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Abstract: Estuarine degradation is a major concern worldwide, and is rapidly increasing due to
anthropogenic pressures. The Mediterranean Guadiaro estuary, located in San Roque (Cadiz, Spain), is
an example of a highly modified estuary, showing severe negative effects of eutrophication episodes
and beach erosion. The migration of its river mouth sand spit causes the closure of the estuary,
resulting in serious water quality issues and flora and fauna mortality due to the lack of water
renewal. With the aim of studying the Guadiaro estuary throughout a 4-year period (2017–2020),
the Sentinel-2 A/B twin satellites of the Copernicus programme were used thanks to their 5-day
and 10 m temporal and spatial resolution, respectively. Sea–land mapping was performed using the
Normalized Difference Water Index (NDWI) in the Google Earth Engine (GEE) platform, selecting
cloud-free Sentinel-2 Level 2A images and computing statistics. Results show a closure trend of
the Guadiaro river mouth and no clear sand spit seasonal patterns. The study also reveals the
potential of both Sentinel-2 and GEE for estuarine monitoring by means of an optimized processing
workflow. This improvement will be useful for coastal management to ensure a continuous and
detailed monitoring in the area, contributing to the development of early-warning tools, which can
be helpful for supporting an ecosystem-based approach to coastal areas.

Keywords: sea–land mapping; cloud computing; remote sensing; coastal monitoring; Guadiaro river

1. Introduction

Estuarine eutrophication is one of the most common and harmful environmental
problems in coastal areas around the globe [1]. The world has lost 50% of its natural
wetlands since 1900, most of them located in highly anthropized areas of the temperate
zone in the northern hemisphere [2]. Anthropogenic pressure is the main vector for
estuarine ecosystem alteration, accelerating the deterioration of water quality in natural
coastal wetlands. Littoral population settlements have greatly increased in the last decades,
gathering more than 30% of the world population [3] and expanding faster than any other
region [4]. This ongoing trend of coastal migration extends especially to flat estuarine
lands, linked to urbanization processes and human activities [5]. Across the Western
Mediterranean, both climate change and anthropic activities have had impacts on water
quality across coastal areas. Some examples, commonly associated to river discharges, are
the Mar Menor cyclic environmental collapse [6] and the permanent eutrophication in the
Albufera of Valencia [7]. To mitigate anthropic impacts, adaptive policies are needed [8],
and consequently, monitoring is also required, this information being crucial for optimized
coastal wetland management.

Estuary systems evolve very rapidly with channel migrations, loss of sand and ero-
sion/accretion of adjacent beaches [9]. This study is focused on the Guadiaro estuary,
located in San Roque, Cádiz (Spain), which delta started to disappear during the 1970s,
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as seen in Figure 1, caused by multiple factors but massive extraction of sediments along
the basin was decisively, consequently reducing the sedimentary input in the Guadiaro
system [10]. As a complex enclave, the Guadiaro estuary has been widely studied by
engineers and scientists in the last 20 years in order to characterize and effectively manage
the area [9–12], albeit without using a continuous monitoring technique.

Figure 1. Satellite and aerial images from 1946 to 2019 showing the evolution of the Guadiaro estuary
(source: PNOA).

In order to manage this ecosystem, it is important to understand and evaluate the
sand spit patterns, where information and knowledge are essential. Therefore, improved
monitoring to evaluate the different scenarios is required [13], in particular, to determine
spatio-temporal variability of the sand spit closing. The context affecting the Guadiaro
estuary and its surrounding requires an efficient and real-time method of monitoring
the state of the sand spit. Traditional monitoring approaches are labor intensive and
time consuming when long-term monitoring and management are required, and new
technologies can play a powerful part. Furthermore, integrated coastal management
requires information during the entire management cycle [14–17]. In practice, a monitoring
tool developed with the proper technology should be able to provide long-term sustained
information, required for an adaptive ecosystem-based management approach [18–20].
This means the monitoring tool can be used not only as an early-warning system, but also
to evaluate responses given by the administration correlated to changes of state [21].
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Earth Observation (EO) tools and remote-sensing techniques yield precise data thanks
to the wide range of sensors and their spatio-temporal resolution. Satellite imagery is espe-
cially useful for shoreline and coastal monitoring [22–25], with increased public availability
through open access programs. The European Copernicus programme is the EO program
of the European Commission and the European Space Agency (ESA). It is composed of a set
of dedicated satellites called “Sentinel” under an open and free policy. Sentinel-2A/B (S2)
satellites are part of this Sentinel family, with images of 10–20–60 m and 5-day spatial and
temporal resolutions, respectively, are very useful for studying coastal processes [26–29].
These satellites carry the MultiSpectral Instrument (MSI) sensor whose bands are useful for
sea–land mapping. To process this huge amount of data, costly high-computational capac-
ity and long-processing times are required [30]. Nevertheless, imagery data production has
been improved in parallel to software development, which enables powerful geoprocesses
resulting in more accessible and faster analysis.

The use of satellite imagery also has of the advantage of using available open-source
tools for image processing, such as Google Earth Engine (GEE). GEE is a free cloud-based
platform for planetary-scale geospatial analysis [31] which has a massive catalogue of
satellite imagery and geospatial datasets available. This platform allows this information to
be processed in the cloud in order to detect changes, map trends and quantify differences
on the Earth’s surface, and can develop applications for final users [32]. Some studies have
been carried out using S2 and GEE platform in marine and coastal areas, including water
quality studies [33,34], coastline evolution [35,36], coastal management [37], and wetland
mapping [38], showing the potential of the Copernicus open data and the GEE open-source
platform for coastal monitoring.

An integrated sea–land approach is needed to quantify coastal changes [39]. Some
studies carried out this approach manually [40], which is more precise but time consuming
and non-viable for monitoring tools, which need more automatic workflows [22]. Sea–land
mapping is mostly used for coastline evolution studies, including erosion and accretion
trends or sea-level rise [23,41,42], using image classification, image segmentation, and
several indices. However, the use of indices based on optical properties has proven
its optimized performance against image classification and segmentation methods in
order to detect water and non-water pixels [43,44]. Among the different indices, the
Normalized Difference Water Index (NDWI), defined by McFeeters, is widely accepted for
this purpose [45], as well as the Modified NDWI (MNDWI) [45–48], although other indices
have been developed, such as the AWEI index [49] or the MuWi index [50]. According to
Rokni et al., the MNDWI index has been generally developed for application in urbanized
areas [51], whereas the NDWI is better used in natural coasts [44].

This study evaluates the use of S2-A/B satellites for sea–land mapping in the Guadi-
aro estuary using the NDWI and GEE between 2017 and 2020. Using the innovative GEE
platform, we explore the suitability of the S2 Level-2 A (L2A) dataset for multi-temporal
studies and developed a JavaScript algorithm generating an operational monitoring tool.
S2 images can serve as an input for continuous and low-cost monitoring information with
GEE, which can be complemented with in situ sampling. This information would be useful
for stakeholders and coastal managers in order to address the persistent problems in the
Guadiaro river. The monitoring tool would help as an evaluation method for adapting
management actions throughout the cycle, as an early-warning system for eutrophication
episodes and as a pilot to be used in other estuaries. Therefore, this tool can be imple-
mented not only operationally, but also as a valuable information system for strategic
and adaptive coastal management. The aim is to contribute to coastal management by
means of developing and evaluating a methodology in GEE for monitoring the sand spit
spatio-temporal patterns as a pilot project.
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2. Materials and Methods
2.1. Study Area

The Guadiaro estuary is a semi-closed Mediterranean coastal lagoon located in the
Strait of Gibraltar, San Roque (Cadiz, southern Spain) (Figure 2), the only coastal wetland
along 115 km of coastline [10]. This estuary is a multi-use water resource system, including
fish nurseries, flood control and recreational and cultural services. Due to the micro-tidal
conditions of about 40 cm, shallow bathymetry, severe wave refraction [9], and sediment
transportation following the main longitudinal current right to the Strait of Gibraltar with a
SW component [52]. Regarding the meteorology, the Guadiaro river is characterized by its
irregular and strong dependence on rainfall regime and torrential character [11,53,54], the
sand spit behavior being strongly dependent on the river, and by the sea being dependent on
E winds and consequent wave behavior [11]. On the other hand, Sotogrande beach suffers
from chronical erosion trends, having a regression by more than 160 m which was evident
between 1960 and 2000, and is still going (−3.1 m/year) [55]. This implies an increase in
vulnerability to climate change due to forecasts of increased wave energy [9–11,56].

Figure 2. Study area: Guadiaro river mouth (San Roque, Cadiz), Spain.

Throughout recent decades, the Guadiaro estuary has experienced several problems,
suffering from eutrophication episodes with harmful consequences for the biota and direct
impacts on tourism. Its major concern is that the Guadiaro river mouth is frequently
partially or totally closed by its sand spit formation. This occurs partly due to the presence
of a local coastal drift current inverse to the predominant one [10,53], which transports
sediment northwards and blocks water renewal in the estuary. Furthermore, during the
summer, waves tend to close the Guadiaro river mouth as a result of the weak current,
reducing the water renewal rate with the consequent reduction in oxygen levels and
increased eutrophication [57]. Anthropogenic discharges as well as uncontrolled tourism
further aggravate the problem [9]. In only 3 years (2016–2018) the Spanish Government
invested more than EUR 0.5 M on dredging the Guadiaro river mouth, retrieving almost
85,000 m3 of sand used mainly to support the Sotogrande beach, which suffers from a
severe erosive trend. In extreme eutrophication episodes, the Guadiaro estuary urges from
artificial sand spit openings, which are very expensive, as can be seen in Figure 3. This
fact reflects the need to develop a more complete coastal management strategy for its
optimization, including monitoring tools, operational early-warning systems, as well as
the improvement of coordination and cooperation processes.
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Figure 3. Guadiaro river mouth artificial openings from 2016 to 2018. Sand extraction volume (m3)
and budget involved from the Spanish Government. There was no intervention during 2019 and 2020.

Considering the different activities developed in the Guadiaro river and the littoral
zone, both river and coastal processes have been highly modified since the 1970s. The
Port of Sotogrande was built in 1987 to the north of to the river mouth. Two groins
were built in 1973 (one removed 2 years later) and the port breakwater was constructed
in 1986 and extended by 1994 [12]. Due to sand extraction activities, with 8 mining
concessions by 2009, the river sediment input decreased from 100,000 m3/year in the
1960s to 50,000 m3/year in 2009 [14]. Furthermore, an inter-basin upstream transfer was
carried out in the upper course of the Guadiaro river to the Majaceite River in 1999, with
a maximum transfer capacity of 30,000 m3/year [58], altering the sedimentary balance,
decreasing river flow strength, and reducing mouth flow peaks and, consequently, favoring
river mouth closure [12]. Moreover, considering other factors, such us agricultural and
urban waste, extraction of water for agricultural use and the Sotogrande urbanization, the
Guadiaro estuary experiences periodic biota mortality episodes with massive fish kills
directly related with the sand spit closing and lack of oxygen availability [10].

2.2. Satellite Data

The Guadiaro estuary covers a local area with a high morpho-dynamic variability, re-
quiring high spatial resolution and short-term revisit time, for which S2-A/B satellites have
been used. S2 L2A refers to the level in which images are categorized in the MSI S2 database
on-board S2. In GEE, two levels are currently available: Level 1 (“COPERNICUS/S2”)
and Level 2A (“COPERNICUS/S2_SR”). Level 1-C (L1C) contains images radiometrically
and geometrically corrected at Top Of Atmosphere (TOA) reflectance, while L2A contains
orthorectified atmospherically corrected surface reflectance, being a Bottom Of Atmosphere
(BOA) product. Therefore, L2A datasets have been selected with the atmospheric correction
applied, which determines a faster geo-processing workflow and improved enforcement
of normalized indices. However, almost two years of data cannot be used for the study,
with L1C available from 23 June 2015 to present and S2 L2A images from 30 March 2017 to
present, which explains the lack of data in winter 2017 in the following results.

2.3. GEE & GIS

The GEE platform was used to process S2 images for its high computational and
on-the-cloud capacity, having a wide variety of datasets available without depending on
download. As atmospheric correction remains a challenge, we used atmospheric corrected
S2 L2A images (corresponding to “COPERNICUS/S2_SR” in GEE). Using these images,
we developed a workflow in JavaScript Code Editor interface in GEE in four main steps,
as shown in Figure 4. (1) cloud coverage image selection in the Area Of Interest (AOI);
(2) band computing according to NDWI index; (3) statistics calculation including climatol-
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ogy and Variation Rate (VR); (4) export results to Google Drive. As a final step, design was
developed using ArcGIS Pro.

Figure 4. Geoprocessing workflow in GEE with S2 L2A images. (a) low cloud cover probability image
selection workflow; (b) NDWI index application and statistical geoprocessing workflow (climatology
and VR).

2.3.1. Cloud Coverage

Clouds are one of the main challenges faced by optical sensors on-board satellites
in order to obtain useful data. The presence of clouds and cloud shadows in images
introduces noise to data, which may result in these data being masked out. Therefore,
pre-processing for cloud-free image selection has to be performed before processing any
algorithm in order to obtain reliable results. In this step, we implemented a workflow
developed in GEE through which cloud cover is calculated in the study area (AOI) and
images can be filtered in a maximum cloud cover custom percentage from the original
dataset (“COPERNICUS/S2_SR”).

The geoprocessing workflow, showed in Figure 4a and available in GEE (https:
//code.earthengine.google.com/6363973f5918f3eacd09d890a52f5827, accessed on 1 Febru-
ary 2021) involved clipping the AOI from the S2 L2A image collection and filtering it by
date from the first image available (30 March 2017) to December 2020. After this, cloud
mask property, a general variable pre-calculated for the whole tile, was used from the S2
L2A metadata to calculate the cloud coverage in the specific AOI. With these data, the
cloud cover percentage was obtained in the AOI for each image, representing valuable
information for a second filtering. Finally, with the S2 Cloud probability dataset (“COPER-
NICUS/S2_CLOUD_PROBABILITY”), images were filtered according to the max cloud
probability fixed at 15% and used in this study as a pre-processing result. However, in
order to test the workflow accuracy, images with low cloud cover were selected manually
from the EO Browser and compared with the automatic filtering in GEE, which is useful
for the implementation of a maximum cloud probability value in order to avoid manual
image selection.

https://code.earthengine.google.com/6363973f5918f3eacd09d890a52f5827
https://code.earthengine.google.com/6363973f5918f3eacd09d890a52f5827


Remote Sens. 2022, 14, 2345 7 of 19

2.3.2. Sea–Land Mapping

Once the images were pre-processed and stored in the new Image Collection, in order
to study the morpho-dynamical variability of the Guadiaro sand spit through sea–land
mapping, the NDWI was applied (Figure 4). The NDWI was proposed by McFeeters [45],
designed to maximize the reflectance of the water body in the green band (ρ3) (559 nm) and
minimize the reflectance of the water body in the near infrared (NIR) band (ρ8) (864 nm) (1),
with a range value from −1 and +1.

NDWI =
ρ3 − ρ8
ρ3 + ρ8

(1)

Two main analyses were performed using NDWI in order to characterize the sand
spit of the Guadiaro river and the adjacent beaches. Firstly, mean values were calculated
obtaining climatologies for the whole period (2017–2020) and for each year in the whole
AOI and, seasonality mean values for the sand spit zone to analyze seasonal trends (code
available in GEE: https://code.earthengine.google.com/7b779ffe4fd2526bfd7397c1a938
3206, accessed on 1 February 2021). The climatology concept refers to the average for all
the raster, a geoprocessed S2 L2A image with applied NDWI index in our case, available
from spring 2017 to autumn 2020. Secondly, in order to identify hotspot for accretion and
erosion trends, Variation Rates (VR) between sea and land pixels were performed for the
AOI (code available in GEE: https://code.earthengine.google.com/414fc98a57150171490c6
f1fb909ca16, accessed on 1 February 2021). In this last case, NDWI threshold was used to
discretize pixels into Boolean data (0: land; 1: ocean), for which thresholds between 0.05
to 0.15 were tested, revealing the 0.1 threshold value as an optimized coastline lineation
for single images. However, when computing several images, 0.1 threshold included too
much data noise in the ocean and river area, not properly distinguishing the coastline, and
needing to use a threshold with value 0 for multi-image mining. Hence, it is important
to highlight that, when working with a single image, threshold of 0.1 obtained the most
accurate segmentation of land–water.

During value mining, a NDWI value for each case was added as a new parameter
in the metadata Image Collection, with continuous values from −1 to 1 for climatologies
(−1: permanent land; 1: permanent water) and between 0 and 1 for VR (0: permanent
land; 1: permanent water). Finally, all the results were visualized in GEE and downloaded
to Google Drive as a GeoTIFF image, ready for custom visualizations to be produced in
ArcGIS Pro 2.5. The computational analysis was structured in three temporal scales for both
Climatologies and VR: (1) total period (2017–2020); annual results for each year (2017, 2018,
2019, 2020); and analysis for each season, each year (from spring 2017 to autumn 2020).

3. Results
3.1. Cloud-Free Image Selection and Thresholding

The chart (Figure 5) shows image selection from both qualitative (EO Browser) and
quantitative (GEE) methods, to validate GEE script accuracy, with a 15% maximum cloud
probability applied. The percentage shows the number of images selected from the original
GEE “COPERNICUS/S2_SR” dataset for each year, showing an optimal performance of the
method. From a total of 484 images in the original dataset, 244 images (50.4%) were selected
through the GEE algorithm and 264 images (54.5%) were selected using EO Browser, as a
qualitative selection. All images selected with the GEE script were also selected visually,
proving a 95% reliability and effectiveness with the GEE unsupervised image selection and,
therefore, validating the methodology. This selection is accurate and consistent due to the
fact that the cloud cover percentage is recalculated for all images in the AOI, not using the
pre-calculated cloud cover percentage of the entire tile for filtering. For more detail, cloud
cover validation percentages for each season can be seen in Table 1.

https://code.earthengine.google.com/7b779ffe4fd2526bfd7397c1a9383206
https://code.earthengine.google.com/7b779ffe4fd2526bfd7397c1a9383206
https://code.earthengine.google.com/414fc98a57150171490c6f1fb909ca16
https://code.earthengine.google.com/414fc98a57150171490c6f1fb909ca16
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Figure 5. Workflow validation for cloud cover images. Percentage (%) of images selected in both
methodologies to validate GEE script (n: number of images available in the image collection for each
year. A total of 484 images were available before cloud-cover image filtering).

Table 1. Seasonal number of images used for cloud-free image filtering validation. All images
available, visual selection, automatic selection in GEE and percentages.

Season Images Available Visual Selection Automatic
Filtering

% Images Selected
Visually *

% Images
Selected in GEE *

Spring 2017 15 8 7 53.3 46.7
Summer 2017 15 10 10 66.7 66.7
Autumn 2017 19 13 13 68.4 68.4

Winter 2018 34 13 13 38.2 38.2
Spring 2018 37 14 11 37.8 29.7

Summer 2018 35 25 21 71.4 60.0
Autumn 2018 36 17 17 47.2 47.2

Winter 2019 36 17 16 47.2 44.4
Spring 2019 36 25 19 69.4 52.8

Summer 2019 36 27 27 75.0 75.0
Autumn 2019 36 20 19 55.6 52.8

Winter 2020 37 14 9 37.8 24.3
Spring 2020 37 17 12 45.9 32.4

Summer 2020 37 29 28 78.4 75.7
Autumn 2020 32 15 15 46.9 46.9

* Percentage of selected images from available images in dataset (“COPERNICUS/S2_SR”). Image selection
(visual or automated)/available images for corresponding season.

Concerning the evaluation of the NDWI threshold, three different values in critical
cases were tested (0.05, 0.1 and 0.15) (Appendix A. Figure A1). The 0.1 value was used as
an optimal NDWI, allowing us to detect the sand spit in the closed river mouth, just before
closing, and the appearance of additional and smaller sand bars formed by local currents.

3.2. Climatology and Seasonality

The general climatology (2017–2020) in Figure 6 shows a mean sand spit position with
a mostly closed river mouth, variating in its upper third and demonstrating its tendency
to block water renewal in the estuary. Rigidity of both sides of the riverbed caused by
urbanization blocked natural evolution, behaving more like a lagoon than an estuary. The
NDWI index perfectly delimited the boundary between sand and water. River silting areas
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are observed along the riverbed extremely shallow depths during certain periods of the
year, slowing water flow and increasing the accumulation of sedimentation in the river
mouth.

Figure 6. Total climatology (2017–2020) using Sentinel-2 L2A images and NDWI index for the
Gua-diaro river mouth. Scale 1:15,000.

Figure 7 shows annual climatologies, where high sand spit variability is clearly ob-
served, proving how often the sand spit closes the river mouth during the year, especially
for 2017, where the system is frequently working as a lagoon, a behavior that is repeated in
2020. Diversity of sand bar morphologies indicates no clear patterns. However, in both 2018
and 2019 an additional small sand bar was generated towards the ocean along the coast.

Figure 7. Annual climatologies using Sentinel-2 L2A images and NDWI index for the Guadiaro river
mouth (single year means from 2017 to 2020). Scale 1:15,000.



Remote Sens. 2022, 14, 2345 10 of 19

When evaluating seasonal climatologies (Figure 8), a variety of sand spit morphologies
were observed. Similar to annual climatologies, seasonal means do not show patterns for
opened or closed river mouth scenarios linked to any time particular of year. During 2017,
the sand spit tended to be homogeneously closed. However, in 2018, a smaller secondary
sand bar was generated because of the eddy effect, both bars merging in winter 2019. From
spring 2019 until the end of the year the river mouth remained partially closed until it was
completely closed by summer 2019, remaining closed for the following 6 months. Finally,
after being opened by torrential rains, a new stable sand spit with U-shape morphology
appeared in 2020 almost completely closing the river mouth. These rapidly changing
dynamics reflect the complexity of the area and the importance of addressing estuarine
problems from a holistic perspective, including natural processes and human activities
from the river basin, the coastal zone and the ocean, as explained later in the Discussion
Section 4.2.

Figure 8. Seasonal climatologies using Sentinel-2 L2A images and NDWI index for the Guadiaro
river mouth and its dynamic sand bar between spring 2017 and autumn 2020. Scale 1:3500.

3.3. Variation Rate

Once the spatio-temporal patterns were characterized, ranging from the riverbed to
beaches and finally to the dynamic sand spit in the river mouth, in order to quantify this
coastline variability, another study was carried out to evaluate its temporal and spatial
variation. The VR identifies the most variable coastal areas in terms of land/water mapping
pixels. This estimation has values from 0 (referred to pixels that are always land) to 1
(referred to pixels that are always water), the middle value (0.5) being areas of maximum
variation. Light blue values show pixel covered by water for a longer time, while light
brown values show the opposite trend. To evaluate the same temporal scales, this section
follows the same structure as Section 3.2.
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Variation Rate for the study period (2017–2020) (Figure 9) identifies two main hotspot
areas of high variability. Firstly, the sand spit boundaries between land and water, with a
water buffer in the upper third of its a pointed morphology; and secondly, Torreguadiaro
beach, northwards of Sotogrande harbor. Torreguadiaro beach shows general instability
due to the presence of small temporal lagoons created by maritime storms and waves,
whose presence has been confirmed by RGB high-resolution images and in situ observa-
tions. Therefore, S2 images are detecting high soil moisture in the sandy areas and water
accumulation in the rocky areas of Torreguadiaro beach. However, no significant variations
are observed in Sotogrande beach and Guadiaro estuary between 2017 and 2020.

Figure 9. Variation rate of land/sea interface in the Guadiaro river mouth using Sentinel-2 L2A
images and NDWI index between 2017 and 2020. Scale 1:15,000.

The correlation into temporal patterns can be very useful for coastal managers when
designing adaptive policies against erosion and artificial river mouth openings. For this
reason, as done in the climatology section, in order to understand whether areas of high
variability followed any temporal pattern, annual and seasonal VR maps were generated
between 2017 and 2020.

Generally, annual VR for the land–sea interface also shows short-term sediment stabil-
ity for Sotogrande beach (Figure 10). Moreover, when looking at the adjacent beach south
of Sotogrande harbor, 2017 was also the only year presenting high sediment variability,
while Torreguadiaro beach showed a general instability trend for the 4 years of the study.

However, annual VR for Guadiaro coastal sand spit showed how a small secondary
sand bars existing in 2018 and 2019 were unstable and of short duration. Moreover, no
patterns of external or internal variability of the bar are observed, varying externally in
2019, internally in 2018 and 2020, and homogeneously in 2017.

Figure 11 shows how the sand spit varies between seasons. Summer showed a high
variability between years, most likely due to artificial openings in times of increased
touristic activity as an operational response to eutrophication episodes. Days with the
sand spit closed, resulting in poor renewed water together with high temperatures, are
associated with phytoplankton blooms, anoxia and high mortality of marine flora and
fauna [59]. The days with the river mouth closed in a drought period, the typical rainfall
hydrographic regime of the Mediterranean climate, the estuary works similar to a coastal
lagoon [14].
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Figure 10. Annual variation rate of land/sea interface in the Guadiaro river mouth using Sentinel-2
L2A images and NDWI index (single year VR from 2017 to 2020). Scale 1:15,000.

Figure 11. Seasonal variation rate of land/sea interface in the Guadiaro river mouth using Sentinel-2
L2A images and NDWI index from 2017 to 2020. Sand spit variability. Scale 1:3500.
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4. Discussion and Conclusions
4.1. High Frequency Remote Sensing Data: S2, GEE and NDWI

Coastal environments are constantly changing and their continuous monitoring is key
to proper evaluation and management. Estuaries and coastal lagoons are vulnerable envi-
ronments affected by atrophic impacts and climate change; therefore, monitoring efforts are
crucial for their conservation. By applying remote sensing techniques, consistent and robust
methodologies for sea–land mapping and coastline detection were recently obtained on a
global scale [22,25,29,48,60,61]. However, heterogeneity of sea–land mapping and coastline
delineation methods and the difficult access to these tools by coastal managers usually
restricts their use [24,35,36,40,62,63]. The potential of GEE has already been demonstrated
in previous studies [37,38,60,64,65], and we used S2 images within GEE in order to ensure
accuracy and robust performance, as well as a user-friendly and accessible tool for coastal
managers.

Research studies of spatio-temporal variability of sand spit formations and evolution
of nearby beaches are crucial for understanding the adaptation of estuarine systems under
multiple anthropogenic pressures. In the Guadiaro estuary, eutrophication events have
been connected to the lack of water renewal commonly promoted by sand spit closure
since 1970s, where earlier studies employed low-frequency data sampling [9–12]. Thanks
to the 10 m spatial resolution of S2, sea–land mapping has been successfully accomplished.
Moreover, recent studies of S2 pixel accuracy have demonstrated upscaling improvements
up to 2.5 m of spatial resolution [66], a substantial improvement paving the way for the
use of S2 in the future of coastal monitoring. The methodology used in this study can be
implemented for monitoring sand spit and beach variability for qualitative evaluation,
with images available since 30 March 2017 (since 2015 with L1C). This is the first study
in the Guadiaro estuary using S2-A/B imagery for coastal proposes as well as using the
GEE platform for analytics. Previous studies used aerial imagery to inspect the Guadiaro
river mouth modelling both northern and southern beaches [10,12,14], but not satellite
imagery. Video-imaging techniques provide high-frequency data, albeit with a limited
spatial coverage as fixed and site-specific ground-based technologies [67].

The method proposed in this study is completely automatic and cloud-based, avoiding
the need to download each satellite image as well as intermediate steps during geoprocess-
ing, in contrast to the CoastSat methodology [36]. Firstly, it has an automated workflow
for selecting S2 L2A satellite imagery with low custom cloud cover with 95% reliability.
This approach indicated consistency in performance for cloud-free image selection as a
result of the recalculation of image cloud cover after cropping the AOI. Contrary to those
commonly used in other studies [38], this approach does not take predefined cloud cover
values from GEE for the entire tile. Furthermore, automatic sea–land mapping has many
advantages over traditional methods. While manual shoreline delimitation is more accu-
rate, it is labor-intensive and time-consuming [40], and, therefore, not the optimal option
for high-frequency and long-term monitoring. However, as already demonstrated in pre-
vious studies, the use of indices for automatic sea–land mapping is biased towards false
classification pixels due to clouds and breaking waves [41]. For this reason, optimization of
image selection and cloud masking is key, and this study advances this field by achieved
accurate results, offering a ready to use method for coastal monitoring that also generates
useful information for the complete coastal management cycle on a global scale.

According to McAllister et al., the use of S2 for shoreline extraction through water and
non-water pixels between 2006 and 2021 revealed a better performance of water indices
and thresholding [68]. Among indices, NDWI and MNDWI are the most commonly used
due to their optimized performance [43,44,49,51,69], having been subjected to different
modifications [70], while thresholding is widely considered to be the simplest method of
image segmentation [68]. We used the first NDWI defined by McFeeters [45], as MNDWI
enhances the performance for coastal shadows (e.g., cliffs) and it can reveal more detail in
open water [68,70], our study being focused on flat beaches and sand spit morphologies
along the coast. Regarding NDWI threshold, this study revealed an optimized 0.1 value
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for single images, while the threshold value of 0 revealed less data noise for long temporal
statistics. According to Xu [70], “threshold values for MNDWI to achieve best water
extraction results are usually much less than those of NDWI, suggesting using zero as
a default threshold value can produce better water extraction accuracy for the MNDWI
than for the NDWI“. However, while we demonstrated 0.1 is suitable for single-image
processing, the application of a 0 threshold in NDWI for computing statistics among several
images revealed better water and non-water mapping; furthermore, other studies also refer
to 0 threshold as the best performance for large spatial extents [71].

4.2. Contributions to Coastal Management

Regarding the Guadiaro river mouth, this study is essential for understanding external
pressures and effects, as well as the natural dynamics of the sand spit, whose spatial
distribution is highly conditioned by the river and ocean systems [11]. Applying S2 L2A
satellite imagery we developed a monitoring tool that allows selection of the most optimal
technique available to manage and prevent the closure of the river mouth in early stages,
improving its temporal and economic efficiency, as well as to re-evaluate over time the
suitability of the management measures applied. Additionally, the effectiveness of artificial
openings in the short-term shown in Figure 3 could not be demonstrated, since images
immediately before and after the three artificial openings corresponding to 2017 and 2018
were covered by clouds, and by 2019 and 2020 dredging was not necessary, as reported
by the Spanish Government. However, further monitoring over time can reveal more
insights. Only relatively short-term data are available for this study (2017–2020), hindering
the overview of seasonal trends, with a large portion of estuaries depending mostly on
upstream anthropogenic impacts [72]. While Landsat mission imagery offers historical data,
its spatial resolution (30 m) is not suitable for small sand spits that require increased spatial
detail, compared to the 10 m spatial resolution provided by the S2-A/B twin satellites.
Moreover, the S2 5-day high-revisit frequency at the Equator (better at higher latitude)
allows more accurate detection of changes in the sand spit in the immediate term after a
rainfall event, compared with the 16-day revisit of Landsat-8. These characteristics position
S2-A/B satellites in the present and future for coastal monitoring.

For the Guadiaro river mouth, the sand spit, and the surrounding beaches, we achieved
the following results: (1) regarding the sand spit, especially in 2020 it remained closed
throughout the summer season, most likely associated with the COVID-19 pandemic,
during which many international tourists were not able to visit Sotogrande, reducing
anthropogenic pressure, including urban waste; (2) through climatologies we evaluate how
additional small sand bars could be caused by the northward longitudinal current blocked
after the construction of Sotogrande harbor; (3) [55] replenishing of beaches can also be
detected and monitored by means of S2 images, as demonstrated in the variability of the
beach to the south of the Port of Sotogrande in 2017; and (4) the land–sea interface of sandy
beaches is more easily identified in different studies throughout the globe compared to
rocky beaches or coastal cliffs [36,61,73,74], mostly due to image spatial resolution [75].
However, while S2 undoubtedly enhanced its spatial resolution up to 10 m and, conse-
quently, enhancing the rocky beach delineation, other effects, such as the presence of natural
areas of water accumulation on the rocky beach, can lead to misinterpretation, as happened
on the Torreguadiaro beach. In summary, the presented optimized monitoring tool can
not only be used as an early-warning system for preventing closure episodes, but also for
evaluating past measures and future management strategies.

Accordingly, integrated coastal management requires information throughout the en-
tire management cycle [14–17]. Our monitoring tool can provide the necessary information
for each management stage. At the beginning, information is required to make a diagnosis
of the problems and impacts to be faced by the planning initiative. This will allow the
formulation of suitable tools for coastal management. Information is also needed during
the implementation of the management program, so adjustments can be made in order to
improve its development. As an example, it is possible to assess if a coastal or watershed
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plan is given the desired results in the estuarine area in the short, medium or long term.
Finally, it is extremely important to have information from the monitoring of the complete
planning cycle during the evaluation phase. At this stage, the results are assessed and
some questions must be answered: Have we achieved the objectives? Are we in the desired
scenario? What are the main difficulties we have faced? What can be improved in the next
planning cycle?

Among the advantages of the monitoring tool for coastal management, the followings
can be highlighted: (a) A coastal management program is a result of a public policy. In this
sense, and according to Olsen [76], it is important to have well defined and unambiguous
goals, so progress towards to its achievement can be measured. The monitoring tool is
able to provide long-term sustained information helping to assess, adapt, evaluate and
improve such policy objectives; (b) an adaptive ecosystem-based management approach
requires sustained monitoring [18–20]. The presented monitoring tool can provide a
cost-effective early warning system each 5 days (without cloud coverage), facilitating
adaptive management in the area. In this sense, it is possible to correlate the changes of
state measured in the estuarine area with the responses given by the administration [21];
(c) the Guadiaro estuarine area shows the result of several sectoral policies: ports, watershed,
mining, tourism, agriculture, among others. Although the closure of the river mouth is part
of a natural process due to the effect of the maritime climate and the waves in the sand spit,
uncoordinated sectoral planning frequently results in a cumulative effect of closures and
severe eutrophication episodes. Information about sand spit trends can be related with the
effects of different policy cycles. This knowledge can be used to support the development
of a joint policy in the studied area.

In conclusion, the method proposed is simple and easily transferable to other envi-
ronments on a global scale, with the scripts being open access, online, and ready to use.
This tool provides continuous and long-term critical information and analysis through
sea–land mapping assessing coastal zone response, approaching this technology as an
accessible tool for coastal managers, and supporting daily operative and strategic man-
agement. This implementation ensures continuous and detailed monitoring in order to
support an ecosystem-based approach for estuarine areas, and provides an added value
that can encourage optimal decision making.
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Appendix A

Figure A1. NDWI thresholding test showing 0.1 value as optimal. Image from 23 August 2018 shows
the delineation of an additional sand bar; second image (11 October 2019) shows the detection of the
sand spit closing the river mouth; and last image (23 December 2019) shows how scenarios with high
turbidity do not interfere in water and non-water pixel classification.
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