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Abstract—Monitoring temporal SystemC properties is crucial
for the validation of functional and transaction-level models,
yet the current SystemC standard provides no support for
temporal specifications. In this work we describe a temporal
monitoring framework for the SystemC specification language
defined by Tabakov et al. at FMCAD’08. Our framework uses
a very minimal modification of the SystemC kernel, exposing
event notifications and simulation phases. The user code is
instrumented to allow observation of the relevant parts of the
model state. As proof of concept, we use the framework to
specify and check properties of two SystemC models. We show
that monitoring SystemC properties using this framework has
reasonable overhead (0.01% – 1%) and has decreasing marginal
cost. Finally, we demonstrate that monitoring at different levels
of abstraction requires very small changes to the specification
and the generated monitors. Based on our empirical results we
argue that the additional expressive powers and flexibility of the
framework does not incur a serious performance hit.

I. INTRODUCTION

SystemC1 has become a de facto industry-wide standard

modeling language less than a decade after its first release. In

addition, SystemC is a simulation environment that creates the

appearance of concurrent execution, even though in reality the

processes are run sequentially. The core language is built as

a library extending C++ and provides macros for modeling

the fundamental components of hardware and hybrid sys-

tems, for example, modules and channels. The object-oriented

encapsulation of C++ and its inheritance capabilities help

make designs modular, which in turn makes IP transfer and

reuse easier [5]. Various libraries provide further functionality,

for example, SystemC’s Transaction-Level Modeling (TLM)

library defines structures and protocols that streamline the

development of high-level models.

One of the strengths of SystemC is that it can handle

different models of computation and communication, levels of

abstraction, and system design methodologies. This is achieved

by a layered approach where high-level constructs share an

efficient simulation engine [9]. At the base layer, SystemC pro-

vides an event-driven simulation kernel. User-defined modules

and ports represent structural information, and interfaces and

channels abstract communication. The behavior of a module

is specified by defining one or more processes. Each process

can declare a sensitivity list: a number of events that trigger

its execution. For a detailed description of the semantics of

SystemC we direct the reader to [9], [19].

Work partly supported by a gift from Intel.
1IEEE Standard 1666-2005

From a high level point of view the execution of a SystemC

model alternates between user code and the kernel, and the

events provide a bridge between the two. During the execution

of the user code a process may request an event to be notified,

either immediately, at the end of the delta cycle2, or after

some time period. Immediate event notifications take effect

immediately, while delta-delayed and time-delayed event no-

tifications take effect during the execution of the kernel code.

Event notifications determine which user processes are eligible

to run next. A waiting process becomes runnable when one

or more of the events on its sensitivity list has been notified.

If there are several processes that are runnable, the kernel

arbitrarily selects one of them and gives it execution control.

The simulation semantics imposes non-preemptive execution

of processes, that is, once the kernel gives a process execu-

tion control the kernel cannot take it back until the process

terminates or explicitly suspends itself by calling wait().

The growing popularity of SystemC has motivated research

efforts aimed at the verification of SystemC models using

assertion-based verification (ABV) – an essential method for

validation of hardware and hybrid models [6]. With ABV, the

designer asserts properties that capture the design intent in a

formal language, e.g., PSL3 [8] or SVA4 [20]. The model then

can be verified against the properties using dynamic or formal

verification techniques.

A successful ABV solution requires two components: a

formal declarative language for expressing properties, and a

mechanism for checking that the model under verification

(MUV) satisfies the properties. Most ABV efforts for SystemC

so far have been focused on dynamic verification (also called

testing and simulation). This approach involves executing the

MUV in some environment, while running checkers in parallel

with the model. The checkers typically monitor the inputs

to the MUV and ensure that the behavior or the output is

consistent with asserted properties [9]. The complementary

approach of formal verification produces a mathematical proof

that the MUV correctly implements the asserted properties. In

case a violation of the property is detected, both methods are

able to returns a counterexample, which is a trace that violates

2In SystemC, like in VHDL and in Verilog, a delta cycle represents an
infinitesimal amount of time that separates events occurring in successive
simulation cycles but at the same simulation time. This mechanism allows the
(sequential) simulation of concurrent execution. See [9] for further details.

3IEEE Standard 1850-2007
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the property. Our focus in this paper is on dynamic verification.

There have been several attempts to develop a formal

declarative language for expressing SystemC properties by

adapting existing temporal languages (see [19] for a detailed

discussion). Tabakov et al. [19] point out three major deficien-

cies in existing temporal languages for SystemC: 1) lack of

definition of an execution trace, 2) lack of flexibility to handle

modeling at different abstraction levels, and 3) failure to take

advantage of well-known and widely used primitives for soft-

ware specification. Tabakov et al. propose a precise definition

of SystemC traces, which captures the alternation between

the user code and the kernel. They also define a systematic

way for enriching existing specification languages with a set

of Boolean properties, which, together with existing clock-

sampling mechanisms in PSL and SVA, allow the sampling

of the execution trace with flexible temporal and transactional

resolution. Their overall framework enables the specification

of properties at different levels of abstraction.

The traditional approaches to dynamic verification involve

connecting a separate checker module in parallel with the

MUV for each property to be checked; see, e.g., [2], [9].

The difficulty of applying this approach to SystemC is that

it only allows us to monitor the state of the model when

control is passed to the checker module. Thus, this approach

cannot apply to monitor properties that refer to finer temporal

resolution, e.g., referring to a particular event notification or

the end of a delta cycle. A key conclusion of the proposal

in [19] is that certain nominal information about the kernel,

specifically, kernel phases and event notification, has to be

exposed to the monitors.

Once it becomes clear that the SystemC kernel needs to be

exposed, the two key questions are how to do it with small

changes to an existing implementation, and how to avoid per-

formance penalties. Optimizing for performance alone would

require direct modification of the existing source code to

hook the new functionality to the existing data structures.

This would require our framework to be rewritten for each

SystemC implementation, limiting portability. On the other

hand, optimizing for portability would require adding a layer

of indirection that abstracts away the concrete implementation

of the SystemC kernel, which slows down the execution. Since

each optimization affects inversely the other, the challenge

is to find a good balance between the two. We found an

approach that accomplishes both small change and low per-

formance overhead. We modularized the necessary changes to

the SystemC code to make it easy and fast to modify existing

installations. Our framework can easily adapt to changes in

the SystemC semantics that may be added in future releases.

In this paper we show that monitoring SystemC properties

using this framework has reasonable overhead (0.05% – 1%

per monitor) and that the marginal cost of additional monitors

decreases. As proof of concept, we use the framework to

specify and check properties of two SystemC models. We

introduce only a few new lines of code to the existing

source of the SystemC kernel and all necessary additional

functionality is encapsulated in two new objects. The user

code is instrumented to allow the observation of the relevant

components. Based on our empirical results we argue that the

additional expressive powers and flexibility of the framework

does not incur a prohibitive performance hit.

II. MOTIVATION

A. Exposing the simulation semantics

Tabakov et al. argue in [19] that the simulation semantics

of SystemC should be exposed as a part of the system state.

Specifically, they propose exposing the phase of the simulation

kernel and event notification. It is not immediately clear why

the state of the kernel needs to be exposed. For example,

in the work of Kroening and Sharygina [14] the kernel is

abstracted away completely. Each process is modeled as a

labeled transition system, and the global system is defined

as a product of these local transition systems. The transitions

of the global system are defined according to the simulation

semantics, which requires that “components must synchro-

nize on shared actions and proceed independently on local

actions” [14]. Under this model synchronization occurs when

a process encounters a wait() or a notify() instruction.

The observable behavior of their abstraction of execution

matches the execution of a SystemC model. Thus, on the

surface, it may seem that taking into account the state of the

kernel would only complicate the semantics.

Similar philosophy has been adopted by Karlsson et al. [12],

Ecker et al. [7], and Pierre and Ferro [17], which likewise do

not model the kernel. This may sound reasonable at first, but

one soon realizes that many important properties require some

knowledge of the state of the kernel. A consistency property

may be required to hold all the times, at the evaluation-phase

boundary, at the delta-cycle boundary, or at a timed-cycle

boundary. If the kernel is abstracted away completely, then

there is no way to make these distinctions and specify the

consistency requirement properly. Tabakov et al. conclude that

the state of the kernel must be exposed to a certain extent,

in order to enable the user to specify properties at different

temporal resolutions. Moy et al. [15], [16] also proposed

exposing information from the kernel, but their abstraction is

motivated by the types of properties they want to check while

Tabakov et al. argue that the abstraction should expose fully

SystemC’s simulation semantics, as described in [1]. A coarse

abstraction might hide details that may be of importance to

some users. Thus, an abstraction at the level of the simulation

semantics is as generic as possible, enabling further abstraction

if required by specific applications.

In addition to proposing the exposure of the kernel phases,

in [19] Tabakov et al. argue in favor of exposing the notifica-

tion of events. SystemC events are objects derived from the

pre-defined class sc_event. A particular “waiting” process

does not becomes “runnable” until the event on which the

process is waiting is notified. For example, if a TLM channel

is full, a thread that wishes to write to the channel may

suspend itself by calling wait(ok_to_put). As soon as

there is free space on the channel, the channel notifies the

ok_to_put event, and the waiting thread is moved to the



pool of “runnable” processes among which the kernel selects

the next process to run. Most core SystemC objects have an

associated event that indicates that some change has occurred.

For example, an sc_signal has an event that is notified

when the signal changes; an sc_fifo has an event for

writing to and an event for reading from the channel; an

sc_clock’s positive and negative edges are represented

by events. Thus, events are the fundamental synchronization

mechanism in SystemC, and keeping track of when a particular

event is notified allows us to pinpoint the instant in time

when something important happens. In the particular example

mentioned before, we might want to specify that every time

ok_to_put is notified the number of items in the channel is

strictly smaller than the capacity of the channel.

Event notifications can be requested in the user model

by calling the notify() method of class sc_event. The

actual moment when the event is notified is determined by

the kernel depending on the type of each event notification,

the status of the other processes in the model, and the kernel

phase. There are three types of event notification:

1) notify() with no arguments: immediate notification.

Notification happens upon execution.

2) notify(SC_ZERO_TIME): delta notification. Notifi-

cation is postponed until the delta-notification phase.

3) notify(time) with a non-zero time argument: timed

notification. Notification happens during a subsequent

timed-notification phase.

Pending event notifications can be canceled using the

cancel() method, pending timed notifications are canceled

by delta notifications, and pending delta notifications are

canceled by immediate notifications.

Tabakov et al. argue that the fundamental role played by

events in the execution of SystemC models justifies fully

exposing event notification in the simulation state. This means

that properties can refer directly to event notification, for

example, specifying that ok_to_put is notified at least once

every clock cycle.

One might argue that keeping track of all phases of the

simulation semantics and all event notifications is unnecessary

because very few properties relate to those specific phases

or notifications. Our guiding philosophy in developing the

verification framework described here is to expose all event

notifications and all phases of the kernel that are described

by the simulation semantics and identified by Tabakov et al.

in [19], rather than try to pass judgment on which ones are

the most important. The users can use coarser abstractions

if needed. Since we need to anticipate all possible uses of

SystemC specifications, exposing the semantic fully is the

most justifiable approach.

Below we present two SystemC models whose properties

cannot be expressed (and monitored) without reference to ker-

nel phases and events. The same two models and the temporal

properties described here are also used to evaluate empirically

the performance of our proof-of-concept implementation5.

B. Squaring via addition

The first SystemC model implements a squaring function

by using repeated incrementing by 1. The system consists of

an Adder module that implements addition a+b by triggering

b copies of add_1() process, each of which adds 1 to a.

We use a delta-delayed notification of a driver_event
to suspend the driver and allow the add_1() processes to

initialize. Then the driver uses immediate notification of an

add1_activate_event to activate the add_1() pro-

cesses, which then proceed to execute sequentially within

the same delta cycle. At the end of execution, each add_1
process (immediate–) notifies an addition_event. Thus,

the result a+b is calculated within two delta cycles and using

b (immediate) notifications of the addition_event.

The Adder is embedded inside a Squarer module, which

implements c2 by repeatedly calculating the sum of c and

running_total. The squarer waits until the next clock

cycle before calculating the next addition. It takes c clock

cycles to complete the calculation.

This simple model (∼100 lines of code) is intentionally

inefficient. Notice that it is driven by all three types of event

notifications (immediate, delta-delayed, timed). It also allows

us to vary the size of the model by varying the number of

processes. A small piece of code illustrating the functionality

of the Adder is presented below.

void
adder::driver() {
while(true) {

//Suspending until values on the inputs change
wait(input1.value_changed_event() |

input2.value_changed_event());
int i1 = input1.read();
int i2 = input2.read();
_a = i1;
for (int i=0; i < i2; i++) {

sc_spawn( sc_bind(&adder::do_add1, this) );
}
// Allow the do_add1() processes to initialize
// by suspending until the next delta-cycle
driver_event.notify(SC_ZERO_TIME);
wait(driver_event);
add1_activate_event.notify(); // immed. notifc.
// Suspend for a delta-cycle to allow all
// computations to complete
driver_event.notify(SC_ZERO_TIME);
wait(driver_event);
result.write(_a);

}
}
void
adder::do_add1() {
wait(add1_activate_event);
(_a) = (_a) + 1;
addition_event.notify(); // immediate notification

}

A correct implementation of the Adder must satisfy the

following property (using the syntax of [19]):

5The source code of the models is online at
http://www.cs.rice.edu/∼vardi/papers/memocode10.tar.bz2



ALWAYS (adder.add1_activate_event.notified &
adder._a > 0) -> ((adder.addition_event.notified ->
(adder._a > 0)) UNTIL ‘‘result.write(_a)’’) (1)

i.e., if a > 0 at add1_activate_event, then a > 0 at

every instance when the addition_event is notified until

the result is pushed to the output wire. Sampling at such low

temporal resolution is not possible under the current SystemC

standard. The best we can do is to check the value of a before

the driver_event is notified, and to check it again when

the result is being written to the wire. There is no mechanism

to check an assertion at particular event notifications, so the

intermediate steps cannot be verified.

Another property of the Adder is

ALWAYS (adder.input.read($1) & adder.input.read($2))
-> ((within [2 MON_DELTA_CYCLE_END]
adder.output.write($3)) & ($3 = $1 + $2)) (2)

i.e., the correct result is always returned within 2 delta cycles

of receiving the inputs (a and b). This property also cannot be

monitored using the current SystemC standard. A monitoring

process can count the delta cycles in which it is triggered, but

there might be delta cycles when the monitor is not triggered,

and the monitor would not be able to count those. Thus, there

is no way of determining that precisely two delta cycles have

passed.

These problems stem from the way the SystemC kernel is

designed. The kernel makes the effect of event notifications

visible only to the processes waiting for those events. While

this is sufficient for simulation purposes, it makes monitoring

some important properties impossible. What is missing is a

mechanism for alerting monitors immediately after an event and

for alerting monitors that a delta cycle is about to start or end.

However, event notification (and delta cycle determination) is

done by the kernel and is not exposed to the rest of the system.

The solution to this issue is to expose some of the internal state

of the kernel for monitor-only privileged access.

C. Airline reservation system

The second SystemC model implements a system for reserv-

ing and purchasing airplane tickets. The users of the system

submit requests by specifying the starting and the ending air-

ports of the trip, the dates of travel, and a few other pieces

of data. The system uses a randomly generated flight database

to find a direct flight or a sequence of up to three connecting

flights. Those are returned back to the user for approval. If

the user would like to purchase a ticket she submits payment

information that is processed and stored, and the individual legs

of the trip are booked.

Internally the system uses several modules connected by

finite-capacity channels. Each module has a fixed amount of

local memory, implemented as bounded queues, to store the

requests that are currently pending processing or are waiting

to be sent to another module. The modules use events to

synchronize reading and writing to the internal memory. All

modules except the I/O modules are connected to the same

(slow) clock, and the I/O modules are connected to another

(faster) clock. This allows us to stress-test the behavior of

the system when there are more requests than it can process.

This model is intended to run forever. It approximates actual

subsystems currently used in hardware design. A piece of code

from the flight_planner module is presented below.

/**
* Receives requests from the master module. Adds
* new requests to the new_planning_requests queue
* if there is space available, otherwise blocks
* until space becomes available.
*/

void flight_planner::receive_new_requests() {
while(true) {

tlm_tag_t t;
if (! in_from_master->nb_can_get( &t )) {

tlm_tag_t tag;
wait(in_from_master->ok_to_get(&tag));

}
token_t* req = new token_t();
in_from_master->nb_get(req);
if (req->get_payload() == PLAN) {

unsigned int curr_size =
new_planning_requests.size();

if (curr_size >= queue_size) {
wait(new_requests_nonfull);

}
new_planning_requests.push(req->get_request());
new_requests_nonempty.notify(SC_ZERO_TIME);
wait();

} // it was a new request
else {

handle_special_request(req->get_request(),
req->get_payload());

}
} // receiving loop

} //receive_new_requests()

One safety property of the system is that whenever some pro-

cess notifies the event new_requests_nonfull, the cor-

responding queue (new_planning_requests) must have

capacity for storing at least one request. Formally,

ALWAYS (new_requests_nonfull.notified ->
(new_planning_requests.size() < capacity)) (3)

Notice that placing this assertion at the locations where the

event notification is requested may lead to false negatives. Even

if the assertion fails in that location, a subsequent process

may cancel the event notification and the property would still

be satisfied. This example demonstrates further the need for

sampling at event notifications.

In order to meet performance objectives, the system must

propagate each request through each channel (or through each

module) within 5 cycles of the slow clock. This property is a

conjunction of 16 bounded liveness assertions similar to the two

shown below.

...
// Propagate through module within 5 clock ticks
ALWAYS (io_module_receive_transaction($1) ->
( within [5 slow_clock.pos()]
io_module_send_to_master($2) & ($1 == $2)

) AND ...
...
// Propagate through channel within 5 clock ticks
ALWAYS (master_send_to_flight_planner($1) ->
( within [5 slow_clock.pos()]



flight_planner_receive_from_master($2)
& ($1 == $2)

)
) AND ... (4)

Monitoring Property (4) requires a process that is aware of

the slow clock and can be triggered from multiple processes in

a non-deterministic sequence. Implementing a monitor of this

type using the existing SystemC kernel would require major

instrumentation of the model in order to store and propagate

the required information. A more scalable and easier to use

approach is to allow the creation of monitors that are accessible

by all processes and at the same time have access to the

kernel’s internal information. The framework presented here

solves these and many other problems to allow monitoring

of important and previously untestable properties of SystemC

models.

III. RELATED WORK

The SystemC verification standard (SCV) [10], proposed by

the SystemC Verification Working Group, provides APIs for

“data introspection, transaction recording, and randomization.”

SCV does not address the issue of temporal specifications,

which is the focus of this paper. Thus, SCV and our framework

are complementary.

Several groups have proposed modifying the standard Sys-

temC kernel in order to expose race conditions that may occur

under alternative schedulings, cf. [3], [11], [18].

Braun et al. [4] evaluate different strategies for checking

temporal specification properties in a SystemC model. They

consider two fundamentally different approaches: 1) an add-

on library (a collection of SystemC objects) that implements

functions for checking temporal properties, and 2) an interface

module that connects the SystemC model with an external test-

bench environment (in particular, TestBuilder). The properties

are limited to Finite LTL properties and the temporal resolution

is fixed to the resolution of the simulation clock.

A number of proprietary specification languages for Sys-

temC come with a monitoring framework. One of the more

serious industrial efforts is by Kasuya and Tesfaye (Jeda Tech-

nologies) [13]. This work provides a set of primitives to express

cycle-accurate and TLM-based temporal primitives, but no

mechanism for adapting to different levels of abstraction.

We believe that sampling at the boundaries of clock cy-

cles [4], [13] is inadequate for SystemC, because it fails to

take into account the unique simulation semantics of SystemC,

which allows for a much finer grained temporal resolution. For

example, algorithmic-level SystemC models are often timeless,

with the simulation being completely driven by events and

the simulation clock making no progress during the whole

simulation [9], [15]. In fact, the whole simulation can consist

of a single delta cycle, if the simulation is driven solely by

immediate event notifications. Thus, clock-cycle-level temporal

resolution is clearly inappropriate for such models.

IV. EXECUTION TRACES

An execution trace is the sequence of states traversed by the

SystemC model. Tabakov et al. propose a precise definition of a

state of the model, which encompasses the state of the SystemC

kernel, the state of the user model, and the state of the external

libraries. Here we summarize their discussion.

KERNEL STATE: Tabakov et al. abstract the simulation se-

mantics of SystemC by a state machine consisting of 15 states,

for example, “evaluation phase”, “update phase”, “running

process”, “updating a channel”, etc. Their abstraction follows

precisely the phases of the kernel described in the standard [1],

and thus the abstraction is applicable to all standard-compliant

SystemC implementations. They introduce a new variable, ker-

nel phase, whose value keeps track of the current kernel phase.

Tabakov et al. propose introducing for each event a

Boolean propositionevent_name.notified, which is true

whenever the kernel carries out the actual notification of

event event_name. Note that both delta-delayed and time-

delayed notification requests can be subsequently canceled,

therefore a call to event_name.notify() with a non-

negative argument does not guarantee that the proposition

event_name.notifiedwill be true in the future.

USER MODEL STATE: Tabakov et al. take the perspective of

“white-box validation”, which means that the state of the model

should be fully exposed. The state of the user model is the full

state of the C++ code of all processes in the model, which

includes the values of the variables, the location counter, and

the call stack. This approach allows the verification engineer to

refer explicitly to statements being executed both via their label

as well as by their syntax. Furthermore, Tabakov et al. propose

exposing the values of the formal parameters of all functions

upon invocation and their return values upon return. For each

function they provide pre-defined labels (entry, exit, call, and

return) corresponding to the location immediately before the

first statement, the location after the last statement, the location

before the function call, and the location immediately after the

function call. Finally, Tabakov et al. expose the status of each

process (one of waiting, runnable, or running).

LIBRARY CODE STATE: Tabakov et al. treat library code as

a black box. The state of library objects is exposed without

exposing implementation details. Furthermore, the state of a

library is exposed only in terms of the API of that library.

TRACE: A SystemC trace is a sequence of states correspond-

ing to the execution of the model. Such execution consists of an

alternation of control between the kernel on one hand, and the

model and the libraries on the other hand. When the kernel is

executing, the trace follows the transitions between the kernel

phases. When the kernel selects a process to run or a channel

to update, control passes to that process, which then runs until

it terminates or is suspended via a wait() function call. With

respect to transitions of processes, the trace follows the “large-

step semantics” approach [21]. Under this approach the focus

is only on the overall effect of each statement, as opposed to

considering the individual subexpressions. For example, y =
x++; consists of two subexpressions (y = x; and x = x +
1;), but the trace ignores the valuations of the variables during

the execution of the subexpressions.

By following large-step semantics our framework may miss

rare cases where a property is violated in a subexpression. For



example, suppose that a program invariant requires that x must

always be positive, and suppose that x = 1. During the execu-

tion of the expression y = (x--) + (x++); the value of

x is temporarily set to 0 by the x-- subexpression, but since

the value of x is restored back to 1 by the x++ subexpression,

no violation of the property will be reported. Modern design

practices discourage the use of complex subexpressions that

change the valuation of variables, therefore the choice of large-

step semantics over small-step semantics is justified.

Finally, Tabakov et al. consider each invocation of a library

method, for example, invoking a channel-interface method, to

return in one step. This is consistent with their black-box view

of libraries.

PROPERTIES: Existing property-specification languages

like PSL and SVA allow the use of “clock expressions”

(CE), which are Boolean expressions that indicate when a

state in the execution trace should be sampled. For example,

sampling the execution trace at the end of every clock cycle

can be done by using the expression (kernel_phase

= MON_TIMED_NOTIFICATION_END) as CE. Finer

grained resolution is possible by sampling at the end of

execution of each process, using (kernel_phase =
MON_NEXT_PROC_SELECT) as CE. One can even sample at

the boundary of the individual statements in the source code

(which is the default sampling rate).

V. MODIFICATIONS OF THE KERNEL

Our first goal is to introduce minimal changes to the refer-

ence implementation in order to expose the actions of the kernel

in a systematic way6, while the behavior of the kernel (and

thus the simulation semantics) remain unchanged.We expose

only those steps described by the SystemC standard. Any

implementation that follows the standard can be modified in a

similar way.

One way to expose the state of the kernel is to implement an

API that returns the current phase of execution of the kernel and

relevant data, and another way is to modify the kernel to send

updates about its execution. Notice that in the first case it is not

clear how the monitors will be alerted when the kernel reaches

a particular sample point. Busy waiting of the monitor will not

allow other code (including kernel code) to execute, and using

multi-threading inside the simulation does not guarantee that

the monitor’s (OS-level, as opposed to SystemC-level) thread

will be active while the kernel is in a particular phase. On

the other hand, if the kernel sends updates (via function calls),

the monitor will be triggered and will execute as soon as the

relevant sample point is reached. This is the mechanism that we

chose to implement.

One immediate problem is that this approach requires the

kernel to have access to all monitors. While it is conceivable to

add the necessary data structures to the existing code, it would

require extensive modifications. Our intention was to add as

few new lines of code as possible so that our framework can

6Please find the source code with our modifications at
http://www.cs.rice.edu/∼vardi/papers/memocode10.tar.bz2

be applied to a wide range of SystemC implementations. To

that end, we encapsulated all additional functionality in a new

object, observer, and connected the existing code to it via

callbacks. observer stores references to the monitors, re-

ceives updates of the kernel state, and then notifies the monitors

that need to execute at the current sample point (Fig. 1). The

observer implements a callback for each phase of execution of

the kernel. A the code below illustrates the main idea.

enum sample_point {
...
MON_DELTA_CYCLE_END,
...

};
class mon_observer {
public:

void delta_cycle_end() {
unsigned int num_elements =

arr_mon_sets[MON_DELTA_CYCLE_END]->size();
if (num_elements > 0) {

monitor_set::const_iterator it;
for (it = arr_mon_sets[MON_DELTA_CYCLE_END]->begin();

it != arr_mon_sets[MON_DELTA_CYCLE_END]->end();
it++) {

mon_prototype* mp = *it;
mp->callback_delta_cycle_end();

}
}

}
void register_monitor(mon_prototype* mon, sc_event* eve) {
if (events_to_monitor_sets[eve] == 0) {

std::set<mon_prototype*>* n =
new std::set<mon_prototype*>();

eve->register_observer(this);
n->insert(mon);
events_to_monitor_sets[eve] = n;

}
else {

(events_to_monitor_sets[eve])->insert(mon);
}

}
void event_notified(sc_event* event) {
monitor_set::const_iterator it;
for (it = events_to_monitor_sets[event]->begin();

it != events_to_monitor_sets[event]->end();
it++) {

mon_prototype* mp = *it;
mp->callback_event_notified(event);

}
}

} // class observer

The kernel source code is then modified to call the

observer callback functions at the locations where a change

of phase occurs. (In the OSCI reference implementation, the

particular file that is modified is sc_simcontext.cpp.)

For example, here is a snippet of actual code (from

sc_simcontext.cpp) with our modification:

while ( true ) {
// EVALUATE PHASE
m_execution_phase = phase_evaluate;

// New line of code added below
if (observer != 0) { observer->evaluate_begin(); }

while( true ) {
// execute method processes
sc_method_handle method_h = pop_runnable_method();
...

The communication between the observer and the monitors



observer

+ m _ s i m c :  s c _ s i m c o n t e x t *

+ in i t_beg in ( ) :  vo id

+ i n i t _ u p d a t e _ b e g i n ( ) :  v o i d

+and  so  on . . . ( ) :  vo id

+ in i t_end( ) :  vo id

+ e v a l u a t e _ b e g i n ( ) :  v o i d

+ e v a l u a t e _ p r o c e s s _ r u n n i n g _ b e g i n ( ) :  v o i d

+ a n d  s o  o n . . . ( )

+ r e g i s t e r _ m o n i t o r ( m o n : m o n _ m o n i t o r * , i n s t : s a m p l e _ p o i n t ) :  v o i d

Fig. 1. Partial class diagram for observer

mon_prototype

+ca l lback_ in i t_phase_beg in ( ) :  vo id

+ c a l l b a c k _ i n i t _ u p d a t e _ p h a s e _ b e g i n ( ) :  v o i d

+ca l lback_ in i t_end( ) :  vo id

+ c a l l b a c k _ e v a l u a t i o n _ p h a s e _ b e g i n ( ) :  v o i d

+ c a l l b a c k _ e v a l u a t i o n _ p h a s e _ e n d ( ) ( ) :  v o i d

+ a n d  s o  o n . . . ( )

+ca l lback_even t_no t i f i ed (e : sc_even t* ) :  vo id

Fig. 2. Partial class diagram for mon_prototype

is also via callbacks. However, that also raises another

programming issue. The observer needs a guarantee that

each monitor implements the appropriate callback function,

otherwise we will have a compilation error. To resolve that

issue we defined another object, mon_prototype, that

serves as a base class for all monitors (Fig. 2). This class

declares a virtual callback function for each type of sample

point on the execution trace, for example,

virtual callback_init_phase_begin() and

virtual callback_evaluate_phase_begin().

Each monitor implements the callback functions that are

relevant to its execution and that implementation overwrites

the virtual implementation defined in mon_prototype.

Monitors request to be notified by issuing a

call to the observer’s register_monitor()
function. For example, a monitor for the

Adder might use register_monitor(this,
MON_DELTA_CYCLE_BEGIN) in order to be alerted at

the start of each delta cycle. For each kernel phase, observer
maintains a list of monitors that have requested to be alerted

when the kernel reaches that particular phase. As soon as the

kernel notifies (via a function call) the observer that the

kernel is entering another phase, the observer calls the

callback function corresponding to this kernel phase for each

monitor that has requested to be notified.

Monitors register with specific events directly and are alerted

only when those events are notified. As an example, a mon-

itor for the Adder will use register_monitor(this,
addition_event) to request to be alerted as soon as the

kernel notifies the addition_event. The communication

mechanism is the same as the communication mechanism

for kernel-level sample points, with the only difference that

communication is initiated from the sc_event object. Im-

plementing this idea requires minimal changes to the code of

sc_event.cpp.

Notice that the changes to the kernel are intended to be

compiled once, together with the rest of the SystemC code, into

a static library (for example, libsystemc.a in the case of

the OSCI reference implementation) and linked with the user

code. It is possible for a commercial implementation to adopt

all of the changes proposed here and provide the simulator in

binary.

The observer is instantiated from the user code at the

end of elaboration in sc_main() and the observer in-

stantiates all monitors before the simulation starts. This al-

lows observer to pass references to user-code modules to

monitors that monitor user-code properties, for example, values

of variables. It is not until the end of elaboration that these

references become valid, so instantiating the monitors earlier

is not possible.

In case the model does not contain any properties to be

monitored, there is negligible overhead in the modified kernel.

If the user does not instantiate observer, the kernel’s pointer

to observer defaults to 0. Before issuing any callback, the

kernel checks if the observer is non-zero, and only then it

issues the callback, for example,

if (observer != 0) { observer->update_begin(); }

Thus, in a simulation without monitors the kernel’s overhead

consists of checking a conditional at every sample point and

event notification.

One may object to our decision to modify the kernel by

arguing that there are several implementations of the kernel.

Our response is that the language proposed by Tabakov et

al. [19], which enables the expression of rich temporal proper-

ties, requires some kernel-level information to be exposed. Our

modifications, however, only expose details that are described

in the LRM [1] and should be portable to any implementation

that follows the standard. Furthermore, our changes of the

existing code (of the OSCI implementation) are minimal and

localized, and we believe that other implementations would be

easily modified.

We want to note that there are many alternative ways of

modifying the kernel (see, e.g. [3], [11], [18]) but none of

the previous works has achieved the temporal resolution and

kernel–monitor communication provided by our modifications.

Other reasonable approaches for monitoring temporal SystemC

properties have been explored by Broun et al. [4], one of which

requires no modifications of the kernel at all (at the cost of

4 times slower execution speed than a comparable approach

with a modified kernel). The novelty of our approach is that

it introduces a generic monitor object that can be refined to

check any safety LTL property [2] and can sample at much

finer (e.g., at the boundaries of delta cycles), as well as much

coarser temporal resolution (e.g., at the boundaries of timeless

transactions), than any existing approach.

In future releases of SystemC, the simulation semantics and

the kernel may change, for example, adding new simulation

phases. The modular framework that we describe in this work

can be modified easily to handle changes in the kernel. For



each new phase in the kernel, the observer will need to be

extended to handle one additional callback, and the modified

kernel will need to be instrumented with one additional line

of code. Similarly, removing a phase from the kernel requires

deleting a callback from the observer, and deleting (rather, not

adding) a line of code in the instrumented kernel.

VI. INSTRUMENTATION OF THE MUV

Each monitor inherits from the base class mon_prototype
the declarations of all virtual functions, and overwrites only

those callbacks that are relevant to the property that is moni-

tored. Each monitor then registers itself with the observer
indicating which sampling points it is interested in. For exam-

ple, if the property is

(ALWAYS p==0) @ MON_DELTA_CYCLE_BEGIN

(i.e., p==0 must hold at the beginning of each delta

cycle) the corresponding monitor overwrites the function

callback_delta_cycle_begin() to check if p is equal

to 0. The monitor then registers itself with the observer:

observer->register_property(this,
MON_DELTA_CYCLE_BEGIN);

for the sampling point MON_DELTA_CYCLE_BEGIN.

In most cases properties refer to variables that are ei-

ther private or protected. We adopt the perspective of

“white-box validation”, which means that the state of the model

should be fully exposed to the monitors. This is consistent

with the view in [19], which considers all class members to

have public access for verification purposes. We use the C++
friend class declaration to give the monitors access to the

data members of the monitored modules, while still preserving

the encapsulation and the limited access that the designer

intended.

Monitoring user-code variables or other user-code data struc-

tures is done at the boundaries of statements. This brings up

the question of how modules can receive references to the

monitors. The difficulty stems from the fact that the monitors

are instantiated after the user-code modules. Our solution is to

have the observer maintain a list of monitors that need to

be triggered at user-code sample points. The observer does

not handle the communication with those monitors. Instead,

it defines a get_mon_by_index() function that returns a

particular monitor by its index in the list. The instrumentation

in the MUV then handles the communication with the monitor

by issuing pre-defined callbacks. Each callback depends on the

variable or data structure being monitored, and must be defined

in the monitor.

For example, in the following code snippet, we are monitor-

ing the values of i1 and i2:

...
while(true) {

wait(input1.value_changed_event() |
input2.value_changed_event());

int i1 = input1.read();
// Callback to pass the value of first input
observer->get_mon_by_index(42)->val_of_in1(i1);
int i2 = input2.read();

// Callback to pass the value of second input
observer->get_mon_by_index(42)->val_of_in2(i2);
...

The approach described here may seem cumbersome when

the monitored properties are simple assertions. Indeed, in those

cases a simple assert() statement placed at the relevant lo-

cation in the code will “monitor” the property more efficiently.

Notice, however, that our framework is designed for monitoring

temporal properties that assert()’s cannot handle. More-

over, we are working on automating the monitor generation

and the user code instrumentation, allowing the framework

to handle a large number of properties without major manual

effort from the user.

[19] allows the state to be sampled at particular locations

in the code. There are several pre-defined locations for each

function: entry, exit, call, and return, We sample the state

of the model at these synchronization points by executing a

callback. The framework also allows the specification to refer

to the arguments and the return value of functions. In order

to expose the arguments we evaluate them first and send them

to the monitor using a callback. Similarly, we store the return

value (in the cases when the value is assigned to a variable,

we use that variable) and send it to the monitor using another

callback.

VII. EXPERIMENTAL RESULTS

We modified version 2.2.0 of the OSCI simulator and com-

piled it using the default settings in the Makefile. The empirical

results below were measured on a Pentium 4 / 3.20GHz CPU /

1 GB RAM machine running GNU Linux.

First we compiled each of the two models described below,

without monitors and without an observer, using both the

modified kernel and the original OSCI kernel. We ran a sim-

ulation of each version separately and measured a decrease of

performance of less than 0.5% when using the modified kernel.

We also compiled the models with an observer and no monitors

(using the modified kernel) and measured an additional slow-

down of the execution time of less than 0.25%. We did not

observe any significant memory increase in either of those

cases. Thus, our modifications of the kernel do not lead to a

significant loss of performance compared to the unmodified

kernel.

For the rest of our experiments we measured the effect of

running with a different number of monitors and monitoring

the properties that we introduced in Section II. Each data point

represents the median of 10 measurements. In each case we

first ran the model without an observer, monitors, or user code

instrumentation to establish the baseline, and then ran several

simulations with instrumentation and an increasing number of

copies of the same monitor. The results we report are the cost

of each copy of the monitor as a percentage of the baseline.

When using the testing methodology described above it

is important to consider the possibility of caching effects: if

the system were reusing the results of previous computations,

averaging the execution time would be meaningless. Our im-

plementation avoids these issues because we create each copy



of the monitor as a separate instance of the same class. Since

we are not using static variables, each instance contains its

own copy of the class data, thus memory use is proportional

to the number of copies of the monitors. Furthermore, each

instance is handled as a generic mon_prototype object, so

it is impossible for the SystemC kernel to reuse computations.

Finally, the behavior of each monitor is determined by the com-

munication it receives from the SystemC kernel, and the C++
compiler cannot determine statically that each monitor is doing

identical computations, therefore compile-time optimizations

will not prevent each monitor from executing.

A. Squaring via addition

The first property that we checked was Property (1): the

value of the Adder’s a variable is always positive, monitored

whenever addition_event is notified. Since the overhead

of checking the property a > 0 is minimal, the results mostly

expose the overhead of the monitoring framework. For compar-

ison purposes, we measured separately the performance when

sampling at the addition_event notifications, and when

sampling at the end of each delta cycle. The following code

snippet shows the key parts of the monitor that checks the safety

property at addition_event:

/**
* (ALWAYS(adder.a > 0)@adder.driver_event.notified
* -> ((adder.a > 0)@adder.addition_event.notified
* UNTIL ‘‘result.write(a)’’))
*/

// The constructor
mon1(observer* obs, adder* obj1) : mon_prototype() {

observer = obs;
object1 = obj1;
// Register with the events
object1->addition_event.register_property(this);
object1->driver_event.register_property(this);

}
// Overwrite the default virtual void function
virtual void callback_event_notified(sc_event* e) {

if (e == object1->addition_event) {
if (state == SECOND_STATE) { // UNTIL clause

sc_assert((object1->a) >= 0);
}

}
...

}

In each case we instantiated between 10 and 1000 copies

of the monitor. The execution time to calculate 10002 without

monitors is ∼14 seconds. The results are reported as percentage

overhead per monitor (Fig. 3).

As the number of monitors increases, the overhead of the

framework is amortized over more monitors, thus the average

overhead per monitor decreases. Also notice that sampling at

event notifications is much more expensive than sampling at

the end of delta notifications. Each delta cycle involves (for

10002) 1000 event notifications, so the monitor is invoked

1000 times more often. We would also like to point out that

while the average overhead per monitor is negligible (∼0.5%–

0.003%), the cumulative effect of running 1000 monitors is

significant. In the first case (sample at event notification) the
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Fig. 3. Monitor overhead as a percentage of baseline (i.e., execution without
monitors) for Property (1) using two different temporal resolutions
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Fig. 4. Monitor overhead as a percentage of baseline for Property (2)

execution is slowed down 363% when running with 1000 copies

of the monitor (such overhead is not uncommon in industrial

applications). The effect is less pronounced when sampling at

the end of delta cycles, incurring a total performance penalty of

3.6% when running with 1000 monitors.

Property (2) asserts that the adder correctly calculates the

sum and returns the result within two delta cycles of reading the

input. Notice that this property combines information from the

user code (getting the values of the relevant variables) and the

kernel (getting information about each delta cycle). We evalu-

ated this property for different sized models – 500, 1000, 1500,

and 2000 processes, calculating, respectively, 5002, 10002,

15002 and 20002. The results are in Figure 4. The behavior we

observe is that increasing the number of processes in general

reduces the overhead per monitor. The more processes we have,

the more work the system needs to do in each delta cycle, thus

the effect of the monitoring becomes a smaller fraction of the

overall execution. The overhead per monitor averages around

0.01% and the worst cumulative slow-down we observed was

by 12.9%, when using 1000 monitors on a 500-process model.

B. Airline reservation system

We checked two properties of the system:
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Fig. 5. Experimental results for monitoring Properties (3) and (4) in the
airline reservation system

1) The incoming queue has capacity for another request

whenever the incoming_req_nonfull event is no-

tified (Property (3)), and

2) Every request is propagated through a channel within 5

clock cycles of the slow clock, and it is sent out from

each module within 5 slow clock cycles of its receipt by

the module (Property (4)).

Since the system is designed to operate indefinitely, we mea-

sured the performance by simulating for 1 million (slow-) clock

cycles. The wall-clock execution time of the system without

monitors is ∼27 seconds. The monitoring overhead is presented

as percentage of that baseline (Fig. 5). Checking Property (3)

is relatively inexpensive, and the results are consistent with

the previous results. Property (4) is much more expensive.

The monitor contains a state machine that tracks the arrival

and the departure of each request as it travels through the

model. This requires a lot of communication from the model

to the monitor, as well simulating a state transitions inside the

monitor. Running the system with 1000 copies of both monitors

slows it down by 715%. Although this is quite significant, it

is not unusual. A ten-fold slow-down of the simulation when

monitoring complicated properties is often observed in the

industry.

VIII. CONCLUSIONS

We have described a monitoring framework for the speci-

fication language proposed by Tabakov et al. [19] that allows

monitoring of temporal properties of SystemC at different

levels of resolution, both in clocked and clockless models. Our

framework introduces very small changes to the existing code

of the kernel and encapsulates the new functionality in two new

objects. The changes to the kernel cause a negligible slow-

down (less than 0.5%). We implemented and tested several

types of properties of two SystemC models at sub-clock-cycle

and sub-delta-cycle resolution, involving components from dif-

ferent modules. Our experimental results show that for most

properties the overhead is quite small and running hundreds or

thousands of monitors does not have a prohibitive cost (usually

less than 0.2% per monitor). More complex properties are

naturally more expensive, but even in this case the overhead

is typically less than 1% per monitor and further optimizations

may improve the performance. Our next goal is to automate

the process of instrumenting the user code and constructing the

monitors.
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