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Abstract 

This paper presents and explores the different Earth Observation approaches and their contribution to the achieve-
ment of United Nations Sustainable Development Goals. A review on the Sustainable Development concept and 
its goals is presented followed by Earth Observation approaches relevant to this field, giving special attention to 
the contribution of Machine Learning methods and algorithms as well as their potential and capabilities to support 
the achievement of Sustainable Development Goals. Overall, it is observed that Earth Observation plays a key role 
in monitoring the Sustainable Development Goals given its cost-effectiveness pertaining to data acquisition on all 
scales and information richness. Despite the success of Machine Learning upon Earth Observation data analysis, it is 
observed that performance is heavily dependent on the ability to extract and synthesise characteristics from data. 
Hence, a deeper and effective analysis of the available data is required to identify the strongest features and, hence, 
the key factors pertaining to Sustainable Development. Overall, this research provides a deeper understanding on 
the relation between Sustainable Development, Earth Observation and Machine Learning, and how these can sup-
port the Sustainable Development of countries and the means to find their correlations. In pursuing the Sustainable 
Development Goals, given the relevance and growing amount of data generated through Earth Observation, it is con-
cluded that there is an increased need for new methods and techniques strongly suggesting the use of new Machine 
Learning techniques. 
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Highlights

• Sustainable Goals and their universality can only be 

attained through readily available data from afford-

able sources such as satellite images and similar com-

monly available sources.

• Earth Observation is an innovative and accurate 

approach to address the indicators associated with 

the Sustainable Development Goals.

• �ere is an increased need for new methods and 

techniques to process an ever-growing amount of 

Earth Observation data.

• Machine Learning techniques are crucial in handling 

Earth Observation data given the enormous quantity 

of sources and formats.

Background

�e concept of Sustainable Development (SD) has been 

developed in 1960 when it became evident that environ-

mental problems can be caused by economic and indus-

trial development. In 1972, a first report was published 

and presented at UN concerning SD. �is report, named 

as the Meadows Report [1], was strongly criticised at that 
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time since it advocated non-growth to the developing 

countries [2]. Later in 1987, the Brundtland Report (BR) 

[3] defined the SD concept as development that meets 

the essential needs of the present without compromising 

the ability of future generations to meet their own essen-

tial needs. In 2000, the Millennium Development Goals 

(MDGs), established 8 objectives to tackle poverty and 

hunger, achieve gender equality and improve the health 

sector [4]. Until 2015 the MDGs [5] drove the progress 

of SD, including improvements in health and education 

services, reduced hunger and equity gaps, and higher lev-

els of coverage in interventions with major investments 

[6, 7]. However, it remained incomplete and in 2012, 

new objectives were established, designated as Sustain-

able Development Goals (SDGs) [5], defining 17 unique 

objectives, representing an urgent call to shift the world 

onto a more sustainable path [8, 9].

Earth Observation (EO) plays a major role in support-

ing progress towards many of the SDGs [10, 11]. Accord-

ing to the United Nations [12] it is advantageous using 

EO data such as the images from satellites to produce 

and support official statistics to complement traditional 

sources of socio-economic and environmental data. Sat-

ellite imagery may be perhaps the only cost-effective 

technology able to provide data at a global scale [13, 14]. 

Such globally available data are determinant to under-

stand the progress and contribution of underdeveloped 

countries concerning SD since they lack the resources to 

collect relevant information. �e considerable amount of 

data, provided by EO sources, need to be effectively ana-

lysed and processed with appropriate methods and tools 

to provide robust indicators concerning SD.

�e growth of Machine Learning (ML) field, which is 

constantly creating new opportunities for monitoring 

and evaluating humanitarian efforts, plays an essential 

part in the analysis of satellite images applied to SDGs. In 

fact, the majority of methods used for processing EO data 

are based on ML [11, 15] given in one hand their ability 

to process enormous amounts of data and also because 

they possess unique characteristics pertaining to classifi-

cation, modelling and forecasting.

�e main purpose of this article is to explore and com-

prehend the relation between SD, EO and ML, to under-

stand the relevance and role EO and ML play in attaining 

the SDGs. Figure  1 depicts the layout of this review as 

well as major aspects pertaining to the treatment of EO 

data related to the identification of SDGs.

�is review highlights major methodologies and ML 

methods that have been successfully applied to EO data 

in pursue of SD. �e structure of this paper is divided as 

follows: Sect. “Materials and methods“ describes how the 

research was conducted, Sect. “Overview on sustainable 

development“ presents the meaning of SD, its history, 

concepts and goals, followed by a brief explanation of 

the EO system and how it presently contributes to SDGs, 

in Sect.  “Overview on earth observation for sustainable 

goals development”. Afterwards, in Sect.  “Earth obser-

vation using machine learning techniques”, a review on 

the importance of ML for EO is presented and as well as 

their contribution for SDGs, highlighted by case studies 

of different ML categories applied to EO data. In addi-

tion, further considerations are addressed and discussed 

concerning SD, EO, ML, their relation and new paths and 

approaches to overcome limitations.

Materials and methods

A systematic search and analysis of published articles 

in peer-reviewed journals have been conducted using 

ScienceDirect and Google Scholar. �e search has been 

performed using the following search topics: sustain-

able development or sustainable goals, earth observation 

and machine learning. To ensure the identification of 

Fig. 1 Relation between SDG, EO and ML
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relevant case studies for each ML category of data and 

image analysis, words such as: classification techniques, 

clustering techniques, regression techniques, dimension 

reduction techniques, empirical and semi-empirical mod-

elling, supervised techniques, unsupervised techniques 

and object-based techniques in combination with earth 

observation data or sustainable development goals were 

used. �e search was refined to sustain relevance and 

state of the art results, considering the latest research and 

case studies, retaining historical reports and agreements.

Overview on sustainable development

�e environmental problems derived from the economic 

development became evident during the 1960s and a 

number of solutions were proposed [1, 3, 8]. �e Limits 

to Growth, also known as the Meadows Report [1], was 

published by the Club of Rome, in 1972. It presented a 

computer model developed by MIT called World3, which 

allowed Meadows et  al. [1] to explore the relationship 

between five subsystems of the world economy: popula-

tion, food and industrial production, pollution and con-

sumption of non-renewable natural resources [16]. �e 

key finding has been that unlimited growth in the econ-

omy and population would lead to a collapse of the global 

system by the mid to late twenty-first century [1, 17–19]. 

Moreover, the sooner the world starts striving to change 

the growth trends, the better the chance of achieving 

sustainable ecological and economic stability [1, 18, 19]. 

�us, the report advocated that the non-growth in devel-

oping countries is a response to environmental decline 

and the lack of its resources [1, 20].

�is premise became very popular among non-ortho-

dox economists since it was translated as an attack to 

the capitalist economic system. On the other hand, it 

has also been criticised by the economists who affirm 

that for capitalism, it is crucial a development with-

out boundaries. Due to that, in 1974, the Club of Rome 

issued another report in which it defended an organic 

growth (world division into different regions, each with 

a definite function within the world system) [2]. Since the 

publication of �e Limits to Growth [1], a considerable 

number of concepts have been introduced and developed 

integrating ecological and economics concerns, not being 

consensual, until the publication of Brundtland Report 

(BR) in 1987 (further detailed in Sect. “Brundtland report 

[3]”). Table 1 presents some of the most important mile-

stones of the path to SD until nowadays.

Brundtland report [3]

�e Brundtland Report’s (BR) concept of SD follows a 

generic definition of development that meets the essential 

needs of the present without compromising the ability of 

future generations to meet their own essential needs [3]; 

however, it included crucial features such as environmen-

tal preservation and meeting the basic human needs at a 

global scale. For those reasons, it was widely accepted as 

a reference for SD definition [20]. Even so, the ambigu-

ity in the BR’s concept of SD along with differing world-

views, ideologies, backgrounds, beliefs and interests has 

contributed to the proliferation of several explanatory 

definitions [23]. In an attempt to clarify and simplify 

the BR’s concept, it became important to describe and 

explain the following key concepts:

• Needs: necessary or basic needs (especially referring 

to developing countries’ needs);

• Technological Limitation: insufficient technological 

development;

• Social Organisation Problems: originate an unequal 

allocation of income.

Later, the BR also clarified the meaning of technologi-

cal growth, arguing that such progress cannot exceed the 

limited availability of resources [3, 20].

Millennium development goals (MDGs)

In 2000, the Millennium Development Goals (MDGs) 

have started a global effort to tackle the indignity of 

the poverty problem. �e MDGs [24] established eight 

objectives for: tackling poverty and hunger; primary edu-

cation for all children; achieve gender equality; improve 

maternal and child health; prevent and combat deadly 

diseases; ensure environmental sustainability; and, global 

development.

Until 2015, the MDGs allowed progress in several 

important areas, such as: reducing poverty and child 

mortality; providing access to water and sanitation; 

improving maternal health and combatting several dis-

eases such as HIV/AIDS, malaria and tuberculosis.

�e most notable accomplishments were: the reduc-

tion of child mortality and the number of children out of 

school by more than half; more than 1 billion people left 

extreme poverty; and, HIV/AIDS infections have been 

reduced by almost 40%. �e legacy and achievements of 

the MDGs provided valuable lessons and experience, and 

pave the way for new goals [8].

Sustainable development goals

�e Sustainable Development Goals (SDGs) have 

replaced the MDGs in 2012 during the UN Confer-

ence on SD held in Rio de Janeiro. As a result of climate 

changes and other serious environmental problems, there 

was a need to enhance the environmental performance 

[25]. Hence, the main objective was to create new goals 

that would address the urgent environmental, politi-

cal and economic challenges affecting the world [26]. 
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Representing an urgent appeal to change the world’s 

course into a more sustainable direction, the SDGs [27] 

represent a strong commitment to proceed the MDGs 

and tackle some of the world’s most significant challenges 

[28].

�e success of each of the 17 goals affects all other pos-

itively: No Poverty; Zero Hunger; Good Health and Well-

Being; Quality Education; Gender equality; Clean Water 

and Sanitation; Affordable and Clean Energy; Decent 

Work and Economic Growth; Industry, Innovation and 

Infrastructure; Reduced Inequalities; Sustainable Cit-

ies and Communities; Responsible Consumption and 

Production; Climate Action; Life Below Water; Life on 

Land; Peace, Justice and Strong Institutions; Partnerships 

for the Goals [8]. �e 2030 Agenda [5], which coincided 

with another historical agreement achieved at COP21 

Paris Climate Conference [29], sets specific objectives 

and attainable targets for the reduction of carbon emis-

sions, management of climate change and risks of natural 

disasters.

Overall, the SDGs are special because they address 

issues that affect the entire world and reaffirm the deter-

mination to eradicate poverty, improve the health sys-

tem and reduce inequalities. Better yet, they involve 

all nations in building a more sustainable, safer, more 

prosperous planet for humanity [8, 28]. To monitor and 

achieve the SDGs, EO became a vital part since it pro-

vides numerous benefits [10, 30, 31], namely: Data at 

Table 1 Important milestones on the path to SD adapted from: Klarin [21]

Year Activity Description

1969 UN published the report Man and His Environment or U Thant Report 
[22]

Activities focused on avoiding global environmental degradation. More 
than 2000 scientists were involved in the development of this report

1972 First UN and UNEP world Conference on the Human–Environment, 
Stockholm, Sweden

Under the slogan Only One Earth, a declaration and action plan for 
environmental conservation are presented

1975 UNESCO conference on education about the environment, Belgrade, 
Yugoslavia

Sets up a global environment educational framework, a statement 
known as the Belgrade Charter

1975 International Congress of the Human–Environment, Kyoto, Japan Emphasises the problems as in Stockholm in 1972

1979 The First World Climate Conference, Geneva, Switzerland Focused on the promotion of climate change research and monitoring

1981 The first UN Conference on Least Developed Countries, Paris, France A report with guidelines and strategies for helping the underdeveloped 
countries in pursue of SDG

1984 Establishment of UN World Commission on Environment and Devel-
opment (WCED)

Establishes the cooperation scenario between developed and develop-
ing countries and the adoption of global development plans on 
environmental conservation

1987 WCED report Our Common Future or BR A report with the foundations of SD’s concept

1987 Montreal Protocol Contains research results on adverse impacts on the ozone layer

1990 The Second World Climate Conference, Geneva, Switzerland Presents further developments on the climate change research and 
monitoring, including the creation of a global Climate Change Moni-
toring System

1992 United Nations Conference on Environment and Development (Earth 
Summit or Rio Conference), Rio de Janeiro, Brazil

The Rio Declaration and Agenda 21 Action Plan establishes SD princi-
ples and a framework for future tasks

1997 Kyoto Climate Change Conference, Kyoto, Japan The Kyoto Protocol agreement between countries to promote  CO2 
reduction and other greenhouse gas emissions, starting in 2005

2000 UN Millennium declaration Declaration containing 8 MDGs aimed to be accomplished by 2015

2002 The World Summit on SD, Johannesburg, South Africa Report with the results achieved since the Rio Conference, reaffirming 
previous obligations and setting the guidelines for future develop-
ments

2009 The Third World Climate Conference, Geneva, Switzerland Further development of the global Climate Change Monitoring System, 
including early detection of possible disasters.

2009 World Congress Summit G20, Pittsburgh, USA Agreement amongst G20 member states on a moderate and sustain-
able economy

2012 UN conference Rio +20, Rio de Janeiro, Brazil “The Future We Want” reinforced the commitment to the SDGs and 
encouraged the global green economy

2015 UN SD Summit 2015, New York, SAD Presents the UN 2030 Agenda for SD setting up 17 SDGs which should 
be achieved by 2030

2015 COP21 Paris Climate Change Conference, France Agreement on the reduction of greenhouse gases to mitigate and 
minimise global warming

2019 COP25 Madrid Climate Change Conference, Spain Agreement on the reduction of greenhouse gas emissions to zero by 
2050—The European Green New Deal
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different scales (local, regional, national or even global) 

and periods of time; Consistency; Wide variety of param-

eters; and, Cost-effective data acquisition.

Overview on earth observation for sustainable 

goals development

Earth Observation (EO) covers different approaches, 

including the use of drones, aircrafts and satellites. �e 

era of satellite based EO began in 1959 with the launch 

of Explorer 7, and remains until today [32]. In fact, there 

are more than 2000 active EO satellites operated by Space 

Agencies, governmental institutions and commercial 

operators [11, 33], resulting in an increased availability of 

information concerning the Earth condition and proprie-

ties [34].

EO data are an example of a big data source that can be 

acquired at low cost, over long periods of time and used 

to comprehend the entire Earth system while address-

ing scientific challenges [35] such as climate change and 

global warming [36], ecological change and reduction 

impacts of habitat and biodiversity deterioration [37] and 

used to produce statistics and indicators that enable the 

quantification of SD [11, 12]. �e United Nations report 

[12] has demonstrated the viability of using EO data to 

produce official statistics, including SDGs statistics such 

as agricultural [38], urban and land planning [39] or food 

security indicators [40].

EO satellite imagery can be classified into two groups, 

based on the sensor used to capture images: the pas-

sive sensors receive emitted or reflected radiation by the 

Earth’s surface, and the active sensors emit radiation and 

receive the echoes reflected or refracted by the Earth’s 

surface [11]. Overall, EO sensors provide data at four 

different resolutions: spectral, spatial, radiometric and 

temporal. �e spectral resolution is the ability to define/

distinguish wavelengths ranges of radiation; hence, dif-

ferent spectral bands provide a spectral signature for 

specific land cover types [11] such as soil [41], water [42] 

or buildings [43]. �e spatial resolution refers to the area 

that each pixel represents on the surface, the radiomet-

ric resolution indicates the degree of light intensities the 

sensor is able to distinguish [44] and the temporal resolu-

tion is related to the revisit time, namely the frequency 

with which sensors cross a specific area on Earth. Besides 

the differences related to the type of EO sensors, the data 

provided by satellites can also be distinguished by the dif-

ferent orbits. �e geostationary orbit means that satel-

lites track the same area and the Low Earth orbit means 

that satellites track the surface as they orbit [11].

EO images can be used to identify characteristics of 

interest based on how images are presented and their 

inherent properties, such as in agriculture [45], forests 

[46], water [47] and urban areas [48]. Identifying such 

characteristics has been often seen as a classification 

problem which requires techniques to classify or group 

pixels, according to their spectral characteristics, as 

belonging to a class [48]. �e study of Group on Earth 

Observations [10] has identified SDGs that are measura-

ble, at some level, using EO data. Figure 2 presents SDGs 

that can already be measured and analysed based on EO 

data as SDG 2—No hunger, SDG 6—Clean Water and 

Sanitation, SDG 13—Climate Action, and SDG 14—Life 

Below Water.

Taking advantage of emerging developments within 

EO domain represents an accurate and reliable way to 

address the SDG indicators and targets and thus bridge 

the gap between developed and developing countries 

discrepancy on the quantity and quality of data [20]. �e 

data from EO sources have been advocated by several 

international organisations and researchers, such as Hol-

loway et al. [38] and Murthy et al. [14], as a mean of mini-

mising costs compared to the conventional acquisition 

and monitoring of different environmental parameters 

over relevant scales, areas and time periods [11].

From Fig.  2, it can be depicted that EO can provide 

quite a large number of indicators for the SDG frame-

work such as data on the condition of the atmosphere 

[49], oceans [50], crops [51], forests [52], climate [53], 

natural disasters [54], natural resources [55], urbanisa-

tion [56], biodiversity [57] and human conditions [58]. 

�e two most important indicators are population distri-

bution (I-1), and cities/infrastructure mapping (I-2) since 

they contribute to all the SDGs. On the other hand, the 

SDGs which benefit from all the EO indicators are the 

zero hunger (SDG 2), clean water and sanitation (SDG 

6), climate action (SDG 13), life below water (SDG 14) 

and partnership for the goals (SDG 17). �is view is sup-

ported by the Global Working Group on Big Data [59] 

and United Nations [12] that states that satellite imagery 

has significant potential to provide more timely infor-

mation, minimising the number of surveys and offering 

more disaggregated data for informed decision mak-

ing. As a consequence of the quantity of data generated 

by EO sources, the necessity to find methods to process 

and analyse this amount of data arises. �e purpose is to 

transform the EO data into valuable information.

Earth observation using machine learning 

techniques

In the last decade, there have been some major contri-

butions to a wide range of Earth Science applications, 

from analysing gases, soil, vegetation, climate and, more 

recently, to ocean [60, 61]. Recent advances on Machine 

Learning (ML) field are creating unprecedent opportuni-

ties to evaluate and monitor policy decisions as well as 

humanitarian initiatives [62, 63]. Despite the advantages 
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of using ML techniques, it may require greater computa-

tional resources as well as an expert to interpret results. 

ML techniques can be classified into four groups: super-

vised, unsupervised, semi-supervised and reinforcement 

learning schemes. �e major difference between super-

vised and unsupervised lies in the fact that the first one 

requires output values (classification) in the training 

dataset [64] where problems can be either as classifica-

tion or regression techniques. In contrast, unsupervised 

learning techniques require only the input values in the 

training dataset since their purpose is to find hidden pat-

terns in data and can be handled by clustering or dimen-

sion reduction techniques [65]. Semi-supervised learning 

combines aspects of supervised and unsupervised learn-

ing and requires a combination of data with and without 

classification [66]. Reinforcement learning aims to build 

systems that can learn from the interaction with the envi-

ronment, using rewards and punishments rules [67, 68].

�e following sub-sections give an overview of the dif-

ferent techniques and methods pertaining to the use of 

ML in the scope of SD supported in EO data highlighting 

major findings and applications. �is summary outlines 

the boundaries of research concerning the application of 

ML algorithms as well as their importance, relevance and 

potential to support further research towards the devel-

opment of robust methodologies concerning universal 

applications. �is overview takes into consideration the 

most recent research results as well as their relevance.

SDGs tackled with machine learning

ML is a subdomain of Artificial Intelligence, which 

according to Samuel [69] aims to provide to machines 

the ability to learn from data without being explicitly 

programmed. �e study and development of algorithms 

plays a major role in ML, as it aims to build a model 

between inputs and outputs, based on the data and 

Fig. 2 SDGs measurable by EO data adapted from: Group on Earth Observations [10]
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algorithms provided, to learn how to make decisions 

upon unseen information [70, 71]. �e popularity of ML 

is vast and increasingly applied to different subdomains, 

including Statistical Learning methods, Data Mining, 

Image Recognition, Natural Language Processing and 

Deep Learning [72].

A substantial number of ML algorithms have been 

used and described in the literature, performing a wide 

range of tasks in a variety of domains like Agriculture 

[73], Renewable Energies [74], Disasters [54], Climate 

[75], Construction [76], Human Living Conditions [58] 

and Health System [77]. Figure 3 presents the most rel-

evant techniques applied to remote sensed data, grouped 

according to the four categories of supervised and unsu-

pervised methods: classification, clustering, regression 

and dimension reduction.

Classi�cation

A classification method belongs to supervised learning 

category, and it is applicable in cases where the overall 

aim is to accurately assign a datapoint to a class [78–80]. 

�ere is a broad range of classification methods as pre-

sented in Table 2, in the scope of SD, that clearly shows 

the impact and potential use of these techniques in con-

junction with EO data.

Clustering

�e clustering method belongs to unsupervised learn-

ing category, and it is appropriate when the purpose is to 

associate/divide datapoints into clusters [78, 89]. Table 3 

synthesises the findings within the scope of clustering 

methods used in combination with EO data to aid in the 

development of SDGs.

Regression

A regression method belongs to the same category as the 

classification method, supervised learning, and it is appli-

cable when the aim is to predict/estimate a continuous 

output variable of a given datapoint [78, 99]. �ere are 

several approaches, as presented in Table 4, in the scope 

of SD, that clearly show the impact and potential use of 

these techniques in conjunction with EO data.

Dimension reduction

Dimension reduction, similar to clustering method, 

belongs to the unsupervised learning category and typi-

cally follow two main approaches: Feature Selection (FS), 

applicable when there is the necessity to select fewer 

characteristics [111, 112]; and Feature Extraction, when 

the information needs to be synthesised through trans-

formation. �e aim is to create a small set of features 

covering much of the details in the initial dataset [79, 

113, 114]. �en, these features/characteristics can be fed 

into other algorithms or otherwise used as an end result 

[78]. Table 5 synthesises the finding within the scope of 

dimension reduction methods used in combination with 

EO data to aid in the development of SDGs.

Methodologies and techniques for EO imagery analysis

Pre-processing, post-processing and the seldom incorpo-

ration of qualitative information play a major role in the 

success of any data analysis approach and is found to vary 

significantly among researchers. As above mentioned, the 

Fig. 3 Categories of ML problems and examples of methods adapted from: Holloway and Mengersen [78]
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majority of methods for processing EO data are based 

on ML algorithms, whether they are supervised or unsu-

pervised [11]. However, besides the general problem 

category, the techniques can also be classified according 

to the approach used taking into consideration images 

analysis and their feature extraction: Sub-PB, PB, Super-

PB and OB [129, 130]. In Sub-PB, each pixel can have 

multiple classes [131, 132]; in PB, it is only possible to 

have one class per pixel [133, 134]; in Super-PB, the pix-

els are grouped based on homogeneity [135, 136]; while 

in OB, the aim is to delineate readily usable objects from 

imagery or partitioning an image into objects [137, 138]. 

Figure  4 illustrates the Sub-PB, PB, Super-PB and OB 

techniques.

In addition to those techniques, there are visual inter-

pretation techniques conducted through direct opera-

tor analysis of characteristics from raw satellite images. 

Such techniques are used to extract visual characteristics 

including colour, form, size, pattern, texture and shadow 

from images [11]. �e human abilities, however, should 

be explored/emulated to further enhance and automate 

ML algorithm-based image interpretation. Overall, sev-

eral approaches are being used by different researchers 

that combine ML algorithms and pre-processing of data 

giving rise to different methodologies.

Empirical and semi-empirical modelling

Empirical and Semi-Empirical models are created based 

on data acquired from observations or experiences, 

which means that there are none or few assumptions on 

data analysis. �ere are many examples of the application 

of empirical and semi-empirical modelling, such the ones 

in Table 6:

Supervised classi�cation techniques

�e Supervised Classification requires a set of classified 

samples (sub-pixels, pixels or super-pixels) to train the 

models to understand each class’ patterns. After train-

ing models should be able to categorise new samples or 

place those samples into classes [143]. Some applica-

tions of these approaches are presented on the following 

Table (7).

Unsupervised classi�cation techniques

Unsupervised Classification techniques do not require 

any training data or prior knowledge, and their main goal 

Table 2 Examples of application of classi�cation methods towards SDGs using EO data

SDGs Field Main �nding References

SDG 2 (Zero Hunger) Agriculture Multi-temporal crop classification reduces the unfavourable effects of 
using single-date acquisition

[81]

The proposed method performed similar to SVM and RF in the clas-
sification of crops with similar phenology

[57]

Developed an efficient framework for multi-temporal crops classifica-
tion

[82]

SDG 6 (Clean Water and Sanitation) Wetland The developed framework for coastal plain wetlands classification had 
high accuracy.

[83]

SDG 8 (Decent Work and Economic Growth) Slavery The approach was used to help to liberate slaves by mapping brick 
kilns.

[58]

SDG 11 (Sustainable Cities and Communi-
ties)

Land use The approach based on CNN achieved an accuracy of ≅ 98% for land 
use and land cover analysis

[84]

The proposed approach confirmed its suitability for urban planning 
because it had a superior performance compared to the global one

[56]

Living conditions Deep learning demonstrated a high potential to map areas of deprived 
living conditions

[85]

Land cover The multivariate time series algorithm showed high accuracy for rare 
land cover classes

[86]

SDG 13 (Climate Action) Climate The model based on decision trees, and used to classify local climate 
zones, achieved a good performance

[75]

SDG 14 (Life Below Water) Marine habitat SVM and K-NN classifiers achieved an accuracy higher than 90% on 
mapping coastal marine habitat

[50]

SDG 15 (Life on Land) Land cover The approach used allowed to differentiate the hyperspectral sub-
classes from the classes

[87]

Forest Sentinel-2 is considered a powerful source of data for forest monitoring 
and mapping

[52]

RF was the best method to predict and map the area and volume of 
eucalyptus

[88]
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is to group image pixels or sub-pixels into unlabelled 

classes [11]. Table 8 lists some recent examples regarding 

the application of unsupervised classification techniques.

Image segmentation object-based classi�cation

�e image segmentation OB classification is used to iden-

tify objects based on their proprieties or features. �ese 

techniques were developed to emulate the human visual 

interpretation. Some applications of OB techniques are 

presented in Table 9.

�e success cases presented in Tables 2, 3, 4, 5 and in 

Sect.  “Methodologies and techniques for EO imagery 

analysis”, demonstrate that the contribution of ML is cru-

cial towards the analysis of data provided by EO sources. 

�e synergy between EO and ML can be viewed as an 

important tool to support a wide variety of SDGs and 

fields at a global scale and enhance their level of imple-

mentation, effectiveness and efficiency. Some of the most 

common SDGs presented in this paper, which benefits 

from the synergy EO-ML are: SDG 11, 15 and 9; and the 

most common fields are Agriculture, Land Cover and 

Pollution.

Conclusions

Sustainability is an unavoidable aspect for the develop-

ment of societies and countries; it leads to the develop-

ment of SDGs and, hence, is crucial to the future of the 

planet. SDGs are unique as they cover issues that affect 

Table 3 Examples of application of clustering methods towards SDGs using EO data

SDGs Field Main �nding References

SDG 2 (Zero Hunger) Agriculture The proposed methodology based on K-Means and crop 
images, had a good performance estimating the rice yield

[51]

SDG 7 (Affordable and Clean Energy) Renewable energy sources The choice of the clustering technique plays a crucial func-
tion in the forecasting of the gross wind power output

[74]

SDG 9 (Industry, Innovation and Infrastructure) Mining The results showed that FCM was superior to K-Means and 
Self-Organising Map for mineral favourability mapping

[90]

SDG 11 (Sustainable Cities and Communities) Land change The proposed approach based on K-Means, demonstrated 
better detection accuracies and visual performance for 
land cover and land change detection, compared to 
several methods

[91]

Seismic The method analysed was reliable and effective in the 
identification of sequences of earthquakes

[92]

Construction The proposed method used to segment individual buildings 
had a good performance with datasets acquired from 
densely built-up areas

[76]

Land cover The proposed clustering method outperformed the original 
approach for remote sensing segmentation in land cover 
classificatio

[93]

SDG 13 (Climate Action) Wildfires The presented algorithm for global burned area mapping 
was capable to adapt to different ecosystems and spatial 
resolution data

[54]

Geomorphology The proposed DBSCAN methodology for geomorphological 
analysis allowed the detection of movements of a rock 
glacier

[94]

Climate The techniques used such as K-Means and DBSCAN demon-
strated their suitability for predicting climate types

[53]

SDG 14 (Life Below Water) Sandbars The proposed algorithm demonstrated a high potential to 
be used for the extraction of sandbars positions

[95]

SDG 15 (Life on Land) Soil degradation Assessment of spatial variability and mapping of soil proper-
ties provide an important link in identifying soil degrada-
tion spots

[96]

Agriculture Optimised kernel-based FCM gave more accurate agricul-
ture crop maps when compared with the classical FCM 
and K-Means

[97]

SDG 17 (Partnerships for the Goals) Sustainability level The results obtained using Hierarchical Cluster Analysis 
showed that Sweden has the highest level of sustain-
ability among the European countries; while, Greece, 
Bulgaria and Romania were the countries with the lowest 
performance

[98]
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all communities and reaffirm the international commit-

ment to eradicate poverty, hunger and inequalities to 

build a more sustainable, prosperous and safer planet for 

all humanity.

�is paper highlights the importance of monitoring 

the SD by means of EO and ML and enhances their fun-

damental role in pursuing those goals. Monitorisation 

aspects related to SD, such as poverty, nutrition, health 

conditions and inequalities have leveraged EO data col-

lection methods. EO is possibly the most cost-effective 

technology as it is able to provide data at a global level 

and therefore enabling a global perspective of the SDGs. 

EO data plays a critical role in promoting equity among 

developed and developing countries since it grants 

worldwide data access despite their development level. 

EO data analysis, which often involves identifying fea-

tures of interest within large amounts of information 

(Classification, Clustering, Regression or Dimension 

Reduction problems), gets even more powerful through 

the application of ML methods using different method-

ologies such as Empirical and Semi-Empirical modelling, 

Sub-PB, PB, Super-PB or even OB techniques.

�is extensive review looked at different ML catego-

ries to handle EO data to tackle different SDGs. It can 

be concluded that all ML categories can contribute to 

a wide variety of SDGs and fields—�e Classification 

category covers the SDGs 2, 6, 8, 11, 13, 14 and 15, 

and fields such as Agriculture, Land Use and Forests; 

the Clustering category covers the SDGs 2, 7, 9, 11, 13, 

14, 15 and 17, and fields such as Construction, Natural 

Table 4 Examples of application of regression methods towards SDGs using EO data

SDGs Field Main �nding References

SDG 2 (Zero Hunger) Agriculture Results increased the potential of using Sentinel-2 to obtain 
cotton Leaf Area Index and comparison of methods 
showed that the Gradient Boosting RT was the best

[100]

Estimate the crop yield, at a pixel level, using ML proved to 
be an accurate approach

[73]

The results obtained from the comparison of methods 
showed that Boosted RT was the best to predict maize 
yield

[101]

SDG 3 (Good Health and Well-Being) Spread of diseases By mapping the relationship between EO variables and vec-
tor population, the proposed RF Regression methodology 
was able to predict the temporal distribution of yellow 
fever mosquito populations

[102]

SDG 6 (Clean Water and Sanitation) Water quality Landsat 7 images are a solid option for assessing water qual-
ity characteristics

[55]

SDG 7 (Affordable and Clean Energy) Renewable energy sources During Spring and Autumn is harder to predict the hourly 
solar irradiation compared to Winter and Summer

[103]

SDG 9 (Industry, Innovation and Infrastructure) Pollution RT effectively estimates carbon dynamics and allowed the 
analysis of its impacts on meteorology and vegetation

[49]

The improved GPR had a high accuracy compared to the 
original GPR and other methods predicting the  CO2 emis-
sions

[104]

SDG 11 (Sustainable Cities and Communities) Land cover RF Regression was very accurate (96%) in delineating house-
attached, semi-public and public green spaces

[105]

SDG 13 (Climate Action) Drought The use of ML to acquire the Normalised Microwave Reflec-

tion Index is an effective way to monitor the variation of 
vegetation water content to predict droughts

[106]

SDG 14 (Life Below Water) Freshwater habitat Geographically Weighted Regression technique was accu-
rate in the estimation of stream bathymetry of water with 
a depth less than 1 m

[107]

SGD 15 (Life on Land) Terrestrial ecosystem The best performance, to obtain the latent heat evapora-
tion using a small dataset, was achieved by Kernel Ridge 
Regression, and using a large dataset, was achieved by 
Bagging RT

[108]

Grassland Vegetation indices acquired from Sentinel 2 have high 
potential concerning grasslands productivity, manage-
ment, monitoring and conservation

[109]

Landslide Catchment map units and model selection are crucial for 
the performance of landslide susceptibility maps

[110]
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Table 5 Examples of application of dimension reduction methods towards SDGs using EO data

SDGs Field Main �nding References

SGD 2 (Zero Hunger) Agriculture Partial Least Square Regression was applied with suc-
cess, as a FS method, on crop yield estimation

[115]

The FS results demonstrated that the proposed Maxi-
mum Separability and Minimum Dependency method 
was more accurate than filter methods

[116]

SGD 6 (Clean Water and Sanitation) Water resources The proposed approach proved to be effective and 
accurate to assess water resources at catchment scale

[117]

Water Sources Stepwise Discriminant Analysis and PCA improved the 
accuracy of water source recognition

[118]

SDG 7 (Affordable and Clean Energy) Electricity The proposed method improved the forecasting of 
electricity price and it was more accurate than the 
Independent Electricity System Operator prediction

[119]

SGD 9 (Industry, Innovation and Infrastructure) Structural Reliability The Bivariate Dimension Reduction Method proved to 
be effective for structural reliability analysis

[120]

SGD 11 (Sustainable Cities and Communities) Land Cover The results demonstrated that FS improves the classifi-
cation accuracy of land cover classification

[121]

The proposed method demonstrates better results 
compared to other methods for land cover classifica-
tion in almost all tests

[122]

Dimensionality Reduction was considered a key step in 
the land cover classification process

[123]

The experiments shown that the impervious surface 
extraction accuracy of Classification and Regression 
Tree was higher than Seperability and Thresholds 
algorithm

[124]

Land use FS with Classification Optimisation Score metric reduces 
the processing time and produces higher classifica-
tion accuracy for land use and land cover classification 
using VHR data

[125]

SDG 13 (Climate Action) Pollution The new Dimension Reduction method demonstrated 
to be a powerful approach to optimise the knowledge 
that emerges from atmospheric observations of  N2O

[126]

SGD 15 (Life on Land) Forest Proposed a FS SVM-Recursive Feature Elimination 
method to explore the relationship between the bio-
mass and parameters derived from Landsat-8 imagery. 
The results demonstrated that this method was able 
to accurately estimate the aboveground biomass.

[127]

Terrestrial ecosystem FS methods allow the extraction of valuable information 
to create accurate maps of areas infested by invasive 
plant species

[128]

Fig. 4 i) Sub-Pixel-Based; ii) Pixel-Based; iii) Super-Pixel-Based and iv) Object-Based Technique
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Table 6 Examples of application of empirical and semi-empirical models towards SDGs using EO data

SDGs Field Main �nding References

SDG 2 (Zero Hun-
ger)

Soil condition Proposed a Semi-Empirical model, which demonstrated its suitability, to reconstruct 
the signal from Signal-to-Noise Ratio data and simultaneous acquire information 
that is influenced by soil moisture

[139]

SDG 7 (Affordable 
and Clean Energy)

Renewable energy sources Developed a semi-empirical model to forecast the monthly average of solar radiation 
per hour. The results demonstrated that the estimated value was in agreement with 
the measurements

[140]

SDG 15 (Life on 
Land)

Forest Proposed the use of a Semi-Empirical model with images from RADARSAT-2 to acquire 
features from the surface of tropical forests. The framework achieved an accuracy 
of ≅ 83%

[141]

Invasive plants Compared supervised and unsupervised image classifiers for mapping a cactus plant, 
and the results showed that the supervised classifiers were more accurate than the 
unsupervised classifiers

[142]

Table 7 Examples of application of supervised classi�cation techniques towards SDGs using EO data

SDGs Field Main �nding References

SGD 11 (Sustainable 
Cities and Com-
munities)

Land use Tested Sub-PB and Super-PB methodologies to map green spaces. The results showed that Super-
PB approach was better for dense urban, sub-urban and rural subsets. However, for lower-resolu-
tion images, the Sub-PB approach performed better for dense urban and sub-urban subsets

[136]

Land change Developed two CNN approaches: Early Fusion and Siamese Network to detect changes in pairs of 
images. Overall, the results proved that Siamese Network approach was the most accurate

[144]

SGD 12 (Responsi-
ble Consumption 
and Production)

Consumption Proved that CNNs combined with high-resolution images represent a precise and cost-effective 
methodology to calculate consumption expenditure and wealth in developing countries

[145]

SDG 15 (Life on 
Land)

Land cover Analysed 15 years of research on supervised classification methods and found that SVM was the 
most accurate among NN, RF and Decision Tree

[146]

Table 8 Examples of application of unsupervised classi�cation techniques towards SDGs using EO data

SDGs Field Main �nding Reference

SGD 11 (Sustainable 
Cities and Com-
munities)

Land cover Used and compared three methods to classify ground vegetation covers using data acquired by 
IKONOS satellite. The comparison demonstrated that all methods are very accurate (more than 
90% of accuracy); however, the two-step method achieved the best results

[147]

Land change Proposed an unsupervised method with an OB approach to improve the detection of changes 
using high-resolution images. This methodology achieved better results in comparison to other 
methods

[148]

SGD 15 (Life on Land) Invasive plants Developed an unsupervised method to detect and map invasive plants using RFs, which proved 
to be a successful approach

[149]

Landslide Compared an unsupervised PB and OB approach for landslide detection using VHR images and 
concluded that OB performed better than PB

[150]

Table 9 Examples of application of image segmentation object-based classi�cation towards SDGs using EO data

SDGs Field Main �nding References

SGD 11 (Sustainable 
Cities and Com-
munities)

Land cover Compared four OB classifiers for the classification of a suburban area with data provided by Land-
sat-8 and proved that SVM had the best performance among all

[151]

Land use Proposed OB approach for urban land use classification using VHR images [152]

SGD 15 (Life on Land) Land cover Tested the performance of PB and OB classification with a hyperspectral dataset and found that OB 
was better than PB approach

[153]

Land use Compared an OB and PB approach using aero photogrammetric images and the results showed 
that OB classifier performed better compared to PB

[154]
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Disasters and Renewable Energy; the Regression cate-

gory covers the SDGs 2, 3, 6, 7, 9, 11, 13, 14 and 15, and 

the fields Water Quality, Pollution and Freshwater; and 

the Dimension Reduction category covers the SDGs 3, 

6, 7, 9, 11, 13 and 15, and the fields Land Cover, Elec-

tricity and Software.

�us, the overall findings confirm the significance of 

EO and ML in pursuing the goals of SD providing an 

overview of methods and techniques that sustain the 

achievement of SDGs. Lastly, the applicability and effi-

ciency of specific ML methods used to analyse EO data, 

such as Random Forest (RF), Support Vector Machine 

(SVM) and Neural Network (NN), should be further 

explored to sustain a more consensual and reliable 

development/improvement of tools to support SDGs.
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