). For every

signal w, the identities in Figure 3 hold.

Proof. We prove the first of these identities, the others are

similar. One direction of the equivalence follows directly from

the semantics of timed until, so we consider only the other di-

rection which is proved via the following observations:

1. Ifw |= 0 (0,a] ϕ1, thenϕ1 holds continuously throughout

(0, a]
2. If w |= 0 (0,a](ϕ1 U ϕ2), then ϕ1 U ϕ2 has to hold at a

and there exists t′ > a such that ϕ2 is true and ϕ1 holds

during (a, t′)
3. Formula 1 (a,b) ϕ2 requires the existence of t′ ∈ (a, b)

such that ϕ2 holds at t′

Combining these observations we see that w |= 0 (0,a] ϕ1 ∧
0 (0,a](ϕ1 U ϕ2) ∧ 1 (a,b) ϕ2 implies that there exists t′ ∈

(a, b) such that ϕ2 is true at t′ and ϕ1 holds continuously dur-

ing (0, t′), which is the semantic definition of ϕ1 U (a,b) ϕ2.

Consequently, the operators U , S , 1 I and Q I , where

I ranges over the interval types [a, b], [a, b), (a, b] and (a, b),
are sufficient to express any STL property.

2.2.1 Expressing Events

STL does not provide constructs that allow to reason explic-

itly about instantaneous events which can be viewed as tak-

ing place in singular intervals of zero duration. A natural way

to introduce them is to consider the instants when a signal

changes its value. To this end we propose two unary oper-

ators, rise ↑ and fall ↓, which hold at the rising and falling

edges of a Boolean signal, respectively. However, since we

allow singular points to be equal to their left neighborhood,

↑ p may hold at t even if w|p[t] = 0 as illustrated in Figure 4.

Intuitively, ↑ ϕ holds at t if ϕ is false at t and true in a right

p1

p2

↑ p1
↑ p2

(b)

(a)

(c)

t1

· · ·

· · ·

· · ·

Fig. 4. Two signals p1 and p2 that differ at time t where both ↑ p1 and ↑ p2
hold.

neighborhood of t, or if ϕ is true at t and false in a left neigh-

borhood of t. These operators can be expressed in STL if we

allow both future and past operators, as follows:

↑ ϕ = (ϕ ∧ (¬ϕ S T)) ∨ (¬ϕ ∧ (ϕ U T))
↓ ϕ = (¬ϕ ∧ (ϕ S T)) ∧ (ϕ ∧ (¬ϕ U T))

2.3 Some Properties of pSq and pU q

In this section we prove some semantic properties of pSq and

pU q. In particular, we show that their satisfiability is uniform

in all open time segments where their input does not change.

Lemma 2 (Since is Left-continuous). Let u = u̇0 · (u0)r0 ·

u̇1 · (u1)r1 · · · = χpS q(w). Then, u̇0 = 0 and for any i ≥ 1,

u̇i = ui−1.

Proof. The proof for u̇0 = 0 is trivial and follows directly

the semantics of pSq evaluated at time 0, whose satisfaction

requires the existence of t′ < 0 which is not the case. For

i ≥ 1, assume first that u̇i = 1. Then there exist t′ < ti such

that q is satisfied at t′ and that p holds continuously through-

out the interval (t′, ti). Then, it follows that (w, t) |= pSq
everywhere in (t′, ti) and, consequently ui−1 = 1 = u̇i. If

u̇i = 0, there are two possibilities, either q was never true at

any t′ ∈ [0, ti), and hence u was false in the whole interval

(0, ti), or that for any t′′ ∈ [0, ti) where q was true, there is

t′ ∈ (t′′, ti) where p was false, implying that pSq was not

satisfied at (t′, ti) and ui−1 = 0 = u̇i.

Lemma 3 (Until is Right-continuous). Let u = u̇0 ·(u0)r0 ·

u̇1 · (u1)r1 · = χpU q(w). Then, for any i ≥ 0, u̇i = ui.

Proof. Assume first that u̇i = 1. Then there exists t′ > ti
such that q is satisfied at t′ and that p holds continuously

throughout the interval (ti, t
′). Then, it follows that (w, t) |=

pU q everywhere in (ti, t
′) and, consequently ui = 1 = u̇i.

If u̇i = 0, there are two possibilities, either q never becomes

true at any t′ > ti and hence u is false in the whole open

interval (t,∞), or for any t′′ > ti where q is true there is

t′ ∈ (ti, t
′′) where p does not hold which implies that pU q is

not satisfied at (ti, t
′) and ui = 0 = u̇i.

Lemma 4 (Semantic Rules for Since). Let w|pq = ẇ0 ·
(w0)r0 · ẇ1 · (w1)r1 · · · be a Boolean signal and let u =

u̇0 ·(u0)r0 · u̇1 ·(u1)r1 · · · = χpS q(w). Then, for every i ≥ 0,
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w |= ϕ1 U (a,b) ϕ2 ↔ w |= 0 (0,a] ϕ1 ∧ 0 (0,a](ϕ1 U ϕ2) ∧ 1 (a,b) ϕ2

w |= ϕ1 U (a,b] ϕ2 ↔ w |= 0 (0,a] ϕ1 ∧ 0 (0,a](ϕ1 U ϕ2) ∧ 1 (a,b] ϕ2

w |= ϕ1 U [a,b) ϕ2 ↔ w |= 0 (0,a) ϕ1 ∧ 0 (0,a](ϕ1 U ϕ2) ∧ 1 [a,b) ϕ2

w |= ϕ1 U [a,b] ϕ2 ↔ w |= 0 (0,a) ϕ1 ∧ 0 (0,a](ϕ1 U ϕ2) ∧ 1 [a,b] ϕ2

w |= ϕ1 U (a,∞) ϕ2 ↔ w |= 0 (0,a] ϕ1 ∧ 0 (0,a](ϕ1 U ϕ2)
w |= ϕ1 U [a,∞) ϕ2 ↔ w |= 0 (0,a) ϕ1 ∧ 0 (0,a](ϕ1 U ϕ2)

w |= ϕ1 S (a,b) ϕ2 ↔ w |= ` (0,a] ϕ1 ∧ ` (0,a](ϕ1 S ϕ2) ∧ Q (a,b) ϕ2

w |= ϕ1 S (a,b] ϕ2 ↔ w |= ` (0,a] ϕ1 ∧ ` (0,a](ϕ1 S ϕ2) ∧ Q (a,b] ϕ2

w |= ϕ1 S [a,b) ϕ2 ↔ w |= ` (0,a) ϕ1 ∧ ` (0,a](ϕ1 S ϕ2) ∧ Q [a,b) ϕ2

w |= ϕ1 S [a,b] ϕ2 ↔ w |= ` (0,a) ϕ1 ∧ ` (0,a](ϕ1 S ϕ2) ∧ Q [a,b] ϕ2

w |= ϕ1 S (a,∞) ϕ2 ↔ w |= ` (0,a] ϕ1 ∧ ` (0,a](ϕ1 S ϕ2)
w |= ϕ1 S [a,∞) ϕ2 ↔ w |= ` (0,a) ϕ1 ∧ ` (0,a](ϕ1 S ϕ2)

Fig. 3. Identities for bounded until and since

Case ẇi wi ui

1 ∗ p 0

2 ∗ pq 1

3a pq 0

3b q pq 1

3c pq u̇i

Fig. 5. pSq rules for determining ui

1. if wi = p, then ui = 0,

2. if wi = pq, then ui = 1
3. if wi = pq, there are three possibilities:

(a) if ẇi = pq, then ui = 0
(b) if ẇi = q, then ui = 1
(c) if ẇi = pq, then ui = u̇i.

Proof. The value of u in the ith segment is determined with

respect to the values of inputs p and q in the same segment

wi and at the preceding singular point ẇi. It is not hard to see

that the 5 cases for values of ẇi and wi shown in Figure 5

cover all 16 possible combinations of values for p and q at

the ith singular point and the adjacent open segment. For any

t ∈ (ti, ti+1) in the ith segment, we have

Case 1: For any t′ < t which is in (ti, ti+1), by definition

p does not hold throughout (t′, t), hence (w, t) 6|= pSq,

that is ui = 0.

Case 2: There exists t′ < t which is also in (ti, ti+1), where

by definition q holds at t′ and p holds continuously through-

out (t′, t). Hence (w, t) |= pSq for all such t and ui = 1.

Case 3-(a): p was false at ti and q does not hold anywhere in

the interval (ti, t), which implies that pSq is not satisfied

throughout (ti, ti+1) and ui = 0.

Case 3-(b): q was true at ti and p was continuously true dur-

ing (ti, t), implying that pSq is satisfied at (ti, ti+1) and

ui = 1.

Case 3-(c): p holds and q remains false throughout [ti, t).
Hence, pSq holds at t iff there is t′ ∈ [0, ti) where q

Case ui wi ẇi+1

1 0 p ∗

2 1 pq ∗

3a 0 pq

3b 1 pq q

3c u̇i+1 pq

Fig. 6. pU q rules for determining ui

holds, and p remains true during (t′, ti), that is iff pSq
holds at ti. This implies that pSq is satisfied at (ti, ti+1)
iff it is satisfied at ti and ui = u̇i.

Lemma 5 (Semantic Rules for Until). Let w|pq = ẇ0 ·
(w0)r0 · ẇ1 · (w1)r1 · · · be a Boolean signal and let u =

u̇0 ·(u0)r0 · u̇1 ·(u1)r1 · · · = χpU q(w). Then, for every i ≥ 0,

1. if wi = p, then ui = 0,

2. if wi = pq, then ui = 1
3. if wi = pq, then either wi is the last segment in w and

ui = 0, or:

(a) if ẇi+1 = pq, then ui = 0
(b) if ẇi+1 = q, then ui = 1
(c) if ẇi+1 = pq, then ui = u̇i.

Proof. The value of u in the ith segment is determined with

respect to the values of inputs p and q in that same segment

wi and the next singular point ẇi+1. It is not hard to see that

the 5 cases for values of wi and ẇi+1 cover all 16 possible

combinations of values for p and q at wi and ẇi+1. For any

t ∈ (ti, ti+1) in the ith segment, we have

Case 1: For any t′ > t in (ti, ti+1), and by definition p does

not hold throughout (t, t′), hence (w, t) 6|= pU q and ui =
0.

Case 2: There exists t′ > t in (ti, ti+1) such that by defi-

nition q holds at t′ and p holds continuously throughout

(t, t′). Hence (w, t) |= pU q for all such t and ui = 1.
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Case 3-(a): By definition p is false at ti+1 and q does not hold

anywhere in the interval (t, ti+1), which implies that pU q
is not satisfied throughout (ti, ti+1) and ui = 0.

Case 3-(b): q is true at ti+1 and p continuously holds during

(t, ti+1), implying that pU q is satisfied at (ti, ti+1) and

ui = 1.

Case 3-(c): p holds and q remains false throughout (t, ti+1].
Hence, pU q holds at t iff there is t′ > ti+1 where q holds,

and p remains true during (ti+1, t
′), that is iff pU q holds

at ti+1. This implies that pU q is satisfied at (ti, ti+1) iff

it is satisfied at ti+1 and ui = u̇i+1.

The only remaining case is when wi = pq and it is the last

segment in the signal w (end of the signal since w is of finite

length). Since there is no t′ > ti where q is true, ui = 0.

3 Monitoring STL Specifications

In this section, we describe two procedures for monitoring

STL properties. These procedures are:

1. An offline procedure that propagates truth values upwards

from propositions via super-formulae up to the main for-

mula. The offline monitoring method is presented in sec-

tion 3.1

2. An incremental marking procedure that updates the mark-

ing each time a new segment of the input signal is ob-

served. Section 3.2 describes the incremental monitoring

algorithm.

Unlike automata-based monitoring algorithms, the proce-

dures that we propose are directly applied to signals. A cen-

tral notion in these algorithms is that of the satisfaction sig-

nal uϕ = χϕ(w) associated with a formula ϕ and a signal w.

We remind the reader that this signal satisfies uϕ[t] = 1 iff

(w, t) |= ϕ. Due to the non-causality of future temporal op-

erators of STL, the value of uϕ[t] is not necessarily known at

time t, that is, after observing w[t], and may depend on future

values of w.

We consider signals of the form w : T → Bn × Rm and

STL formulas that express mixed signal properties of w via

predicates over its real valued components. A predicate over

a set X of real valued variables is a function from X to B.

We consider a finite set of such predicates such that by ap-

plying them pointwise we obtain Boolean signals describing

the evolution over time of the truth values of these predicates

with respect to w. Hence, a numerical predicate in STL has a

similar role as an atomic proposition.

Events such as rising and falling in the Boolean signal

correspond to some qualitative changes in the real-valued sig-

nal, for example threshold crossing of some continuous vari-

able.

The monitoring of STL can be reduced to Booleaniza-

tion and monitoring against the MTL-skeleton of the formula,

hence in the remainder of the section, we describe the moni-

toring algorithms for MTL formulas.

3.1 Offline Marking

The offline marking algorithm works as follows. It has as in-

put an MTL formula and an n-dimensional signal w of length

r. For every sub-formula ψ of ϕ it computes its satisfiability

signal uψ = χψ(w) (we will use u when ψ is clear from the

context). The procedure is recursive on the structure (parse

tree) of the formula (see Algorithm 1). It goes down until the

propositional variables whose values are determined directly

by w, and then propagates values as it comes up from the re-

cursion. We use OP1 and OP2 for arbitrary unary and binary

logical or temporal operators. As a preparation for the incre-

mental version, we do not pass w and uϕ as input or output

parameters but rather store them in global data structures.

Algorithm 1: OFFLINEMTL

input : an MTL Formula ϕ and signal w

switch ϕ do

case p

uϕ := w|p;

case OP1(ϕ1)
OFFLINEMTL (ϕ1);
uϕ := COMBINE(OP1, uϕ1);

case OP2(ϕ1, ϕ2)
OFFLINEMTL (ϕ1);
OFFLINEMTL (ϕ2);
uϕ := COMBINE (OP2, uϕ1 , uϕ2);

end

Most of the work in this algorithm is done by the COM-

BINE function which for ϕ = OP2(ϕ1, ϕ2) computes uϕ from

the signals uϕ1
and uϕ2

. We describe how this function works

for each of the operators, and for the sake of readability we

omit the description of various optimizations. We have shown

in Lemma 1 that timed until and since operators are redun-

dant and consequently, in the remainder of the section it is

sufficient to describe the COMBINE function for the follow-

ing operators:

– Negation ¬ϕ and disjunction ϕ1 ∨ ϕ2

– Untimed since ϕ1 Sϕ2 and until ϕ1 Uϕ2

– Timed once Q I ϕ and eventually 1 I ϕ

3.1.1 Combine function for ¬ϕ and ϕ1 ∨ ϕ2

The negation ϕ = ¬ϕ1 is simply computed with uϕ :=
COMBINE(¬, uϕ1

), by changing the Boolean value of each

singular point and open segment in the representation of uϕ1
.

For the disjunction ϕ = ϕ1 ∨ ϕ2, the function uϕ :=
COMBINE(∨, uϕ1

, uϕ2
) first refines the point-segment repre-

sentation of the signals for the pairing u′ = uϕ1
||uϕ2

, by

computing a finer point-segment representation of u′ such

that the value of both signals uϕ1
and uϕ2

becomes uniform

(does not vary) within every open segment. Then, we com-

pute the disjunction at every point/segment, concatenating
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w|p
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Fig. 7. Computing u = χp∨q(w)

them in order to obtain uϕ. This procedure is illustrated in

Figure 7.

3.1.2 Combine function for ϕ1 Sϕ2 and ϕ1 Uϕ2

We assume a finite signal w = ẇ0 ·w
r0
0 · · · ẇk ·w

rk
k of length

|w| = r0 + · · · + rk = r. We have shown in Lemma 2 that

pSq operator is left continuous, meaning that the satisfaction

of the operator at any singular point cannot differ from its

satisfaction during the previous open segment. We have also

shown in Lemma 4 that there is a finite number of rules that

determine the value of u in open segments depending on the

past observations of p and q. The combination of these two

results gives us a straightforward recipe for computing u =

χpS q(w).
Now we can describe how the function that computes the

value of u = χpS q(w) works. We start reading the signal

w from the beginning towards the end. Following Lemma 2,

u̇0 = 0, regardless of w. For every subsequent singular point,

the value u̇i is equal to ui−1, the value of u during the previ-

ous open segment. When a new open segment of wi is read,

the procedure applies the rules of Lemma 4 to compute ui,
the value of u in the same segment. If p is false in wi, then

ui is also false. Similarly, if both p and q hold in wi, then

the segment ui is set to be true. Finally, if p holds during wi
and q is false throughout the same segment, there are three

possibilities: 1) either both p and q were false at the previous

singular point ẇi and then ui is set to be false; 2) q was true

at ẇi so ui is set to true or 3) p was true and q false at ẇi and

ui has the same value as in the previous singular point u̇i.
Computing the COMBINE function for pU q operator is

symmetric to the pSq case. We have shown in Lemma 3 that

until is right continuous, meaning that the satisfaction of the

operator at any singular point is identical to its satisfaction

during the next open segment. In Lemma 5 we provided a fi-

nite number of rules to determine the value of u in the open

segments depending on the future observations of p and q.

The combination of these two results provide rules for com-

puting u = χpU q(w).

The computation of u = χpU q(w) works as follows. The

signal w is read from the end towards the beginning. We de-

termine the value of every open segment ui according to the

rules of Lemma 5. If p is false in wi, then ui is also false.

0 1 2 3 4 5 6 7 8 9 10

r

w|p

ẇ3w1 w2 w3ẇ0 w0 ẇ1 ẇ2

u̇0 u̇1 u̇2 u̇3u0 u1 u2u3 u3

u
pS q

u
pU q

w|q

Fig. 8. Computing u = χpS q(w) and u = χpU q(w)

Similarly, if both p and q hold in wi, then the value of the

segment ui is set to be true. For segments wi where p is true

and q is false, there are four possibilities: 1) wi is the last

open segment in w and ui is false; 2) both p and q are false in

ẇi+1 and ui is set to false; 3) q is true at ẇi+1 so ui is also set

to true or 4) p is true and q false at ẇi+1 and ui has the same

value as in the next singular point u̇i+1. Every singular point

u̇i is set to the value of the succeeding open segment ui, as

shown by Lemma 3.

Examples of computing u = χpS q(w) and u = χpU q(w)
are shown in Figure 8.

3.1.3 Combine function for 1 I ϕ and Q I ϕ

To compute u = χ1
I
ϕ(uϕ) and u = χQ

I
ϕ(uϕ) we first

observe that whenever ϕ holds in an interval J , u holds in the

interval J⊖I∩T (respectively J⊕I∩T ). Hence, the essence

of the procedure is to “propagate” the intervals in uϕ where

ϕ holds either forward or backward. We employ the auxiliary

concept of interval covering of a signal.

Definition 1 (Interval covering). For a Boolean signal u of

finite length defined over T = [0, r), its interval covering is a

sequence Iu = I0, . . . , Ik such that
⋃

Ii = T and Ii∩Ij = ∅
for any i 6= j. An interval covering is said to be consistent

with a finite length signal u if u[t] = u[t′] for every t, t′ that

belong to the same interval Ii ∈ Iu. We denote by Iu the

minimal interval covering consistent with the signal u. The

set of positive intervals in Iu is I+
u = {I ∈ Iu|∀t ∈ I, u[t] =

1} and the set of negative intervals is I−
u = Iu − I+

u .

Let us assume that Iuϕ is the minimal interval covering

consistent with uϕ. Then u = χ1
I
ϕ(uϕ) is computed using

the following procedure. For every positive interval I+ ∈ I+
ϕ ,

we compute its back shifting (Minkowski difference saturated

by T ) I+ ⊖ I ∩ T and insert it to I+
u . This set represents the

intervals where 1 I ϕ is satisfied, and the property is violated

outside these intervals. Overlapping positive intervals in I+
u

are merged to obtain the minimal interval covering1 of u.

1 Note that the similar operation can be applied to negative intervals in

I−

ϕ , in order to directly compute intervals where 1
I
ϕ is violated. This
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r
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w|p

Fig. 9. Computing u = χ
1

[1,2]
p
(w) and u = χ

Q
[1,2]

p
(w)

The combine function for u = χQ
I
ϕ(uϕ) is computed

in a similar way. For every positive interval I+ ∈ I+
ϕ , we

compute its forward shifting (Minkowski sum saturated by

T ) I+ ⊕ I ∩ T and insert it to I+
u , and merge the overlap-

ping positive intervals in I+
u to obtain the minimal interval

covering of u.

An example of computing u = χ1
I
ϕ(uϕ) and u =

χQ
I
ϕ(uϕ) is shown in Figure 9.

3.2 Incremental Marking

This approach combines the simplicity of the offline proce-

dure with the advantages of online monitoring in terms of

early detection of violation/satisfaction and typically smaller

memory requirements. After observing a prefix w[0, t1] of

the signal we apply the offline procedure (without applying

the finitary interpretation rules for future temporal operators,

these are applied only at the end of the input trace). If, as a

result, uϕ = χϕ(w) is determined at time 0 we are done.

Otherwise, we observe a new segment w[t1, t2] and then ap-

ply the same procedure based on w[0, t2].
A more efficient implementation of this procedure need

not start the computation from scratch each time a new seg-

ment is observed. It will be often the case that uψ = χψ(w)
for some sub-formulae ψ is already determined for some sub-

set of [0, t1], based on w[0, t1]. In this case we only need to

propagate upwards new information obtained from w[t1, t2],
combined possibly, with some residual information from the

previous segments that was not sufficient for determination of

the satisfaction of the super formula. The choice of granular-

ity (lengths of segments) in which this procedure is invoked

depends on trade-offs between the computational cost and the

importance of early detection.

The essence of the incremental marking procedure lies

in the observation that the evaluation of a Boolean or future

temporal formula ϕ at time t, depends on the values of their

subformulae at t′ ≥ t. This implies that if uϕ is already deter-

mined at some interval [0, t1], we only need to keep the values

procedure is not necessary for offline monitoring, but is useful for the incre-

mental version of the algorithm

uψ ∆ψ

uψ1

uψ2

∆ψ

uψ1
∆ψ1

uψ2
∆ψ2

∆ψ1

uψ

∆ψ2

αψ

(a) (b)

Fig. 10. A step in an incremental update: (a) A new segment α for ψ is

computed from ∆ψ1
and ∆ψ2

; (b) α is appended to ∆ψ and the endpoints

of uψ1
and uψ1

are shifted forward accordingly.

of the satisfaction signal of its subformulae after t1. Similarly,

a past temporal operator ψ depends on the satisfaction of its

subformulae at t′ ≤ t. The algorithm needs minor (and sym-

metric) adaptations between incremental marking for future

and past temporal operators, and in the remaining of the sec-

tion we focus on the procedure dealing with future temporal

formulae.

Incremental marking is done using a piecewise-online pro-

cedure invoked each time a new segment of w, denoted by

∆w, is observed. For each sub-formula ψ the algorithm stores

its already-computed satisfaction signal partitioned into a con-

catenation of two signals uψ ·∆ψ with uψ consisting of values

that have been already propagated to the super-formula of ψ,

and ∆ψ consists of values that have already been computed

but which have not yet been propagated to the super-formula

and can still influence its satisfaction.

Initially all signals are empty. Each time a new segment

∆w is read, a recursive procedure similar to the offline pro-

cedure is invoked, which updates every uψ and ∆ψ from the

bottom up. The difference with respect to the offline algo-

rithm is that only the segments of the signal that have not

been propagated upwards participate in the update of their

super-formulae. This may result in a lot of saving when the

signal is very long (the empirical demonstration of this claim

is given in section 6.1.4).

As an illustration consider ϕ = OP(ϕ1, ϕ2) and the cor-

responding truth signals of Figure 10-(a). Before the update

we always have |uϕ · ∆ϕ| = |uϕ1
| = |uϕ2

|: the parts ∆ϕ1

and ∆ϕ2
that may still affect ϕ are those that start at the point

from which the satisfaction of ϕ is still unknown. We apply

the COMBINE procedure on ∆ϕ1
and ∆ϕ2

to obtain a new

(possibly empty) segment α of∆ϕ. This segment is appended

to ∆ϕ in order to be propagated upwards, but before that we

need to shift the borderline between uϕ1
and ∆ϕ1

(as well as

between uϕ2
and ∆ϕ2

) in order to reflect the update of ∆ϕ.

The procedure is described in Algorithm 2.

Example 2. We illustrate the incremental monitoring proce-

dure on the MTL formula ϕ = 0 (p → 1 [1,2] q). The input

signal w is split into three segments ∆1
w, ∆2

w and ∆3
w and the

incremental marking procedure is applied upon the arrival of

each such segment:
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Algorithm 2: INC-OFFLINE-MTL

input : an MTL Formula ϕ and an increment ∆w of a

signal

switch ϕ do

case p

∆ϕ := ∆ϕ · wp(∆w);

case OP1(ϕ1)
INC-OFFLINE-MTL (ϕ1);
α := COMBINE(OP1, ∆ϕ1);
d := |α| ;

∆ϕ := ∆ϕ · α ;

uϕ1 := uϕ1 · 〈∆ϕ1〉d ;

∆ϕ1 := d\∆ϕ1

case OP2(ϕ1, ϕ2)
INC-OFFLINE-MTL (ϕ1);
INC-OFFLINE-MTL (ϕ2);
α := COMBINE(OP2, ∆ϕ1 , ∆ϕ2);
d := |α| ;

∆ϕ := ∆ϕ · α ;

uϕ1 := uϕ1 · 〈∆ϕ1〉d ;

∆ϕ1 := d\∆ϕ1 ;

uϕ2 := uϕ2 · 〈∆ϕ2〉d ;

∆ϕ2 := d\∆ϕ2

end

1. The first step of the monitoring procedure is computed

when the first segment ∆1
w = ˙(p

q

)

·
(

p
q

)2
· ˙(p
q

)

·
(

p
q

)0.5
·

˙(p
q

)

·
(

p
q

)1.5
is appended to w. After applying recursively

the marking procedure and computing uψ for the subfor-

mulae ψ of ϕ. Figure 11-(a) shows the computed signals

and as we can see, uϕ for the top level formula ϕ remains

empty. Note that the segment of w defined over [0, 2) as

well as the entire computed segment of u1
[1,2]

q can be

discarded, since they do not affect any more the satisfac-

tion of their corresponding super-formulae.

2. The segment ∆2
w = ˙(p

q

)

·
(

p
q

)3
· ˙(p
q

)

·
(

p
q

)0.5
· ˙(p
q

)

·
(

p
q

)0.5

is appended to the previous segment of w, and the in-

cremental marking procedure is applied again, comput-

ing new segments of satisfaction signals for sub-formulae

of ϕ. The satisfaction of the top formula remains undeter-

mined. The satisfaction signals for subformulae of ϕ after

applying the marking procedure are shown in Figure 11-

(b).

3. Finally, the third segment ∆2
w = ˙(p

q

)

·
(

p
q

)2
is appended

to w and the incremental marking procedure is applied

again. Now, all the subformulae of ϕ, including the top

level formula itself can be updated, and since uϕ is false

at t = 0 (see Figure 11-(c)), we can conclude that the

formulae is violated by w and stop the procedure.

(a)

(b)

(c)

0 1 2 3 4 5 6 7 8 9 10

u1
[1,2] q

up→1 [1,2] q

0 1 2 3 4 5 6 7 8 9 10

u1 [1,2] q

up→1 [1,2] q

u 0 (p→1 [1,2] q)

u 0 (p→1 [1,2] q)

0 1 2 3 4 5 6 7 8 9 10

u1
[1,2]

q

up→1 [1,2] q

u 0 (p→1 [1,2] q)

∆1
w

∆2
w

∆3
w

w|p

w|q

w|p

w|q

w|p

w|q

Fig. 11. Satisfaction signals uψ for sub-formulae ψ of ϕ = 0 (p →

1 [1,2] q) computed incrementally upon receiving (a) ∆1
w (b) ∆2

w and (3)

∆3
w

4 Continuous Signals and their Representation

Section 2 defined the satisfaction relation of STL and we have

seen in Section 3, that monitoring of STL can be simply re-

duced to monitoring of MTL, by booleanizing real valued

variables via numerical predicates. However, to really im-

plement a monitoring procedure, we have to cope with some

technical problems related to the computer representation of

continuous signals.

As we have seen in Section 2.1, finite non-Zeno Boolean

signals, albeit the fact that they are defined over dense time

domain, admit an exact finite representation via the switching

(singular) points and the open segments that define their true

and false intervals. This is no longer the case for continuous

signals where we have a contrast between the ideal mathe-

matical object, consisting of an uncountable number of pairs

(t, ξ[t]) with t ranging over some interval [0, r) ⊆ T , and

any finite representation which consist of a collection of such

pairs, with t restricted to range over a finite set of sampling

points.

The values of ξ at sampling points t1 and t2 do not de-

termine the values of ξ inside the interval (t1, t2). They may,

at most, impose some constraints on these values. Such con-

straints can be based on the dynamics of the generating sys-

tem and on the manner in which the numerical simulator
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ξ ξ′

µ(ξ) µ(ξ′)

Fig. 12. Two signals which are close from a continuous point of view, one

satisfying the property 0 (x > 0) and one violating it.

produces the signal values at the sampling points. Numeri-

cal analysis is a very mature domain studying algorithms for

numerical approximations with a lot of accumulated experi-

ence concerning tradeoffs between accuracy and computation

time.

In order to speak quantitatively about the approximation

of a signal by another we need the concept of a distance/metric

imposed on the space of continuous signals. A metric is a

function that assigns to two signals ξ1 and ξ2 a non-negative

value ρ(ξ1, ξ2) which indicates how they resemble each other.

Using metrics one can express the “convergence” of a numer-

ical integration scheme as the condition that limd→0 ρ(ξ, ξd) =
0 where ξ is the ideal mathematical signal and ξd is its numer-

ical approximation using an integration step d.

Metrics and norms for continuous signals are used exten-

sively in circuit design, control and signal processing. There

are, however, major problems concerned with their applica-

tion to property monitoring due to the incompatibility be-

tween the continuous nature of the signals and the discrete

nature of their Booleanization, a phenomenon which is best

illustrated using the following simple example. Consider the

property 0 (x > 0) and an ideal mathematical signal ξ that

satisfies the property but which passes very close to zero at

some points. We can easily deform ξ into a signal ξ′ which is

very close to ξ under any reasonable continuous metric, but

according to the metric induced by the property, these signals

are as distant as can be: one of them satisfies the property and

the other violates it (see Figure 12).

Moreover, if the sojourn time of a signal below zero is

short, an arbitrary shift in the sampling can make the monitor

miss the zero-crossing event and declare the signal as satis-

fying (see Figure 13). In this sense properties are not robust

as small variations in the signal may lead to large variations

in its property satisfaction. Let us mention some interesting

ideas [18] concerning new metrics for bridging the gap be-

tween the continuous and the discrete points of view, by ex-

tending the usual approximation and sampling theory of con-

tinuous signals and systems to those encompassing disconti-

nuities.

We handle the above-mentioned issues pragmatically. The

following assumptions facilitate the monitoring of sampled

continuous signals against STL properties, passing through

Booleanization:

t t

Fig. 13. Shifting the sampling points, zero crossing can be missed.

1. Sufficiently-dense sampling: the simulator detects every

change in the truth value of any of the predicates appear-

ing in the formula at a sufficient accuracy. This way the

positive intervals of all the Boolean signals that corre-

spond to these predicates are determined. This require-

ment imposes some level of sophistication on the simu-

lator that has to perform several back-and-forth iterations

to locate the time instances where a threshold crossing

occurs. Many simulation tools used in industry have such

event-detection features. For instance, VERILOG-AMS [27]

provides event-detection feature using constructs such as

@cross, @last crossing or @above which allow

to detect the crossings of thresholds with arbitrary preci-

sion, by forcing the simulator to make smaller time steps

around the defined threshold. A survey of the treatment of

discontinuous phenomena by numerical simulators can be

found in [23].

2. Bounded variability: some restrictive assumptions can be

made about the values of the signal between two sam-

pling points t1 and t2. For example one may assume that

ξ is monotone so that if ξ[t1] ≤ ξ[t2] then ξ[t′1] ≤ ξ[t′2]
for every t′1 and t′2 such that t1 < t′1 < t′2 < t2. An

alternative condition could be a condition a-la Lipschitz:

|ξ[t2]−ξ[t1]| ≤ K|t2−t1|. Such conditions guarantee that

the signal does not get wild between the sampling points,

otherwise property checking based on these values may

become useless.

Under such assumptions every continuous signal given by a

discrete-time representation, based on sufficiently-dense sam-

pling, induces a well-defined Boolean signal ready for MTL

monitoring. When there is no direct connection with the sim-

ulator available, we replace the hypothesis of sufficiently-

dense sampling by interpolation. That is, when we have two

consecutive sampling points t1 < t2 such that one satisfies a

predicate and the other does not, we use linear interpolation

to “compute” the value of the signal throughout the interval

(t1, t2) and detect the singular point t′ where the value of the

predicate changes. The procedure is illustrated in Figure 14.

Let us add at this point a general remark that the standards

of exactness and exhaustiveness as maintained in discrete ver-

ification cannot and should not be exported to the continuous

domain, and even if we are not guaranteed that all events are

detected, we can compensate for that by using safety margins

in the predicates and properties.
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x ≥ 1

x > 1

x = 1

x′

x 1

1

Fig. 14. Transformation of a continuous signal to its Boolean abstraction

via interpolation and numerical predicates. The signal indicated by x′ was

not sufficiently dense with respect to the predicates x ◦ 1 and hence two

additional sampling points were added.

Fig. 15. Architecture of the AMT tool

5 AMT - Analog Monitoring Tool

In this section, we describe the analog monitoring tool AMT

that implements the monitoring algorithms presented in Sec-

tion 3. AMT is a stand-alone tool with a graphical user inter-

face (GUI) written in C++ for the GNU/Debian Linux x86

platform. We used the QT
2 library to develop the tool GUI,

and QWT
3 library to implement visualization of Boolean and

continuous signals.

Figure 15 illustrates the general architecture of AMT. The

tool takes as inputs: (1) a formal specification; and (2) a set

of simulation traces. The formal specification is expressed in

STLPSL, a textual language that extends STL with syntactic

sugar. The STLPSL property usually results from a manual

formalization of an informal specification. The STLPSL spec-

ification is automatically translated into a property checker

that monitors the input simulation traces and checks whether

they satisfy the required properties.

The main window of the application is partitioned into

five frames that allow the user to manage STLPSL properties

and input signals, evaluate the correctness of the simulation

2 http://www.trolltech.com
3 http://qwt.sourceforge.net

traces with respect to the input specification and, finally, vi-

sualize the results. The property edit frame contains a text

editor for writing, importing and exporting STLPSL specifi-

cations, which are then translated into an internal data struc-

ture based on the parse-tree of the formula stored in the prop-

erty list frame. An STLPSL specification is imported into the

property evaluation frame for monitoring with respect to a

set of input simulation traces, in either offline or incremental

mode. The static import of the input traces is done through

the signal list frame. The imported input signals, as well as

signals associated to the subformulae of a specification can be

visualized by the user from the signal plots frame. A screen-

shot of the main window is shown in Figure 16.

5.1 Property Management

The specifications in AMT are written in a simple editor with

syntax highlighting for the STLPSL language. An STLPSL

specification is transformed into an internal data structure that

is adapted for monitoring, following the parse-tree of the for-

mula. The user can hold more than one specification that is

ready for evaluation in the property list frame.

5.2 Property Format

The tool supports as input specification the STLPSL language,

that extends STL with syntactic sugar inspired by the Prop-

erty Specification Language (PSL). We group single proper-

ties (declared as assertions) into a single logical unit in which

they can be monitored simultaneously. We also add a defini-

tion directive that allows the user to declare a formula and

give it a name, and then refer to it as a variable within other

assertions. The syntax of STLPSL is defined with the follow-

ing production rules

varphi :==

vprop NAME {
{ define_directive }
{ assert_directive }

}

define_directive :==

define b:NAME := varphi

| define a:NAME := phi

assert_directive :==

NAME assert : varphi

where varphi corresponds to a temporal property and phi

to an analog operation. We omit the full list of operators sup-

ported in STLPSL and refer the reader to the tool documenta-

tion.

5.3 Property Evaluation

The property evaluation frame provides the monitoring fea-

tures for checking correctness of an STLPSL specification
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Fig. 16. AMT main window

with respect to input simulation traces. The frame shows the

set of assertions in a tree view, following the parse structure

of the formulas. The user can choose in particular between

offline and incremental evaluation of the specification.

In the offline case, the assertions are monitored with re-

spect to input signals that are fetched from the signal list

frame. If one or more signals are missing, the monitoring pro-

cedure still tries to evaluate the property, but without guaran-

teeing a conclusive result.

For the incremental procedure, AMT acts as a server that

waits for a connection from a simulator. Once the connection

is established, the simulator sends input segments incremen-

tally. The monitor alternates between reception of new input

segments and incremental evaluation of the assertions. The

user can configure the following parameters for the incremen-

tal evaluation:

– The user can set the TCP/IP port that is used for commu-

nication between the tool and the simulator

– timeout value defines the time period between two con-

secutive evaluations. Simulations of analog circuit often

have tens or even hundreds of thousands of samples per

signal. Hence, it is usually not wise to re-evaluate the

property upon receiving every single new individual sam-

ple. This option enables to accumulate inputs received

from the simulator between any two consecutive periods

defined by the timeout value and apply the incremental

checking procedure only at instants when the timer ex-

pires. There is no pre-defined optimal value for the time-

out, and it represents a trade-off between the frequency of

computation and the potential possibility of earlier detec-

tion of violation/satisfaction of a property

– The incremental procedure often provides better memory

management than its offline counterpart. This happens be-

cause parts of the signals that have been fully determined

and are not needed by their super-formulae can be dis-

carded. However, in some situations, one would prefer

to keep the entire signal for visualization and debugging

purposes. The tool allows the user to choose through the

“keep history” option whether the entire signal is kept, or

only its segments that are needed for subsequent evalua-

tions

There are three ways to terminate the incremental monitoring

procedure:

1. All assertions become determined and AMT stops the eval-

uation, closing the connection with the simulator

2. The special termination packet is received from the simu-

lator, indicating the end of the input traces. In that case the

tool completes the evaluation of assertions with respect to

the finitary semantics of the specification language oper-

ators

3. The user explicitly stops the procedure before the end of

simulation, by resetting the monitoring. In that case the

connection with the simulator is closed and the evaluation

remains undetermined;

AMT favors visual evaluation of monitoring results, by

choosing a different color scheme for undetermined, satisfied

and violated assertions. Each subformula of the specification
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has an associated signal, which can be visualized within the

signal plots frame. The visualization of the associated signals

can be used for debugging and understanding the reasons be-

hind satisfaction or violations of assertions. During the incre-

mental evaluation, if the “keep history” option is enabled, all

the signals within the signal plots frame are updated in real-

time as new results are computed.

5.4 Signal Management

The signals in AMT can be either real-valued or Boolean. Sig-

nals are input traces that can be imported into the tool in an

offline or incremental fashion. Signals are also associated to

subformulas of STLPSL specifications. The user can visualize

signals from the signal plots frame.

5.4.1 Offline Signal Input

Signals can be statically loaded from the signal list frame.

AMT supports the following input formats:

out The output format of the NANOSIM simulator. The cur-

rent and voltage signals are loaded, while logical signals

are ignored.

vcd The subset of Value Change Dump file format including

real and 2-valued Boolean signals, commonly used for

dumping simulations.

txt A simple Ascii format that is dumped by the COSMOSS-

COPE wave calculator tool.

The analog simulation traces are usually very large. A

typical file generated by the simulation of a complex AMS

circuit contains hundreds of signals, and often exceeds hun-

dreds of megabytes of data. AMT has been designed to be

able to deal with very large files and has been tested with sim-

ulation dumps exceeding 2GB of memory. While a standard

simulation file contains hundreds of signals, an STLPSL spec-

ification usually refers only to a small subset. Hence, there is

a need to efficiently navigate through the list of available sig-

nals. For this purpose, AMT provides an option for multiple

selection of signals, as well as the selection of signals by a

filter. For instance, the filter *data*1* selects all signals

that have the pattern data withing their names followed (not

necesserily immediately) by 1. Moreover, an additional win-

dow shows the list of currently selected signals.

5.4.2 Incremental Signal Input

Signals can be imported incrementally to AMT, via a sim-

ple TCP/IP protocol. A simulator that produces input signals

needs to connect to AMT during the incremental evaluation

and send packets containing signal updates to the tool. The

packets can be either Boolean or continuous signal updates,

or a special termination packet, informing the tool that the

simulation is over.

6 Case Studies

In this section, we present two case studies intended to evalu-

ate the usefulness of our property-based approach for check-

ing the correctness of AMS simulation traces. The first case

study is described in Section 6.1 and involves checking prop-

erties of a FLASH memory design with the simulation traces

provided by ST Microelectronics. The second case study is

presented in Section 6.2 and involves monitoring specifica-

tions of a DDR2 memory interface component from Rambus.

The properties used in the FLASH memory case study

were provided by ST Microelectonics analog designers in

form of informal specifications written in English language.

These properties were translated to STLPSL, matching the

original requirements expressed by the designers. This pro-

cess took several iterations involving clarifications with de-

signers on the exact meaning of the specifications. The main

objective of this case study is the evaluation of the AMT tool.

The DDR2 memory interface case study rather concen-

trates on the specification of complex timing properties from

the official specification document [15] in STLPSL. The ob-

jective is to evaluate the expressiveness of STLPSL with re-

spect to a realistic example used in the analog industry and

identify potential weaknesses of the approach, providing use-

ful feedback about missing features that should be taken into

consideration in future research.

6.1 FLASH Memory Case Study

The subject of the case study is the “Tricky” technology FLASH

memory test chip in 0.13µs process developed in ST Micro-

electronics. The FLASH memory is a digital system whose

logical behavior is implemented at the analog level. Hence,

it presents a direct link between the analog and the digital

worlds.

For monitoring, the system under test is seen as a black

box, and we do not need to know details chip architecture,

apart from its monitoring interface. The memory cell can be

in one of the programming, reading or erasing modes. The

correct functioning of the design at its analog level of ab-

straction in a given mode is determined by the behavior of its

interface signals extracted during the simulation:

bl: matrix bit line terminal

pw: matrix p-well terminal

wl: matrix word line

s: matrix source terminal

vt: threshold voltage of cell

id: drain current of cell

The memory cell was simulated in the programming and

erasing modes for the case study, with the simulation time

being 5000µs and 30000µs respectively. Four STLPSL prop-

erties were specified to describe the correct behavior of the

cell in the programming mode and one property in the eras-

ing mode. The AMT monitoring was done on a Pentium 4

HT 2.4GHz machine with 2Gb of memory. All the properties

were found to be correct with respect to the input traces.
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6.1.1 Programming Mode

The first property requires that whenever the vt signal crosses

the threshold of 5, both vt and id have to remain continuously

above 4.5 and 5 ·10−6 respectively, until id falls below 5e−6
(see Figure 17 for the resulting signals after the evaluation).

The STLPSL specification for this property4 is:

vprop programming1 {

pgm1 assert:

always (rise(a:vt>5) ->

((abs (a:id) > 5e-6) and (a:vt>4.5))

until (fall(a:id>5e-6)));

}

The second property is split into two assertions. The first

assertion pgm1 requires that whenever the wordline wl is be-

low 0.1 but will jump to above 3.8 within 15µs and the cell

is not in the programming mode (translated by the absolute

value of the source current id being below 30 · 10−6), the

bitline signal bl should cross 3.8 before the end of the simu-

lation, and remain above that threshold continuously until the

word line wl goes above 6, which should happen within 300
and 1500µs from the bl crossing. The results of the evalua-

tion are shown in Figure 18.

The second assertion pgm2 specifies that whenever the

programming procedure starts (translated by the crossing of

3.8 threshold by the bitline signal bf), bitline should not fall

below that threshold until the signal vt becomes higher than

5 and the absolute value of the source current id goes below

5 · 10−6. Figure 19 shows the results of the pgm2 assertion

of the property.

We use the following STLPSL specification to express the

second property:

vprop programming2 {

define b:not_pgm :=

rise((a:wl <= 0.1) and

eventually[0:15]

(a:wl >= 3.8 and a:id >= 30e-6));

pgm1 assert:

always (b:not_pgm ->

eventually (rise(a:bl>=3.8) and

((a:bl>=3.8) until[300:1500]

(a:wl >= 6))));

pgm2 assert:

always (rise(a:bl >= 3.8) ->

(not (a:bl <= 0.1) until (a:vt >=5

and abs(a:id) <= 5e-6)));

}

4 This property is expressed in STL as follows: �(↑ (vt > 5) → ((|id| >
5 · 10−6) ∧ (vt > 4.5)U ↓ (id > 5 · 10−6))

6.1.2 Erasing Mode

We first define the erasing condition that holds whenever the

wordline signal wl is lower than −6 and p-well pw is above 5.

The main property states that whenever an erasing condition

holds, the pointwise distance between the source s and p-well

pw voltages has to be smaller than 0.1 and the value of pw

should not be greater than 0.83 from the value of bitline bl.

The STLPSL specification of the property is as follows:

vprop erasing {
define b:erasing_cond :=

a:wl <= -6 and a:pw > 5;

erasing assert:

always (b:erasing_cond ->

(abs (a:s-a:pw) <= 0.1)

and (a:pw-a:bl)<0.83));

}

Figure 20 shows some of the representative signals of the

erasing property.

6.1.3 P-Well Driving During Programming

This property requires that whenever the bitline bl and word-

line wl signals are above 2.5 threshold, the p-well signal pw

has to be below −0.5. The evaluation results for the p-well

property are shown in Figure 21.

The p-well property is expressed in STLPSL as follows:

vprop pwell {
p_well assert:

always ((a:bl>2.5 and a:wl>2.5) ->

a:pw<=-0.5);

}

6.1.4 Tool Performance

The time and space requirements of AMT were studied with

both offline and incremental algorithms. The complexity of

the algorithm used in AMT is shown to be O(k · m) in [20]

where k is the number of sub-formulae and m is the size

of the input signal (number of singular points and open seg-

ments).

Table 1 shows the size of the input signals (number of

singular points and segments). We can see that the erasing

mode simulation generated 10 times larger inputs from the

programming mode simulation. Table 2 shows the evaluation

results for the offline procedure of the tool. Monitoring the

properties for the programming mode required less than half

a second. Only the erasing property took more than 2 sec-

onds, as it was tested against a larger simulation trace. We

can also see that the evaluation time is linear in the size of

signals generated by the procedure and can deduce that the

procedure evaluates about 1,000,000 intervals per second.

The execution times of the incremental algorithm are less

meaningful because the procedure works in parallel with the
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Fig. 18. Evaluation results for the programming2 property (assertion pgm1)

simulator and the evaluation time depends on the frequency

of the incoming input. In fact, a major advantage of the in-

cremental procedure is its ability to detect property violation

in the middle of the simulation and save simulation time. An-

other advantage of the incremental algorithm is its reduced

space requirement as we can discard parts of the simulation

after they have been fully used. Table 3 compares the memory
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consumptions of the offline and incremental procedures. For

the former we take the total number of signal segments gen-

erated by the tool, while for the latter we take the maximal

number of signal segments kept simultaneously in memory.

We can see that this ratio varies a lot from one property to

another, going from 0.01% up to almost 70%. The general

observation is that pointwise operators require considerably

less memory in the incremental mode, while properties in-
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pgm sim erase sim

name input size input size

wl 34829 283624

pw 25478 283037

s 33433 282507

bl 32471 139511

id 375 n/a

Table 1. Input Size

property time (s) size

pgm1 0.14 99715

pgm2 0.42 405907

p-well 0.12 89071

erasing 2.35 2968578

Table 2. Offline algorithm evaluation

Offline Incremental

Property t m m/t * 100

pgm1 99715 65700 65.9

pgm2 594709 242528 40.8

p-well 89071 8 0.01

Table 3. Offline/incremental space requirement comparison, where t = total

size and m = maximal active size

Threshold Value (V)

VDDQ 1.8

VIH(AC)min 1.25

VIH(DC)min 1.025

VREF (DC) 0.9

VIL(DC)max 0.775

VIL(AC)max 0.65

Table 4. Threshold values for DQ and DQS

volving the nesting of untimed temporal properties often fail

to discard their inputs until the end of the simulation.

6.2 DDR2 Case Study

This case study focuses on a DDR2 memory interface de-

veloped at Rambus. The memory interface acts as a bus be-

tween the memory and other components in the circuit and

exhibits communication of digital data implemented at the

analog level. Hence, correct functioning of a DDR2 memory

interface largely depends on the appropriate timing of differ-

ent signals within the circuit. In Section 6.2.1, we describe an

alignment specification that expresses a typical DDR2 prop-

erty and different steps needed for translating it in a formal

STLPSL specification. The experimental results are presented

in 6.2.2.

6.2.1 Alignment Between Data and Data Strobe Signals

In DDR2, data access is controlled by a single-ended or dif-

ferential data strobe signal, which acts as an asynchronous

clock. The official JEDEC DDR2 specification [15] describes,

amongst others, a number of properties that involve timing re-

lationship between events that happen in data and data strobe

signals. In this case study, we are in particular interested in a

property that defines the correct alignment between these two

signals. The case study considers the specification parameters

for the single-ended data strobe DDR2 − 400 memory inter-

face, which is part of the JEDEC standard.

The DDR2 specification contains a number of relevant

thresholds, shown in Table 4. The temporal relationship be-

tween data signal DQ and data strobe signal DQS is defined

with respect to the crossings of these thresholds.

The general definition of the alignment of data DQ and

data strobe DQS signals is shown in Figure 22. The proper

alignment between the two signals is determined by two val-

ues, the setup time tDS and hold time tDH . The setup and

hold times ofDQ andDQS are checked both on their falling

and rising edges, but we only consider, for the sake of sim-

plicity, the specification of the setup time at the falling edge

property. The other cases are similar and symmetric.

Informally, the setup property at the falling edge requires

that whenever DQS crosses the VIH(DC)min threshold from

above, the previous crossing of VIL(AC)max by the signalDQ
from above should precede it by at least a period of time of

tDS. This property is formalized in STLPSL as follows:
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define b:dqs above vihdcmin :=

(a:DQS >= 1.025);

define b:dqs above vilacmax :=

(a:DQ >= 0.65);

always (fall(b:dqs above vihdcmin)

-> historically[0:tDS] not

fall(b:dq above vilacmax));

Unfortunately, the above property, naturally expressed in

STLPSL, does not express the full reality. In practice, setup

time tDS is not a constant value, but rather varies according

to the slew rates (slopes) ofDQ andDQS signals. For exam-

ple, when DQ and DQS fall more sharply, the required tDS
increases. Setup time tDS is equal to the sum of a (constant)

base term tDS(base) and a (variable) correction term∆tDS

tDS = tDS(base) +∆tDS

The setup base term tDS(base) is equal to 150ps for

the single-ended DDR2-400. The correction term ∆tDS is

a value that depends directly on slew rates of DQ and DQS,

with the setup slew rate of a falling signal being defined as

sr =
VREF (DC) − VIL(AC)max

∆TF
(2)

where∆TF is the time that the signal spends between VREF (DC)

and VIL(AC)max . As we can see, the falling setup slew rate sr
of a signal can be deduced from ∆TF .

In order to extract the setup correction term ∆tDS from

the actual slew rates ofDQ andDQS (srDQ and srDQS), we

can use a specification table from [15], partially reproduced

in Table 5. According to the JEDEC specification, ∆tDS
corresponding to the slew rates not listed in Table 5 should

be linearly interpolated. Consequently, we can apply the fol-

lowing sequence of computations in order to determine the

correct value of tDS at any time

∆TF → setup falling slew rate → correction term → tDS

To summarize, tDS is a value that varies during the sim-

ulation as a function of slew rates of DQ and DQS (tDS =
f(srDQ, srDQS)). The problem is that STLPSL cannot cap-

ture parameterized time bounds and therefore we have to use

approximations in order to express a similar alignment prop-

erty that still preserves some guarantees. We can subdivide

the domain of slew rates (say R = [srmin, srmax]) into n re-

gions R1, . . . , Rn. For each pair (Ri, Rj) of DQ/DQS slew

rate regions, we assign a separate constant setup time tDSij .
Instead of one property, we obtain n × n properties of the

form:

“wheneverDQS crosses the VIH(DC)min threshold from above,

DQ slew rate srDQ is in Ri and DQS slew rate srDQS is in

Rj , the previous crossing of VIL(AC)max by the signal DQ
from above should precede it by at least a period of time of

tDSij .”
The proper constant value for tDSij for a pair of slew

rate regions (Ri, Rj) can be chosen in two manners. The

first solution consists in computing tDSij from the maxi-

mum correction term for the DQ and DQS slew rates that

are in the Ri and Rj regions, respectively. This corresponds

to an over-approximation of the original specification, and if

this property is violated, we don’t know if it is a real fail-

ure or a false alarm. On the other hand, the satisfaction of

the over-approximated property implies that the original one

holds too. Conversely, the computation of tDSij from the

minimum correction term defined for the slew rates in the

pair of regions (Ri, Rj) yields to an under-approximation of

the original property. If the new property is falsified, we know

that it corresponds to a real violation, while if it passes, we

cannot say whether we are indeed safe.

As an example, consider the highlighted range of Table 5,

which we call the “top-left” range, where the setup falling

slew rates of DQ and DQS are between 1 and 2 V/ns.
For the conservative approximation of tDS, with slew rates

falling in that range, we choose the worst-case ∆tDS as the

correction term, that is 188ps. Hence, the approximated falling

setup time tDSTL for all DQ and DQS with falling slew

rates between 1 and 2V/ns would be equal to tDSTL =
150 + 188 = 338ps.

In order to determine the falling slew rates of DQ and

DQS, we need to detect how much time these signals re-

main in their falling slew region (between VREF (DC) and

VIL(AC)max crossing VREF (DC) from above). This can be

done with the following formula:

define b:dq in fsr :=

((a:DQ <= 0.9) and (a:DQ >= 0.65))

since (a:DQ >= 0.9);
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DQS Single-Ended Slew Rate tDS

2V/ns 1.5V/ns 1V/ns 0.9V/ns

DQ

Single-Ended

Slew Rate

tDS

2V/ns 188 167 125

1.5V/ns 146 125 83 81

1V/ns 63 42 0 -2

0.9V/ns 31 -11 13

Table 5. Correction terms for setup time
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define b:dqs in fsr :=

((a:DQS <= 0.9) and (a:DQS >= 0.65))

since (a:DQS >= 0.9)

which holds if the signal is in the falling slew region, as

shown in Figure 24.

Note that according to equation (2), DQ and DQS have

their slew rates in the range between 1 and 2V/ns if their

respective ∆TF is between 125 and 250ps. Moreover, the

value of tDS is determined at the crossing of VREF (DC) by

DQS from above (point ref in Figure 25) with respect to the

previous falling setup slew rate of DQ and the next falling

setup slew rate of DQS, as shown in Figure 25. Hence, the

falling slew rates of DQ and DQS are in the range between

1 and 2V/ns if the following formulas hold:

define b:dq slew rate in 1 2 :=

not b:dq in fsr since

(b:dq in fsr since[125:250)

(rise(b:dq in fsr)));

define b:dqs slew rate in 1 2 :=

not b:dqs in fsr until

(b:dqs in fsr until[125:250)

(fall(b:dqs in fsr)));

define b:top left region :=

b:dq slew rate in 1 2 and

b:dqs slew rate in 1 2;

Finally, the main property for the falling setup time, pro-

vided that DQ and DQS falling slew rates are in the range

between 1 and 2V/ns, is expressed as:

define b:dqs above vihdcmin :=

(a:DQS >= 1.025);

define b:dqs above vilacmax :=

(a:DQ >= 0.65);

always ((fall(b:dqs above vihdcmin)

and b:top left region)

-> historically[0:338] not

fall(b:dq above vilacmax));

with similar properties that have to be written for each range

of DQ and DQS slew rates.

6.2.2 Experimental Evaluation

Property-based monitoring of AMS behaviors is a novel ap-

proach and it is worth discussing some methodological as-

pects related to this case study. The process started by in-

vestigating the validation methods that are currently used by

analog designers and understanding what are the actual dif-

ficulties that they encounter in checking the correctness of

their designs. The next step required to identify the type of

application whose validation is not fully covered by existing

tools and that could benefit from assertion-based monitoring

techniques, which led us to consider the DDR2 memory in-

terface. With the help of analog designers we were able to

study in detail different properties that are defined in the of-

ficial DDR2 specification, and consequently understand how

to translate them into STLPSL assertions. This preparation

process of the case study is difficult to quantify, although it

clearly took orders of magnitude more time than the actual

writing and evaluation of the assertions that describe DDR2

properties. Despite the length of this pre-processing, it was a
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Fig. 26. Segment of DQ and DQS simulation traces

crucial step in understanding relevance, strengths and weak-

nesses of the property-based analog monitoring framework.

In this case study, we considered a single-ended DDR2-

1066 memory interface, which is not yet a JEDEC standard.

Hence the exact specification parameters could not be ob-

tained for that particular version of DDR2, and we used in-

stead the official specification parameters for the single-ended

DDR2-400 presented in Section 6.2.1, assuming that these

parameters would be conservative enough. The simulation

traces contained about 180,000 samples per signal. We used

the offline monitoring for this case study because the DDR2

simulation traces were already available.

The translation of the alignment property into a set of

STLPSL assertions started by splitting the main property into

four different ranges, taking an over-approximated tDS value

for each slew rate range. The evaluation of each property took

about 7 seconds. Since some of the over-approximating prop-

erties were shown to be false, we decomposed them further

in three iterations into a total of seven properties before being

able to show that the simulation traces satisfy the specifica-

tion. The properties were refined manually and this proved to

be a tedious task.

7 Framework Extensions

In this section, we give a brief overview of several recent ex-

tensions of the framework presented in this paper. that were

recently added to our framework . These extensions, all cen-

tered around the STL specification language, are partly mo-

tivated by practical needs that were identified, together with

engineers and designers, while evaluating our property-based

monitoring approach.

7.1 Quantitative Semantics for STL

The evaluation of a signal against an STL property results

in a Boolean yes/no answer, and this contrasts with quanti-

tative nature of real-valued variables in continuous systems.

AMS designs are subject to noise and numerical errors, which

makes the STL monitoring procedure potentially sensitive to

small variations in input signals, as discussed in Section 4.

In [10], partly inspired by [13], an alternative quantitative

semantics for STL has been proposed which returns a pos-

itive or negative real number whose sign indicates satisfac-

tion/violation and its magnitude stands for the robustness of

satisfaction: how far a satisfying signal is, in time and space,

from violating the property. The quantitative semantics for

STL allows for example to capture the variance in time of

the expected occurence of an event, where a simple yes or

no answer does not give enough information. It turns out that

these quantitative measures propagate from sub-formulae to

formulae in a similar manner as satisfaction with min and

max replacing disjunction and conjunction, respectively. An

efficient monitoring procedure which extends Algorithm 1 to

the quantitative semantics has been implemented in the tool

Breach [7] and has been applied to a biological model [9].

7.2 Parameter Identification for STL

In digital systems engineering, the role of specification is

quite clear: they express what sequences of input and out-

put events are allowed in the interaction of numerous well-

defined discrete elements. In the analog setting (and in fact

in any engineering disciplines whose components are not ab-

stracted into logical functions) the behaviors of the compo-

nents themselves is not precisely known as they depend on

technology and process variations, are sensitive to particu-

lar sizing of transistors and interconnections between ele-

ments used within the component. In such a context, a tem-

poral formula can serve as a high-level abstract (and non-

deterministic) description of the component, which can be

sufficient for proving the correct interaction of the component

with the rest of the system. The inverse problem of inferring

a formula compatible with a set of simulation traces is re-

ferred to as identification or learning. To support this process

we defined in [3], a parametric variant of STL, where both

amplitude (voltage, current) thresholds and time bounds can

remain unspecified. We developed techniques for automatic

extraction of tightest parameter values for which a paramet-

ric STL specification is satisfied by a set of simulation traces.

7.3 Time-Frequency Logic

The main motivation for STL is the transfer of semi-formal

validation techniques from digital to AMS domain, aiming

to formalize, improve and automate current validation prac-

tices for AMS designs. Like any other temporal logic, STL

is tied to time-domain properties of continuous signals and

is mainly adapted to express complex temporal patterns be-

tween “events” that happen in signals. In the world of signal

processing (and the AMS circuits that realize them) many in-

teresting properties are expressed much more naturally in the

language of the frequency-domain. For example, the filtering

of noise from a signal is done by applying the Fourier trans-

form to the signal, removing high-frequency elements from

the spectrum and translating back to the time-domain. More-

over, in many applications one needs to combine time and

frequency, for example to characterize musical melodies and

this can be facilitated by bounded-window transforms such as

the Short-Time Fourier Transform or Wavelets. A first step to-

ward this fusion of time- and frequency-domain analysis has
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been recently made in [8] by defining Time Frequency Logic

(TFL) and implementing its monitoring procedure.

8 Conclusion

In this paper, we overviewed of the property-based monitor-

ing framework for AMS systems centered around the STL

specification language. Apart from theoretical foundations for

formal specifications of analog and mixed signal behaviors,

we presented the AMT tool which implements the monitoring

algorithms and two industrial case studies that show the bene-

fits and pitfalls of our approach. This framework has been de-

veloped over years and benefitted from interactions with ana-

log designers that helped us understand the real needs in the

domain of AMS validation. Many of the our designs choices,

as well as the extensions of the framework presented in this

paper, result from such interactions.

Although our framework has reached a certain level of

maturity, there are many research directions to explore:

– Tighter integration of the monitoring procedure with AMS

simulators, by making the simulators aware of the tempo-

ral properties and thus steering their simulation steps in

order to find counter-examples more efficiently;

– Better explanation of specification violations by causality

analysis of simulation traces;

– Further exploration of time-frequency analysis by consid-

ering multi-dimensional temporal (and spatial) logic for-

malisms.
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