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Abstract

The cumulative sum (CUSUM) procedure is a graphical method that has been used to monitor

surgical outcomes, that “signals” if sufficient evidence has accumulated that there has been a

change in the surgical failure rate. A limitation of the standard CUSUM procedure in this context is

that since it is simply based on the observed surgical outcomes, it may signal as a result of changes

in the referral pattern, such as an increased proportion of high risk patients, rather than due to a

change in the actual surgical performance. We describe a new CUSUM procedure that adjusts for

each patient’s pre-operative risk of surgical failure through the use of a likelihood based scoring

method. The procedure is therefore ideally suited for settings where there is a variable mix of

patients over time.
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Outcomes



2

1 . Introduction

The need to formally monitor surgical outcomes has been brought to the forefront in some

recent well publicized cases16,17 where undesirable high rates of surgical complications remained

undetected for an undue length of time. In such cases, the rapid detection of deterioration in

surgical performance is critical since it will result in prompt investigation of the cause and

procedural changes.

CUSUM chart methodology was initially developed by Page12 for industrial problems

where monitoring of the production process is of interest. In the industrial setting, CUSUM charts

have been shown to be ideally suited to detecting small persistent process changes9. In the medical

context, CUSUMs have been proposed to monitor procedures in clinical chemistry11 and to

monitor rare congenital malformations6. Application of the CUSUM to monitoring surgical

performance was first proposed by Williams et al.18 The first application of a CUSUM chart to

monitoring surgical performance is documented in De Leval et al.3 and Steiner et al.15 who

considered the problem of monitoring outcomes in pediatric cardiac surgery.  In this application

none of the possible covariate information collected, such as patient characteristics, procedural

characteristics, and surgical team fatigue, was found to have a significant effect on the failure rate.

In the absence of informative covariates all patients were assumed to have the same surgical risk,

and a standard CUSUM chart was applicable. However, in many medical contexts there is

considerable variation in the characteristics of the people under study (i.e. heterogeneity). Patients

with different clinical presentations and physiology have different prior risks. Thus, even for

surgeons (or surgical teams) with an acceptable complication rate, the probability of a successful

outcome may vary considerably across patients. In most medical applications this heterogeneity of

patients must be taken into account in any monitoring scheme. A number of methods for surgical

monitoring that take into account different levels of prior risk have recently been described.

Lovegrove et al.7,8 and Poloniecki et al.14 suggest simple monitoring schemes based on a plot of

the difference between the cumulative predicted and observed deaths. In both approaches the

predicted number of deaths is estimated using the Parsonnet score13 of each patient. The Parsonnet

scoring system is widely applied in cardiac surgery and can be used to adjust different case mixes
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for risk. These charts showing the difference between the cumulative predicted and observed

deaths provide valuable visual aids that show how the current surgical performance compares to

past performance. It is difficult, however to interpret the charts proposed by Lovegrove et al.7,8

since they do not specify how much variation in the plot is expected under good surgical

performance, and hence how large a deviation from the expected should be a cause for concern.

Poloniecki et al.14 suggest an intuitively sensible procedure for determining control limits.

Essentially the scheme involves, after each observation, testing of the hypothesis that the failure

rate in the last series of patients where we would expect 16 deaths is different than that in all the

previous operations in the series.  No formal adjustment for multiple testing is done although

testing at a significance level of 0.01 is suggested.  The authors acknowledge that this does “not

amount to a formal test of significance” and therefore consideration of, say, a false alarm rate does

not make sense. Since the scheme involves continually updating our estimate of the desirable

surgical performance using larger and larger series of historical data, the control limits effectively

change over time. Updating is an advantage if we start with a poor estimate of the current

performance, but also allows the possibility that small gradual changes in the performance will not

be detected. This updating makes it very difficult to determine the chart’s theoretical performance

with respect to the usual run length criteria. However, we may determine the performance of a

CUSUM based on intuitively appealing observed-expected statistic. In Section 4 we compare the

performance of a CUSUM with the observed-expected statistic and the CUSUM procedure

proposed in Section 2.2.

To alleviate the problem of interpretation we propose the use of a new risk adjusted

CUSUM chart to monitor surgical outcomes, where the CUSUM procedure is adapted to address

the level of pre-operative risk of each patient. The risk adjustment is made though a likelihood

score. The risk adjusted CUSUM procedure is illustrated with data from a UK centre for cardiac

surgery. The data set is based on 6994 operations, from a single surgical centre over the seven year

period, 1992-1998. The data consist of information on each patient including date, surgeon, type

of procedure, and the pre-operative variables which comprise the Parsonnet score. These include

age, gender, hypertension, diabetic status, renal function and left ventricular mass. To illustrate the
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methodology we focus on the 30 day post-operative mortality rate. In the data, 461 deaths occurred

within 30 days of surgery, giving an overall mortality rate of 6.6%.

This article is organized in the following manner. In Section 2, both the standard

(unadjusted) CUSUM and risk adjusted CUSUM are defined. To illustrate the advantage of using

a risk adjusted CUSUM we apply the risk adjusted CUSUM to the cardiac surgery example in

Section 3. In Section 4 we turn to a more detailed discussion of the properties of the new

procedure and design issues related to the risk adjusted CUSUM. We make concluding remarks in

Section 5.

2. Cumulative Sum (CUSUM) Procedure

2.1 Standard CUSUM

The CUSUM procedure is a well established sequential monitoring scheme designed to

detect changes in a process parameter of interest, denoted say θ . The original formulation of the

CUSUM is due to Page12. Two sided implementations suggested by Barnard2 involved the use of a

graphical device, called a V-mask, however, unfortunately the V-mask is awkward to use in

practice. An easier to use tabular form of the CUSUM can detect increases (or decreases) in the θ .

Using two tabular CUSUMs in conjunction accomplishes the goal of detecting any process

changes. A standard tabular CUSUM involves monitoring:

Xt  = max 0, Xt −1 + Wt( ) ,        t = 1, 2, 3,K, (2.1)

where X0  = 0, and Wt  is the sample weight or score assigned to the tth subgroup. Subgroups are a

collection of units taken from the production process at roughly the same time. Through a judicious

choice of Wt  the CUSUM can be designed to detect increases or decreases in θ . The CUSUM

given by (2.1) sequentially tests the hypothesis H0 : θ θ= 0 versus HA : θ θ= A . The value of θ0 is

typically determined by the current process performance, while θA  represents an alternate value of

interest, corresponding typically to inferior performance. The process is assumed to be in state H0

as long as Xt  < h, and is deemed to have shifted to state HA  if Xt   h at any time t. The constant h
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is called the control limit of the CUSUM. In quality control terminology, a CUSUM that exceeds

the control limit is said to have “signaled.” A signal means that the chart has accumulated enough

evidence to conclude that the process parameter has changed.

Notice that although individual scores ( Wt ) may be negative, the tabular CUSUM based on

Xt  is restricted to nonnegative values to make the CUSUM sensitive to runs of poor performance.

CUSUMs are designed to monitor the responses sequentially until sufficient evidence of process

deterioration is detected. Thus, theoretically the CUSUM will eventually signal although the signal

may be a false alarm. The run length of the CUSUM is defined as the time (or number of

observations) required before the CUSUM first exceeds the control limit (i.e. signals). Good

choices for the control limit h are based on the expected or average run length (ARL) of the

CUSUM under H0  and HA . Ideally, while the process is in state H0  the run length should be

long, since in this context signals represent false alarms. On the other hand, if the process has

shifted to θA , or any other process setting substantial different than θ0, we would like short run

lengths.

The ARL under H0  may be considered analogous to the type I error rate of a traditional

statistical test. However, there is no generally accepted level (like 5% tests) since what is

acceptable varies considerably from application to application. Similarly, the ARL of the CUSUM

when θ  has changed substantially is analogous to the power of a traditional statistical test.

Determining the average run length of a CUSUM is computationally intensive since it is based on

all possible outcomes for a long series of surgeries. The ARL however may be closely

approximated (see the Appendix).

The design of the CUSUM is given by the choice of sample weight Wt  and control limit h.

Moustakides10 showed that the optimal choice for the tabular CUSUM weights Wt  is based on the

log-likelihood ratio. For example, if we let y represent the current outcome (could be the average or

some other summary statistic of a subgroup of units collected around the same time) and denote the

probability distribution of the possible subgroup outcomes as f y ;θ( ), the log-likelihood ratio is
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given by ln ; ;f y f yAθ θ( ) ( )( )0 . This choice is optimal in the sense that, among all schemes with

the same ARL under H0  the log-likelihood ratio weights give the smallest ARL under HA . The

choice of control limits for CUSUM procedures have been discussed for normally distributed

outcomes19 and in the binomial data case5.

When applying the standard CUSUM methodology to monitoring surgical performance, as

in Steiner et al.15, we can be more specific regarding the definition of a subgroup and the form of

the scores Wt . First, due to the critical nature of surgery, we update the CUSUM after each patient

to be sure to detect changes as quickly as possible. Thus, the outcome y corresponds to one of two

possible outcomes (success or failure) for each patient, and the CUSUM is a sum of scores taken

over all patients operated on from the start of monitoring. Assuming yt  is the outcome for patient t,

and that, yt  = 1 if patient t dies and yt  = 0 otherwise, we have f yt θ( ) = p py y
t tθ θ( ) − ( )[ ] −
1

1
,

where p θ0( )  = c0 , the estimated current failure rate, and p Aθ( )  = cA , an important change in the

failure rate. Note that cA  may represent a deterioration or improvement in the surgical failure rate.

As a result, the CUSUM sequentially tests the hypothesis H0  p c= 0 versus HA  p cA=  and the

CUSUM scores are

Wt  = 
log

log

1 1 0

1

0

0

−[ ] −[ ]( ) =

( ) =







c c y

c c y

A t

A t

   if 

                  if 
. (2.2)

When designing the chart to detect increases in the surgical failure rate, the scores

associated with failures will be positive, while successes receive a negative score. In this way, the

weight for each patient is based on three factors: the current acceptable level of surgical

performance ( c0 ), a chosen level of surgical failure rate reflecting a change in performance deemed

interesting ( cA ), and the actual surgical outcome for the patient ( yt ).

2.2 Risk Adjusted CUSUM

In most surgical contexts the risk of mortality estimated pre-operatively will vary

considerably from patient to patient. An adjustment for prior risk is therefore appropriate to ensure
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that mortality rates that appear unusual and arise from differences in patient mix are not incorrectly

attributed to the surgeon. We can adjust the CUSUM based on prior risk by adapting the

magnitude of the scores using the patient’s surgical risk estimated pre-operatively. The surgical

risk varies for each patient depending on risk factors present. We define pt θ( ) = g tθ,x( ), where

xt  = 
  

x x xt t tp

T

1 2, , ,K( )  is a px1 vector reflecting the risk factors for patient t. The function g may be

determined pre-operatively using a rating method such as Parsonnet risk factors13, or may be based

on a logistic regression model fit to sample data. Since each patient has a different baseline risk

level we define the hypotheses H0  and HA  based on an odds ratio. Let OR0  and ORA  represent the

odds ratios under null and alternate hypotheses respectively. To detect increases we set ORA  >

OR0 . The choice of ORA  is similar to defining the minimal clinically important effect in a clinical

trial. If the estimated risk pt  is based on the current conditions we may set OR0 = 1. Given an

estimated risk of failure equal to pt , the odds of failure equals p pt t1 −( ) . Thus, for patient t

under H0  the odds of failure equals OR p pt t0 1 −( ) , whereas under HA  the odds of failure is

OR p pA t t1 −( )  which corresponds to a probability of failure equal to OR p p OR pA t t A t1 − +( )

under HA . In this way the CUSUM repeatedly tests

H0 : odds ratio = OR0   versus 

HA :odds ratio = ORA .

Then, the two possible log-likelihood ratio scores for patient t  are

Wt  = 

log

log

1

1
1

1
1

0

0

0

0

− +( )
− +( )









 =

− +
− +









 =













p OR p OR

p OR p OR
if y

p OR p

p OR p
if y

t t A

t A t
t

t t

t A t
t

(2.3)

Note that that other weights are possible.  For example, we may wish to create a CUSUM

using weights based on calculating observed deaths minus the expected deaths.  This scheme is

similar to that proposed by Lovegrove et al.7,8 and Poloniecki et al.14, and is equivalent to

monitoring cumulative patient weights, where each patient’s weight is 1 − pt  if the patient dies or
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− pt  if the patient survives. However, as we shall illustrate in Section 4, the weights given by (2.3)

are optimal10 to detect shifts in the odds ratio to ORA .  

The CUSUM signals whenever Xt  > h. There then arises the critical question of how to

respond when the chart signals.  First, we cannot assume that all possible risk adjusting factors

have been taken into account in the mathematical model.  The deaths that occurred prior to a

CUSUM signal and which are therefore responsible for the alarm must be scrutinized by a

clinically informed but independent assessor.  It may be that there were risk factors inherent in the

patient which were not detected in the risk prediction model.  For instance, the Parsonnet scoring

system omits factors such as the technical difficulty of the coronary arteries and the presence of

lung disease.  Both were omitted for good reason.  Both are amenable to subjective loading by the

surgeon who can thus unwittingly (or knowingly) load the prior risk to such an extent that he or

she always appears to perform better than predicted.  These and other factors might be recognized

by another surgeon.  Factors which are occasional, or dependent on judgement, may be better left

as that – a matter of judgement.  However, even if the surgeon’s performance is exonerated at

technical level, one may still ask if the clinical risk was fully appreciated.  Failure of good clinical

decision making is as great a problem as failure of technical expertise. If surgical performance

consistently appears to be different than predicted, but this difference can be explained by new risk

factors these factors should be incorporated into the model used to estimate prior risk.

Alternatively the assessor may find that the fault lies not with the surgeon but is attributable

to another member of the team.  There may have been incomplete preoperative or poor post-

operative care.  The CUSUM can only signal that there have been more deaths than were expected

but it cannot seek out the precise cause or its solution.  Once the cause has been established there

must begin a process to resolve the problem that may include retraining, mentoring, and further

monitoring.  These are outside the scope of this paper.
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3. Example

To illustrate the characteristics of the risk adjusted CUSUM we use the cardiac surgery

example described in the introduction. Since CUSUM procedures are designed to quickly detect

changes in the surgical performance we must first estimate the current level of performance. In the

cardiac surgery example, the data includes the patient characteristics and surgical outcomes for all

patients seen at a single surgical centre between 1992 and 1998. During that time no formal

monitoring was done. To illustrate the proposed monitoring procedure we suppose that monitoring

was begun in 1994, and use the first two years of data (corresponding to 1992 and 1993) to

identify the risk factors and estimate their effects through a logistic regression model. In the first

two years a total of 2218 surgeries were performed and we observed 143 deaths for a mortality rate

of 6.5%.

Using backward elimination we found the logistic model given by (2.4) with only

Parsonnet score as an explanatory variate was appropriate.

logit pt( ) = − +3 68 077. . Parsonnett (2.4)

Since the Parsonnet score itself is based on a combination of many other explanatory variates

thought to be important in cardiac surgery, this is not surprising. Based on this model, the lowest

risk patients in the group (Parsonnet score = 0) were estimated to have a risk of death of just 2.5%

following surgery, while the patients with the highest risk (Parsonnet score = 71) had an estimated

mortality rate of 86%. This suggests that adjustment for the patient mix is critical.

In this application we use two CUSUM procedures. The first is designed to detect a

doubling of the odds of death (i.e. we choose odds ratios OR0  = 1 and ORA  = 2), and the second

is designed to detect a halving of the odds of death (i.e. we choose odds ratios OR0  = 1 and ORA

= 0.5). In this way, we should be quickly aware of any substantial changes in the failure rate. One

could easily only monitor for increases in the failure rate if preferred. However, the CUSUM

designed to detect decreases in the surgical failure rate is useful because if we have either over

estimated the failure rate or the surgical performance has actually improved the CUSUM designed
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to detect increases will be less sensitive. If the CUSUM designed to detect improvements in

performance signals, we should re-estimate the failure rate to ensure protection for future changes

in the rate.

The CUSUM scores are calculated using (2.4) in combination with (2.3), where the

positive score is assigned in the case of a death, and the negative score is assigned in the case of

survival. For example, the CUSUM chart designed to detect an increase in the failure rate gives the

following possible patient scores: 0.67 and –0.024 for patients with a Parsonnet score of zero, and

0.26 and –0.43 for higher risk patients with a Parsonnet score of 50. Notice that the scores reflect

the surgical risk assessed pre-operatively, since the “penalty” for a death of a low risk patient is

more severe than for a death of a higher risk patient.

For ease of implementation and presentation, the CUSUM designed to detect decreases in

the surgical failure rate will accumulate negative values, i.e. the updating formula will be given by

(2.5) rather than that given by (2.1).

Zt  = min ,0 1Z Wt t− −( )  (2.5)

where Z0  = 0 and Wt  is still given by (2.3).

In addition, for the CUSUM designed to detect decreases in the surgical failure rate we set the

control limit to a negative value. In this way, the CUSUM to detect decreases can be plotted

underneath the CUSUM to detect increases. See Figure 1 for an example.

The choice of control limits for the CUSUM charts is discussed in more detail in the next

section. In the cardiac surgery example, setting the control limits for the two CUSUM charts given

by (2.1) and (2.5) at 4.5 and –4 respectively gives an average run length of around 9600 patients

for each chart when the surgical performance is acceptable. Given the frequency of surgery in this

example, this implies a signal from the monitoring procedure, on average once every nine years,

even if no true changes in the death rate have occurred. The control limits can be altered to achieve

other desired design objectives.

To illustrate the effectiveness and desirability of the risk adjustment we stratify the series

based on surgeon. In this example, patient mix refers to the distribution of Parsonnet scores
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assigned to the surgeon under consideration. The patient mix for each surgeon differed, with more

experienced surgeons typically receiving higher risk cases. Figure 1 shows the CUSUM where we

only include the patients operated on by trainee surgeons throughout the period. The trainees had a

mortality rate of just 2.5%, substantially lower than the overall rate, but they dealt with only the

relatively straightforward cases. Furthermore, if during an operation, serious difficulties arose then

a consultant (experienced) surgeon would take over and the case would then be attributed to the

consultant. As a result, one might expect fewer deaths in a case series attributed to the trainees than

expected based on a risk measure like the Parsonnet score. Similarly, higher than expected rates

might be expected for a consultant supervising trainee surgeons. Surgical training is discussed

further by Anderson et al.1 Using a standard (unadjusted) CUSUM procedure we obtain the pair of

CUSUMs given in the top plot of Figure 1. This plot suggests that the performance of trainee

surgeons appears to be substantially better than their peers, since the CUSUM that monitors for

improvement in performance signals around March of 1995. Due to the magnitude of the control

limit we are fairly sure that this signal has not occurred simply due to good luck. Observing such a

signal in the CUSUM, we would react by attempting to determine why trainee surgeons were

doing so well, in the hope that the success could be replicated by other surgeons. For example,

other surgeons may try to copy the surgical procedure of the “good” surgeons. Based on changes

in the surgical process we would reset the CUSUM values to zero for all surgeons to see if the

changes were effective.

When we look at the risk adjusted CUSUM series (bottom pair of CUSUMs in Figure 1)

we see that, in fact, based on the patient mix, the trainee surgeons are doing as well as expected,

but not better. The signal we observe in the standard CUSUM is due to the lower risk patient mix

given to the trainees. As a result, the conclusion from the unadjusted CUSUM was in error, and all

the time and effort devoted to searching for a cause of what appeared to be improved performance

would have been for nothing.
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Figure 1:  Trainee Surgeons CUSUM
unadjusted CUSUMs on top, risk adjusted CUSUMs on the bottom

We next examine the performance of an experienced surgeon. In Figure 2, the top pair of

CUSUMs result from using a standard CUSUM with unadjusted scores, while the bottom set of

CUSUMs come from using the risk adjusted weights. In this case, based on the unadjusted scores

the experienced surgeon appears to be doing substantially worse than his/her peers. The unadjusted

CUSUM signals an increase in the mortality rate just before the end of 1994. Observing such a

signal we look to establish the cause of the “problem.” However, when we adjust for the patient

mix encountered by the experienced surgeon the signal disappears (see bottom of Figure 2). Thus,

again the conclusion from the unadjusted CUSUM was a mistake and all the effort devoted to

finding a cause of the problem would have been wasted.
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Figure 2: Experienced Surgeon CUSUM
unadjusted CUSUMs on the top, risk adjusted CUSUMs on the bottom

4. Characteristics of the Risk Adjusted CUSUM Procedure

A key step in the design of the CUSUM procedure is setting the control limit. Using the

Markov chain procedure presented in the Appendix we can closely approximate the ARL of a chart

for any control limit, actual performance level, and patient mix. Using this approximation, we

choose the control limit so that the ARL, given the current (estimated) performance level and

patient mix, is relatively long. Control limits further from zero will lead to longer ARLs, and what

is considered long depends on the application. However, there is a tradeoff in the choice of the

control limit. A control limit further from zero will also result in a longer ARL when the surgical

performance has changed.  

To explore this we can quantify the ability of the CUSUM procedure to detect increases (or

decreases) in the odds of death. Figure 3 shows a plot of the average run length versus a measure

of surgical performance (given in terms of the odds ratio) for different patient mixes. The ARLs are

given for the CUSUM designed to detect increases in the failure rate. The acceptable level of

surgical performance is given by an odds ratio equal to unity, while increases in the odds ratio
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signifies a deterioration of performance. Note that the ARLs are given on a log scale. In Figure 3,

the solid lines gives the results for the current patient mix for all surgeons observed in the first two

years of data. For comparison, we also show the ARL curve that results when using weights

determined by cumulative predicted deaths minus the cumulative observed deaths as discussed at

the end of Section 2. As suggested by theoretical considerations, our proposed weighting scheme

based on log-likelihood ratios is superior, in that for substantial shifts in the odds ratio the ARL of

our CUSUM is much shorter. For example, although both weighting methods are designed to have

an in-control ARL of 9600, the CUSUM based on log-likelihood ratio weights has an ARL of 215

when the true odds ratio is 2 compared with an ARL of 642 for the predicted minus observed

weights.  To provide some sensitivity analysis for our proposed procedure, we also plot two

dotted lines in Figure 3 which give the results for the patient mix of the two surgeons in our

example with the most different patient mixes, based on the average Parsonnet scores, in the

sample data.

1 1.5 2 2.5 3 3.5 4
101

102

103

104

← proposed CUSUM

← CUSUM based on predicted-observed

Figure 3:  Average Run Length (on a log scale) for Different Actual Odds Ratios
Solid line shows performance with current patient mix

Dotted lines – surgeon with the lowest and highest risk patients

To quantify the sensitivity of the proposed procedure to the initial estimate of the patient mix and

regression parameters we use the bootstrap procedure4 as follows. We generate the bootstrap

samples of 2218 observations from the data given in the first two years of the sample data by
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sampling with replacement. Based on the bootstrap sample we estimate the parameters in the model

given by (2.4). This defines the likelihood scores given by (2.3). Figure 4 shows the 5th and 95th

percentiles for the generated CUSUM paths for the five years of data used to create Figures 1 and 2

based on 1000 such bootstrap samples.
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Figure 4: Plot of the 5th and 95th percentile of the CUSUM paths based on 1000 bootstrap samples
Trainee Surgeons on the top, Experienced Surgeon on the bottom

The results on Figure 4 suggest that our original conclusion that both surgeons are

performing as expected (once we adjust for patient mix) is relatively robust. In the case of the

trainee surgeons, even in the worst case the CUSUM path does not cross the control limits. For the

experienced surgeon there is more uncertainty. Although the 95th percentile of the CUSUM path

exceeds the upper control briefly near the middle of 1995 the CUSUM quickly declines again

suggesting an anomaly. Contrast this plot with the unadjusted CUSUM shown in Figure 2 where

the CUSUM path remained above the control limit for an extended period of time, and we would

have concluded that the experienced surgeon was performing more poorly than his/his peers. In the
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bottom CUSUMs in Figure 4 near the end of the series the extreme cases of the CUSUM path also

cross the lower control limit. Here the CUSUM remains below the control limit for more time

suggesting some evidence that the experienced surgeon may be actually doing better than expected.

We also generated the 5th and 95th percentile of the CUSUM paths based on bootstrap samples for

the unadjusted CUSUM. These results are not shown here since the conclusions from the plots are

unchanged.

5. Conclusions

We have proposed a new CUSUM chart to monitor surgical performance in which the

scores are adjusted to reflect the pre-operative estimate of the surgical risk of each patient. This

approach provides a logical way to accumulate evidence over many patients, while adjusting for a

changing mix of patient characteristics that significantly affect the risk. This is particularly

important when monitoring outcomes of surgery at referral centres where referral patterns may

change over time. Through use of the CUSUM procedure the sensitivity of the chart can be set so

that false alarms do not happen very frequently, but substantial changes in the failure rate are

quickly detected. This approach is appealing since the ability of the chart to detect specific changes

can be easily quantified.

Appendix

In this Appendix, Markov chain methodology is used to derive approximate run length

properties of a CUSUM chart as defined by (2.1). The approximation can, in theory, be made as

precise as desired through scaling. To use the Markov chain methodology, we discretize the state

space of all possible CUSUM values given by Xt  into g+1 states. The CUSUM is constrained to

lie between 0 and h. So that all values are integer we define the states as 0 to g, where state 0

corresponds to the starting state, and state g corresponds to the absorbing state where Xt  > h. This

can be accomplished by scaling and rounding off. Using this new definition of the possible states

of the CUSUM the transition probability matrix is given by
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where I is the g by g identity matrix, 1 is a g by 1 column vector of ones, and qij  equals the

transition probability from state i to state j. The qij ’s can be estimated using (2.2) and knowledge

of the distribution of pt  which is given by the patient mix. The last row and column of the matrix

Q corresponds to the absorbing state that represents an out-of-control signal. As such, the R matrix

equals the transition probability matrix with the row and column that correspond to the absorbing

(out-of-control) state removed. To get good approximations we use g approximately equal to 250.

For example, we can illustrate the calculation of the transition probabilities. Consider

patient’s whose Parsonnet score is zero. Using (2.4), such low risk patients are estimated to have a

2.5% chance of mortality. So from (2.3), and assuming OR0  = 1 and ORA  = 2, the possible

scores for such a patient are –.024 and .669. In the example, we choose the control limit of the

CUSUM, h, equal to 4.5. As an example of the discretization we multiple by 60 and round off to

the nearest integer. This results in a control limit of 270 (g = 271) and scores for the low risk

patient equal to either –1 if the patient survives, or 40 if the patient dies. To build the transition

probability matrix from such information we must also know the distribution of Parsonnet scores

for the patient mix. For example, 22% of the patients operated on by the trainee surgeons have a

Parsonnet score equal to zero. Thus, for the trainees, assuming the surgical process is in-control

and therefore that the actual risk of death for patient’s with Parsonnet score equal to zero is 2.5%,

we obtain the –1 score 21.45% (22*.975) of the time, and the score of 40 0.55% (22*.025) of the

time. Looking at all the possible types of patients in this way we can determine the distribution of

the discretized CUSUM scores, and thus determine the transition probabilities qij . Consider

transitions from state zero, assuming that only patients with Parsonnet equal to zero can yield a

score of 40 we set q0 40,  = .0055.

Letting γ  denote the run length of the CUSUM, and assuming the matrix R is constant,

we have
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Pr γ ≤ t( ) = I − Rt( ) 1, and thus

Pr γ = t( ) = Rt −1 − Rt( ) 1    for t ≥ 1.

Therefore, the expected, or average run length is

E γ( ) = t Pr γ = t( )
t =1

∞

∑ = Rt 1( )
t =1

∞

∑  = I − R( )−11 . (A1)

Higher moments of the run length can be found in a similar manner, but are not used here.

In general, solving (A1) is done without explicitly finding the inverse of I − R( ). A much

more efficient approach is to solve the system of linear equations implied by (A1) via LU

decomposition.
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