
MONITORING THE EXECUTION OF SENSORY ROBOT PROGRAMS*

Vincenzo Caglioti1, presently 3, Massimo Danieli2, Domenico Sorrenti3

International Computer Science Institute; 1947 Center Street, 94704-1105 Berkeley, California, U.S.A,

ABB SAE Sadelmi s.p.a., P.le Lodi 3, 20137 Milano, Italy

Artificial Intelligence and Robotics Project, Dipartimento di Elettronica e Informazione, Politecnico di Milano,

P.zza Leonardo da Vinci 32, 20133 Milano, Italy

Abstract - A system is presented, which monitors the execution of an assigned robot program, in order to detect execution

errors. The assigned program is supposed to include sensor instructions, which allow to adapt the execution to variable

environment conditions. In the presented system, the task information is represented in terms of a relationship between

environment conditions and workcell evlution. The selection of the monitoring sensor detctions is based on the accuracy in

checking the state variables and in the ambiguity in matching the sensor measures to the variables to be measured.

1. Introduction

Robot programs including sensor instructions are generally

aimed at producing a given, desired workcell evolution,

independent of the environment conditions: e.g., whatever

be the entrance position of an input object, this object is

assembled to other objects in a predefined workcell

location. This situation is in accordance with the "one

product" assumption adopted by Fielding et al. [4].

However, this is not the only possibility. Infact a

sensorized program could also be aimed at producing a

workcell evolution dependent on the environment

conditions: e.g., the set of the objects assembled with an

input object may depend on the geometry of the input

object. By this possibility, the robot flexibility can be

exploited in order to perform different types of assemblies.

In this work a monitoring system is illustrated, that: (i)

plans and executes sensing strategies aimed at assessing the

execution correctness of a sensory robot program, (ii) if

*This work has been supported by: the Italian National Research Council,
C.N.R., PFR 2 "MANUEL"; IBM Semea (contract: Error Recovery in Assembly
Robots)

execution error is detected, it plans sensing strategies aimed

at determining the error state.

Many current approaches to error recovery ([1], [4], [4],

[5], [13]) are of limited applicability in most of the

practical cases where: (i) task level information, Or even

object level information, is not directly available, since the

robot task is specified by manipulator level programs

(AML and VAL are among the most widely used

programming languages), (ii) several sensor instructions

are often included in realistic programs, in order to let the

workcell evolution vary according to the variable

environment conditions.

In the system presented, the task information is represented

by means of a relationship (step conditions) between the

environment conditions and the workcell evolution. These

conditions have to be satisfied at the end of the execution

of each program step. The task information is organized in

a forest structure (a forest is a set of trees) called skeleton.

Each node of the forest represents a workcell state. The

roots of the forest represent the possible initial states. The

leaves of the forest represent the possible final states of the

21

From: AAAI Technical Report SS-94-04. Compilation copyright © 1994, AAAI (www.aaai.org). All rights reserved.

program. The task information is automatically extracted,

starting from the given program written in the manipulator

level language AML [2], [15]. The set of the correct (or

nominal) evolutions, associated to an assigned program,

can be obtained by means of the simulation of an errorless

excution of the program [16].

The monitoring system selects, for each program step, a set

of physical variables that are to be checked in order to

verify the step conditions. Each of the selected physical

variables has to be checked at least once within a non-

critical sequence, which is a sequence of steps between two

critica/events for it (for instance, if v is a variable related

to a physical object in the workcell, e.g., its position, a

critical event for v is the modification of the contacts with

the other objects). The possible sensor detections (SDs)

are evaluated a priori with respect to their accuracy and

ambiguiO’ in measuring a considered physical variable. The

ambiguity is related to the risk that the sensed features and

the scene features are not matched correctly. Both the

coefficients are determined by the simulation of the sensor

detections. The best SD, between those capable to check

the considered physical variable in the considered non

critical sequence, is then selected. The chosen SDs, related

to the whole set of physical variables, are then combined

and give rise to an augmented set of SDs; the new entries

of the SD set are built aggregating the SDs that can share

some computation (e.g., at the end of step i the two SDs

aimed to check the position of Obj-j and Obj-/can be

aggregated because both exploit the actual line drawing of

camera-k). By the selection of different sequence of SDs,

different sensing strategies can be generated. At this point

the problem reduces the search of the (time) best sensing

strategy. The problem can be viewed as a weighted set

covering problem [6]; the set of the physical variables to

be verified represents the set to be covered, and the SDs

represent the covering elements. Each SD covers one or

more physical variables, and each physical variable is

considered once for each of its non-critical sequences. The

weight of each SD is represented by the estimate of its

time-cost. We solved the problem by means of a

specialization for the zero-one problem of the Branch and

Bound algorithm [6].

The considered sensor detection are:

1. A photo primitive, whose output is a binary

signal relative to a photocell mounted between the fingers

of the robot gripper. If an object is present between the

fingers, then the output is active.

2. A loc(x, y, theta, phi, psi, Obj) primitive, which

determines position and orientation of a modeled object

basing on the linear segments extracted from a single

image. The Ioc primitive performs a 3D (i.e., six degrees of

freedom) localization [17].

3. A match(x, y, theta, phi, psi, Obj) primitive,

which compares an expected scene line-drawing with the

actually extracted line-drawing, and then performs a 3D

localization.

In [14] a criterion is proposed for planning the best sensor

configuration in order to check an object feature; it can be

seen as a first step toward an active monitoring system. On

the other hand, the presented system is only capable to

determine that some physical variables can be poorly

checked (or even not checkable at all), due to the

configuration of the workcell objects and sensors.

2. An example of skeleton

Our experimental workcell (Fig. 1) is equipped with a four

degrees of freedom SCARA IBM-7547 robot. A photocell

is mounted on the robot gripper. Two fixed cameras,

indicated by tvl and tv2, are present. On both these

22

cameras the primitives match and loc are implemented.

Fig. 1 Experimental Setup

Two objects are involved in the example. The first object

(O1), belonging to the OBJ1 class, is a holed

parallelepiped with dimensions (llx7x3) along

respectively the x, y, z axis of the object centered reference.

The origin of this reference is on a vertex of the base of the

parallelepiped. The hole is centered on the upper face of the

parallelepiped, and its dimensions are (lx3xl.5). The

second object (O2), can belong to either of the two classes

OBJ2 and OBJ3. Both are parallelepipeds of dimensions

(lx3xh). While for the OBJ2 class h=5, for the OBJ3 class

h=2. In the initial state of the program execution 02 is

present in the workcell in the position: xO2=70, yO2=70,

zO2=-50, rO2=0 (rO2 indicates the roll angle). The initial

position of object O1 is: xO1=-55, yOl=0, zOl=-50,

rOl=0. The robot program consists first in determining the

class of 02: if its class is OBJ2, then 02 is inserted into

O1. Otherwise, the object 02 is put into a basket. The

AML/E program ([2]) is:

HOME: NEW PT(103,0,0,0); -- the parking position
BASKET :NEW PT(0,90,-30,90); -- the basket position
xl ,yl,rl : STATIC COUNTER;

-- cartesian coordinates and roll angle of O1
pmove(PT(70.5,71.5,-30,90));

-- move to the vertical of 02
zmove(-46.5);

-- moves to midheight between OBJ2 and OBJ3
compc(photo = 0, GO-TO-BASKET);

-- if 02 = OBJ3 (h = 2) go to basket
zmove(-30);
pmove(PT(-49.5,0,-30,90)); -- vertical of
zmove(-48.5); -- move to grasp
grasp; -- grasp O1
zmove(-30);
pmove(PT(80, 80, -30, 90));

-- move to the vertical of the assembly position
zmove(-48.5);

-- move O1 to the assembly position
release; -- open hand
zmove(-30);
pmove(PT(70.5,71.5,-30,90));

-- move to the vertical of 02
zmove(-46.5);
grasp; -- grasp 02
zmove(-30);
pmove(PT(80, 80, -30, 90));

-- move toward assembly position
zmove(-45.0); -- insert 02 into
release;
branch(GO-HOME);

:GO-TO-BASKET;
zmove(-49);
grasp; -- grasp 02
zmove(-30);
pmove(BASKET);
release;
:GO-HOME;
p&~ve(HOM E);

The program skeleton, extracted by the nominal case

simulator is reported in Fig. 2. The node NO contains the

initial state corresponding to the case in which 02 belongs

to the class OBJ2, while N1 contains the initial state

corresponding to the case in which 02 belongs to the class

OBJ3. The forest actually consists in two linear sequences:

one starting from NO, the other starting with N1.

3. An example of monitoring plan

For simplicity, the monitoring example here illustrated

involves a skeleton constituted by a single node sequence.

Two objects are involved in this example. The first object

(O1), which belongs to the OBJ1 class, is a holed

23

parallelepiped with dimensions llx7x3. The hole is

centered on the upper face of the parallelepiped and its

dimensions are 3xlxl.5. The second object (O2),

belonging to the OBJ2 class, is a parallelepiped with

dimensions lx3x5.

~
. prnove(PT(70.5,71.5,-30,90));

it zmove(-46.5);
ZTZ’f..’...compcCphoto - o, GO-TO-BASKET);

/.zmove(-30)"sm~o~r.~=¢, f’ P~ ~ pmove(PT(-49.5,0,-30,90));

j ~u I ~pzrnove(-48.5);

~ZZ;Z.".’.. gr,sp;
jr,, ~ ~ I -t zmove(-30);~ jIB-

IN1 21(~.~.~’.~:’.;’.~;~." ...pmove(PT(80, 80,-30, 90));

~ ’~ release;

~tiI~ J °l p,zrnove(-30);

~ "-22"."-’,,"."-1.-.,pmove(PT (7 0.S, 71.5,- 30,90)

=ra. ~.: ,..:!,~ove(-,S,S);
I-’-~ grasp;

~jnJ, =~1 fp zmove(-30);

~ ~---~4-pmove(PT(BO, 80,-30, 90));

j~(i p..zmove(-4S.O);

/,,branch(GO-HOME);
.............. "" pmove(HOME)

E~
................ pmove(PT(70.5,71.5,-30,90));

P~
................ zmove(-46.5);

P~
................ compc(photo - O, GO-TO-BASKET);

P~
................ zmove(-49);

F~
................ grasp;

~ .,r-]
................ zrnove(-30);

F~
................. pmove(BASKET);

F~̄
 --o*-oooo- o- release;

r~ ,0-]
................. pmove(HOME);

E~
Fig. 2 A program skeleton

In the initial state of the program execution, only 02 is

present in the workcell. Its initial position is (70, 70, -50,

0). Ol is introduced into the workcell at the initial

position (-55, -2.5, -50, 5.01). The robot program consists

first in grasping 02 in its initial position and then in

inserting it into the hole of O1. The AML/E program is

reported below, the program skeleton in Fig. 2.

HOME: NEW PT(103, O, O, 0); --the parking position
02VERT: NEW PT(70.5, 71.5, -30, 90);

-- a point along the vertical of 02
01VERT: NEW PT(-49.826, 1.467, -30, 5.01);

-- a point along the vertical of 01
pmove(O2VERT); -- move to the vertical of
zmove(-46); -- move toward the grasping position of 02
grasp; -- grasp 02
zmove(-30);
pmove(O1VERT); -- a position on the vertical of
zmove(-44.5); -- insert 02 into
release; -- open hand
zmove(-30);
pmove(HOME); -- return to parking position
:END.

The node sequence is analyzed, in order to find the

physical variables to be verified and to determine the

correspon(fmgnon-critical sequences.

F,o-1
.................. pmove(O2VERT);

.................. zmove(-46);

[;2-]
................. grasp;

.................. zmove(-30);

Fq
.................. pmove(Ol VERT);

................. zmove(-44.5);

.................. release;

Fn
.................. zmove(-30);

Fn
................. pmove(HOME);

ig. 3 A sequential program skeleton

For instance, at node NO the physical variable xo2=70

with a related non-cr#ical sequence ~qO, N1, N2) is found.

The non-critica! sequence for xo2 ends at node N2, since

in N3 the object 02 is grasped by the robot. After the

analysis has been completed, the sensor simulation is

executed along the node sequence. The table below reports

the accuracy 02 and ambiguity y relative to the activation

24

of the Ioc primitive on tvl at node N8 with respect to the

position parameters of objects O1 and 02, as calculated

basing on the expected line drawing.

variable o2 7
XOl 0.5583 0.5
YOI 0.0092 0.5
zo1 0.3791 0.5
rOl 5.821 10-7 0.5
xo2 0.122 0.25

ro2 8.735 10-4 0.25

The results relative to the y and z coordinates of the object

02 are neglected, since their accuracy is below a given

threshold. The plan generated in correspondence to the

node sequence is composed of the following sensor

instructions, in which the spatial positions are indicated by

the roll, pitch, and yaw angles, and by the x, y, z

coordinates referred to the frames attached to the cameras

tvl and tv2:

I:read (photo1) :correct (value 0) :node
:read (tv2 (LOC OBJ2)) :correct (value (OBJ2 (0, 0,

120, 0))) :node
(:read(photo1) :correct (value 1) :node
(:read(photo1) :correct (value 1) :node
(:read (tvl (LOC OBJ1)) :correct (value (OBJ1

-0.782, -3.055, 4.246, -2.5, 72.46))) :node
(:read (photo1) :correct (value 1) :node
(:read (iv2 (LOC OBJ1)) :correct (value (OBJ1

0.087, -105, 47.5, 0))) :node
(:read (photo1) :correct (value 1) :node
(:read (tvl (LOC OBJ1)) :correct (value (OBJ1

-0.782, -3.055, 4.246, -2.5, 72.46))) :node
(:read (tv2 (LOC OBJ2)) :correct (value (OBJ2

-1.483, -101.381, 52.095, 1.5))) :node N8)
(:read (tvl (LOC OBJ10BJ2)) :correct (value ((OBJ1

3.018, -0.782, -3.055, 4.246, -2.5, 72.46)) (OBJ2
-1.644, -0.073, 2.359, 0.614, 1.833, 73.97))))

:node Ng)
(:read(photo1) :correct (value 0) :node

where the keyword :read indicates the sensor that must be

activated; the keyword :correct is followed by the

predicates to be satisfied by the sensor data. The keyword

:node indicates the node to which the instruction is

associated.

4. Current developments

During the program execution, the selected sensor

detections may eventually detect an error. In order to

proceed with the recovery of the robot operations, the cause

of the occurred error must be determined. To this aim a

diagnosys systems has been designed. This system will be

described briefly in the sequel (experimental results are not

yet available).

As an error is detected by the monitoring system, a

diagnosis system is called into operation in order to

determine the error state. Wrongly positioned objects, and

defective objects are among the considered classes of error

causes. In order to determine the workcell state, which is

the most "likely", the diagnosis system uses information

about the past actual execution, e.g., past actions and past

sensor detections (both the actual and the expected

readings). To consistently integrate the available

information and thus discriminate the most likey state

hypotheses, an uncertainty management mechanism is

adopted, based on evolutions ([7], [8], [9]) of Dempster-

Shafer’s theory of evidence ([10], [11]).

As a result of the incremental analysis of the error

hypotheses, the belief state of each hypotheses is evaluated.

The belief state is categorized according to its support and

its plausibility: in [8] six categories are proposed. The

hypoteses whose belief state is in either of the groups

believed and rather believed than disbelieved are

considered for further validation. For this last task, these

hypotheses are handled as correctness conditions to be

verified by the monitoring system; namely a sensing

strategy is planned and executed in order to verify each

hypothesis. If the results of the executed sensor detections

allow to confirm one of the considered hypotheses, then the

analysis task is concluded and a recovery strategy can be

planned. Otherwise, the current set of hypotheses (together

with their belief state) is updated in view of the results of

the executed sensor detections, and the process is re-iterated

25

until either a hypothesis is confirmed or no sensor is

available to check the error state.

recognition of polygonal patterns",
Recognition, Vol. 26, n. 11, (1993)

Pattern

References

[1] R. Smith, M. Gini, "Reliable real-time robot
operation employing intelligent forward recovery",
Int. Journal of Robotic Systems, Vol. 3, n. 3, pp.
281-300, (1986)

[2] AML/Entry v.4 User’s Guide, 2nd ed., IBM Press,
Aug. 1985

[4] A. Hoermann, W. Meier, J. Scholen, "A control
architecture for an advanced fault-tolerant robot
system", Robotics and Autonomous Systems, Vol. 7,
pp. 211-225, (1991)

[4] P. Fielding, F. Di Cesare, G. Goldbogen, "Error
recovery in automated manufacturing through the
augmentation of programmed processes", Int. Journal
of Robotic Systems, Vol. 5, n. 4, pp. 337-362,
(1988)

[6] G.R. Meijer, L. O. Hertzberger, T. L. Mai, E.
Gaussens, F. Arlabosse, "Exception handling
systems for autonomous robots based on PES",
Robotics and Autonomous Systems, Vol. 7, pp. 197-
209, (1991)

[6] H. M, Salkin, K, Mathur "Foundations of Integer
Programming", North Holland, (1989)

[7] A. Bonarini, E. Cappelletti, A. Corrao, "Network-
Based Management of Subjective Judgements: A
Proposal Accepting Cyclic Dependencies", IEEE
Transactions on Systems Man and Cybernetics, vol.
22, n. 5, 1992

[8] D. Driankov, "Uncertainty calculus with verbally
defined belief-intervals", Int. Journ. on Intelligent
Systems, vol. 1, 1986

[9] D. Driankov, "Toward a many-valued logic of
quantified belief: The information lattice", Int. Journ.
on Intelligent Systems, vol. 6, 1991

[10] G. Shafer, "A Mathematical Theory of Evidence",
Princeton University Press, Princeton (1976)

[11] G. Shafer, "Theory and Practice of Belief
Functions", Int. Journ. on Approximate Reasoning,
vol. 4, n. 5/6, 1990

[13] T. Cao, A. C. Sanderson, "Sensor-based error
recovery for robotic tasks sequences using fuzzy
Pe~ nets", Proc. IEEE Intnl. Conf. on Robotics and
Automation, (1992)

[14] K. Tarabanis, R. Y. Tsai, P. K. Allen, "Automatic
sensor planning for robotic vision tasks", Proc.
IEEE Int. Conf. on Robotics and Automation,
(1991)

[15] R.H. Taylor, P. D. Summers, J. M. Meyer, "AML: a
manufacturing language", The Inl. Joum. of Robotics
Research, vol. I, n. 3, 1982

[16] V.Caglioti, M.Somalvico, "Symbolic simulation of
sensory robot programs", in B.Torby, T.Jordanides
(eds.) "Expert Systems and Robotics", NATO ASI
Series, Springer-Verlag, (1990)

[17] V. Caglioti, "The planar three-lines junction
perspective problem, with applicat.ion to the

26

