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Abstract: Creating defenses against flooding-based, distributed denial-of-service 

(DDoS) attacks requires real-time monitoring of network-wide traffic to obtain 

timely and significant information. Unfortunately, continuously monitoring 

network-wide traffic for suspicious activities presents difficult challenges because 

attacks may arise anywhere at any time, and because attackers constantly modify 

attack dynamics to evade detection. In this paper, we propose an efficient method 

for early attack detection. Using only a few observation points, our proposed 

method can monitor the macroscopic effect of DDoS flooding attacks. We show 

that such macroscopic-level monitoring might be used to capture shifts in spatial-

temporal traffic patterns caused by various DDoS attacks, and then to inform 

more detailed detection systems about where and when a DDoS attack probably 

arises in transit or source networks. We also show that such monitoring enables 

DDoS attack detection without any traffic observation in the victim network.  

Keywords: DDoS attack, monitoring, network traffic, attack dynamics, spatial-

temporal pattern 
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1   Introduction 

The success of the Internet can be attributed in large part to the end-to-end principle, which 

enabled deploying a relatively simple network infrastructure (i.e., packet-forwarding nodes 

supported by a few routing protocols), allowing network applications to evolve independent of 

the core network [1]. In particular, the end-to-end congestion control mechanisms of the TCP 

(Transmission-Control Protocol) have played a key role, both in illustrating the end-to-end 

principle and in achieving a robust and stable Internet. At the same time, the existing end-to-end 

mechanisms have been proven highly ineffective at protecting the Internet from distributed 

denial-of-service (DDoS) attacks, which have become an increasingly frequent, global 

disturbance [2].  

A DDoS attack can be characterized as a simultaneous network attack on a victim (e.g., a 

web server or a router) from a large number of compromised hosts, which may be distributed 

widely among different, independent networks. By simply exploiting the tremendous asymmetry 

existing between network-wide resources and local capacities of a victim, a flooding-based 

DDoS attack can build up an intended congestion very quickly at an attacked target. The Internet 

routing infrastructure, which is stateless and based mainly on destination addresses, appears 

extremely vulnerable to such large-scale, coordinated attacks. DDoS attacks cannot be detected 

and stopped easily because forged source addresses and other sophisticated techniques are used 

to conceal attack sources. DDoS flooding attacks can take a victim network off the Internet even 

without exploiting particular vulnerabilities in network protocols or weaknesses in system 

design, implementation, or configuration. While applying security patches may avert attacks 

against protocol or system vulnerabilities, congestion-inducing DDoS attacks exploit an inherent 
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weakness in the Internet design, and thus present a serious threat to Internet stability. This paper 

focuses on such flooding-based DDoS attacks. 

In general, packet filtering embodies the essential response to confirmed DDoS attacks. 

However, an ability to detect attacks directly affects the ability to filter DDoS flows accurately 

and to alleviate damage. There have been some efforts to deploy detection mechanisms at the 

attack victim, in transit networks, and in networks containing attack sources [3]. Usually, 

flooding attacks can be most easily detected at the victim network, where all the generated attack 

packets can be observed. Unfortunately, an attack victim cannot defeat a flooding attack simply 

through detection. Instead, attack packets must be filtered in transit networks, preferably close to 

attack sources, before they converge on the victim network. Unfortunately, attempts in transit 

networks to detect such attacks, as anomalies in voluminous and aggregated traffic observed at 

core routers, do not often succeed without a high false-alarm rate. Similarly, networks hosting 

attack sources cannot readily achieve effective attack detection [4]. When a DDoS attack arises, 

a network with attack sources may observe only a normal outgoing load. In fact, studies 

characterizing Internet traffic show high variability in legitimate connections [5]. Use of attack-

obfuscation techniques further increases the difficulty of detecting attacks with high confidence 

in a short period. Where sophisticated attacks (such as increasing rate, fluctuating rate, and 

natural-network-congestion-like attacks [3, 6]) are used, tension between accuracy and detection 

latency increases the difficulty of successful, real-time detection. 

Although flooding attacks might successfully avoid various detection techniques by 

changing attack signatures, the effect of attacks will remain unchanged: congestion will be 

induced by attack traffic at the victim network. Can one exploit this fact to improve detection 

performance in transit or source networks? In this paper, we argue that DDoS attacks alter the 
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internal characteristics of network-wide traffic so that an appropriate monitoring method can 

accurately detect large-scale flooding attacks without observing traffic in the victim network. 

To avoid congestion in the Internet, all flows under end-to-end controls adapt themselves in 

a self-organized, distributed manner. Adaptive behaviors of flows in different directions play a 

crucial role to keep the Internet stable and to form macroscopic traffic patterns. During a DDoS 

attack, the attack packets do not observe end-to-end congestion control algorithms; rather, they 

overwhelm the intended victim, causing well-behaved flows to back off and then ultimately to 

starve. Large-scale DDoS attacks also impair other traffic flows that happen to share a portion of 

the congested network. Such network-wide phenomena might show themselves in shifting 

patterns of spatial-temporal traffic, which can be captured, e.g., by using a novel technique we 

recently developed for analyzing macroscopic behavior [7]. Our analysis technique can infer the 

congestion state of specific network areas without directly measuring them. This trait proves 

advantageous in DDoS-attack detection because congested routers near the victim may fail to 

collect and transfer measurement data. 

There is a high cost for continuously monitoring network-wide traffic for various suspicious 

activities because attacks can emerge anywhere at any time. In addition, suspicious activities do 

not always relate to DDoS attacks. For example, flash crowds on the Internet can trigger false 

alarms in detection systems. Also, sophisticated DDoS attacks may mimic natural network 

congestion [6]. Therefore, it would be desirable if attack-detection algorithms could be activated 

with a narrowed focus in response to an alarm raised by an efficient, continuous monitoring 

operation. In this paper, we show that the macroscopic behavior of large-scale networks could 

provide significant information to defend against serious DDoS attacks, which exhibit apparent 

effects on network congestion even while attackers constantly modify their techniques to avoid 
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detection. Coupled with a dynamic monitoring capability deployed in transit or source networks, 

our analysis method could provide a promising guidance function to warn detection systems 

about where and when a DDoS attack probably arises. 

Since DDoS-attack patterns are becoming more sophisticated and effective, we experiment 

in this paper with different attack modes: constant rate, increasing rate, natural-network-

congestion-like, subgroup, pulsing, and TCP-targeted attacks. We use simulation results to show 

how our macroscopic-level technique monitors spatial-temporal patterns under diverse DDoS 

flooding attacks in a large-scale network. We show that these attacks, which have an apparent 

effect on network congestion, reveal themselves in shifts of spatial-temporal traffic patterns 

without any observations from the suffering victim. The dynamic nature of some attacks may 

even become an advantage because our technique benefits from increased correlation arising 

under shifting patterns in network traffic. The rest of this paper is structured as four sections. 

Section 2 explains our technique to analyze macroscopic behavior. In Section 3, we describe our 

simulation model. In Section 4, we report and discuss our simulation results. We present 

concluding remarks in Section 5.  

 

2   Analysis Technique  

In large-scale networks, such as the Internet, spatial-temporal correlations emerge from 

interactions among adaptive transport connections and from variations in user demands. 

Capturing the macroscopic patterns of the correlations over time can help us to understand 

shifting traffic patterns, to identify operating conditions, and to reveal traffic anomalies. 

Motivated by insights about network dynamics at the macroscopic level, we propose a novel 

method to analyze spatial-temporal traffic at large scale [7]. In particular, by exploiting the 
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property of increased correlation, our analysis method can efficiently infer a shift in the spatial-

temporal traffic pattern of large areas of interest outside those few areas where measurements are 

made. More details about this method can be found elsewhere [7]. In this paper, we apply our 

analysis method to watch network-wide patterns based on measurements from only a few 

observation points. 

 

2.1   Representing network flow data 

Assume that there are N subnets, interconnecting through backbone routers to form a large-scale 

distributed network, where L subnet routers are deployed as observation points to log outbound 

traffic. First, we need to represent packets flowing between distinct source-destination pairs at 

each sampling interval. Let x = (x1, x2, …, xN)T denote the flow vector of corresponding packet 

counts, observed in L subnets during a given time interval. Each element of this flow vector is 

itself a vector defining the number of packets flowing into the corresponding subnet from each of 

the observation subnets in the distributed network. The method to obtain all flow variables in this 

vector is to first enumerate all the destination subnets and then the observation posts by 1 to L, 

and group these indices by subnet: the subnets sending to the first subnet in the first block, x1, 

and those sending to the second subnet in the second block, x2, and so forth. Thus, we form x 

with subvectors in the order x1 = (x11, x21, …, xL1 )T, x2 = (x12, x22, …, xL2 )T, …, xN = (x1N, x2N, …, 

xLN )T, where xij represents  packet flow from the ith observation point (i =1, 2, …, L) to the jth 

subnet (j =1, 2, …, N). Each flow variable xij is normalized as fij by its mean mij and standard 

deviation σij, 

                                                               ./)( ijijijij mxf σ−=                                                (1) 
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Then, the normalized flow vector f, corresponding to x, comprises N normalized subvectors, fk (k 

=1, 2, …, N), where each subvector is formed from normalized flow variables fik ( Li ≤  and 

Nk ≤ ).  

 

2.2   Cross-correlation analysis 

Cross-correlation analysis is a tool commonly used to analyze multiple time series. We can 

compute the equal-time cross-correlation matrix C with elements 

                                                             ,)()())(( tftfC klijklij =                                              (2) 

which measures the correlation between ijf and ,klf  where ⋅⋅⋅ denotes a time average over the 

period studied. The cross-correlation matrix is real and symmetric, with each element falling 

between –1 and 1. Positive values indicate positive correlation, while negative values indicate an 

inverse correlation. A zero value denotes lack of correlation.  

We can further analyze the correlation matrix C through eigenanalysis [8]. The equation 

                                                                        Cw = λw                                                        (3) 

defines eigenvalues and eigenvectors, where λ is a scalar, called the eigenvalue. If C is a square 

K-by-K matrix, e.g., )1( −= NLK  here, then w is the eigenvector, a nonzero K by 1 vector (a 

column vector). Eigenvalues and eigenvectors always come in pairs that correspond to each 

other. This eigenvalue problem has K real eigenvalues, some of which may repeat. An 

eigenvector is a special kind of vector for the matrix it is associated with, because the action of 

the underlying operator represented by the matrix takes a particularly simple form on the 

eigenvector input: namely, simple rescaling by a real number multiple. The eigenvector w1 

corresponding to the largest eigenvalue λ1 often has special significance for many applications. 
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There are various algorithms for the computation of eigenvalues and eigenvectors [8]. Here, we 

exploit the MATLAB eig command, which uses the QR algorithm to obtain solutions [9]. 

 

2.3   Defining the weight vector 

The cross-correlation matrix contains within itself information about underlying interactions 

among various flows. The components of the eigenvector w1 of the largest eigenvalue λ1 

represent the corresponding flows’ influences on macroscopic behavior, abstracted from the 

matrix C into the pair (λ1, w1). The eigenvector w1 comprises N subvectors, i.e., w1 = (w1
1, w1

2, 

…, w1
N)T. The kth subvector w1

k, corresponding to the kth subnet, is formed from components 

w1
ik ( Li ≤  and Nk ≤ ) representing the ith obsevation point’s contribution to the kth subnet. We 

consider the square of each component, (w1
ik)2, instead of w1

ik itself because 1)(
,

21 =∑
ki

ikw  [11]. 

We define the weight Sk (k = 1, 2, …, N) to be the sum of all (w1
ik)2 in the kth subvector w1

k, i.e., 

                                                                     ∑=
L

i
ikk wS 21 )( .                                                  (4) 

Sk represents the relative strength of the contributions of the flows towards the kth subnet. Thus, 

the knowledge of weight vector S = (S1, S2, …, SN) across varying k constitutes one summary 

view of network-wide traffic load. The evolving pattern of spatial-temporal correlation might 

allow us to infer where and when network congestion emerges. 

 

3   Simulation Model 

Network simulation plays a key role in building an understanding of network behavior. Choosing 

a proper level of abstraction for a model depends very much on the objective. Studying collective 
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phenomena seems to require simulating networks with a large spatial extent. Appropriate models 

for such studies should also include substantial detail representing protocol mechanisms across 

several layers of functionality (e.g., application, transport, network, and link), yet must also be 

restricted in space and time in order to prove computationally tractable. Previously, we adopted a 

two-tier modeling approach that maintains the individual identity of packets, producing a full-

duplex “ripple effect” at the packet level, and that also accommodates spatial correlations in a 

regular network structure [12, 13]. While our two-tier model has been applied successfully to 

qualitatively understand some traffic characteristics in large-scale networks [12, 7], some doubts 

exist about the realism inherent in the regular network structure of such a model. In this paper, 

we retain the individual identity of packets but we replace the regular network structure of our 

previous two-tier model with a large-scale irregular topology chosen to resemble the topology of 

a real network. 

 

3.1   Topology 

Here, we transform our regular two-tier model into an irregular four-tier topology, as shown in 

Figure 1. (The host-computer tier is not shown in Figure 1.) While the network core becomes 

heterogeneous and hierarchical, (tier-four) host-computer behavior remains homogeneous at the 

edge of the network. The (tier-one) backbone topology, including eleven (backbone) routers (A, 

B, … K), resembles the original Abilene network, as described elsewhere [14]. Links between 

backbone routers have varying delays. For example, the longest link between backbone routers D 

and F has a 20-ms propagation delay; the shortest propagation delay (3 ms) exists on the link 

between backbone routers J and K. Forty (tier-two) subnets connect to the backbone through 

subnet routers, represented by designators such as A1 and B2. Each subnet contains a variable 
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number of (tier-three) leaf routers, such as A1a and B2b. Each leaf router supports an equal 

number (200 in this paper) of (tier-four) source hosts, and a variable number (< 800 in this paper) 

of (tier-four) receivers, activated on demand. Link capacities gradually increase from host (tier 

four) to backbone, with (tier-one) backbone links being hundreds of times faster than links to 

(tier-four) hosts. 

 

 

 

 

 

 

 

 

 

Figure 1: The simulation model with 11 backbone routers, 40 

subnet routers, and 110 leaf routers 

 

3.2   Traffic sources 

There are a total of 22,000 sources in our model, which operates at the packet level. Each source 

models traffic generation as an ON/OFF process, which alternates between wake and sleep 

periods with average durations λon and λoff, respectively. When awake, a source may send, 

subject to any restrictions imposed by TCP, one packet at each time-step to the source’s attached 

leaf router. The packet will be placed at the end of the router’s queue. At the beginning of each 
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ON period, a destination receiver is chosen randomly from among leaf routers other than the 

local routers, i.e., all flows must transit through at least one backbone link. When sleeping, the 

source does not generate new packets at each time-step. ON/OFF sources provide a convenient 

model of user behavior. 

Empirical measurements on the Internet observe a heavy-tailed distribution of transferred 

file sizes [12]. Here, we use the Pareto distribution for both ON and OFF processes with the 

same shape parameter α [12]. In this paper, λon = 50, λoff = 5000 and α = 1.5.  

 

3.3   Routers 

Packets, the basic unit of transmission on TCP/IP networks, contain destination addresses, used 

by routers to correctly forward, and source addresses, used by receivers to identity the 

destination address for reply packets. To store and forward packets, which in our model travel a 

constant, shortest path between a source-destination pair for each flow, all routers maintain a 

queue of limited length (160 packets/router here), where arriving packets are stored until they 

can be processed: first-in, first-out. For convenience, in this paper we assume that every discrete 

simulation time-step is 1 millisecond. However, each leaf router, subnet router, or backbone 

router can in turn forward 5, 20, or 160 packets during one millisecond. This simulates capacity 

differences among various link classes from leaf-access to backbone in a hierarchically 

structured network. With such parameter settings, simulated backbone links are very lightly 

loaded. 

We select several subnet routers as observation points, e.g., B4, D5, F4, I1, and J5, which 

record all outbound flows to destination leaf routers. In this paper, we assume that a central 
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collector reliably receives a continuous stream of measured data from observation points in time 

to perform analysis for our various experiments. 

 

4   Simulation Experiments 

To observe the macroscopic effect of DDoS attacks, we arrange 50 attack sources in our 

simulation model, which are distributed uniformly throughout the simulated network. In our 

experiments, there are a total of 22,000 source nodes, and more than 10,000 simultaneously 

active TCP connections; thus, DDoS flows cannot be easily identified from the legitimate 

background traffic.  

Usually, DDoS attacks directed against the network infrastructure can lead to more 

widespread damage than those directed against individual web servers. Here, a subnet router (I1) 

will be the attack target. (Elsewhere [15], we report results where the attack target is a leaf 

router.) Since routers under attack may fail to collect and transfer measurement data, we assume 

in our experiments that the attack disables the observation point deployed at the subnet-router I1; 

thus, we perform our analysis using data from only four observation points (B4, D5, F4 and J5; L 

= 4). We experiment with various attack patterns: constant rate, increasing rate, natural-network-

congestion-like, subgroup, pulsing, and TCP-targeted attacks. Figure 2 provides a pictorial 

representation of four attack classes. We describe each type of attack further in the appropriate 

sections, where we apply our analysis technique to these different attack scenarios. 

 

4.1 Constant rate attack 

Constant rate, the simplest attack technique, is typical of known DDoS attacks. We arrange for 

all the 50 attack sources to launch constant-rate attacks collectively (that is, simultaneously). 
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Here, we do not have the attack sources generate attack packets with full force [16], so that they 

cannot be easily identified through attack intensity at the source or in transit networks. We 

assume that the variable H represents the intensity of an attack source. Since sources can only 

create one packet every millisecond, the maximum attack rate is one packet per millisecond, i.e., 

H ≤ 1 (packet/ms). Figure 2(a) shows the attack dynamics with a constant rate, starting from time 

t0. We experiment with a constant-rate DDoS attack where H = 1/5, that is, each attack source 

creates one attack packet for every 5 milliseconds beginning from t0 (= 500 s in this paper). 

 

 

 

 

 

 

 

 

 

 

Figure 2: Attack dynamics for: (a) constant rate, (b) increasing 

rate, (c) subgroup, (d) pulsing 

 

To show changes in spatial traffic pattern under this constant-rate attack (H = 1/5), we 

calculate the weight vector S using M data points within a moving time window MT from one 

time period to the next. Figure 3 shows S evolving with T = 2 s and with the time window MT (= 
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200 × 2 s = 400 s) sliding ahead every 20 s. The time axis indicates the end of the moving time 

window. The location axis represents 11 backbone-router zones, each of which denotes the 

subset of subnet routers therein. We can see that the attack really leads to a network-wide shift of 

spatial-temporal correlation, and the congestion at the victim (I1) reveals itself. Since we can 

observe this phenomenon and get the time and location of the attack (and without any help from 

the suffering victim), this type of monitoring should be meaningful to trigger further detection 

and filtering. On the other hand, Figure 3 also contrasts the distinct effect of the transient period 

(during onset of the attack) with the indistinctness after the new pattern becomes steady (say 

around t = 900 s). With fewer observation points, capturing the effect of transient periods is very 

important for monitoring the network-wide pattern shifting over time [7, 15].  

 

 

 

 

 

 

 

 

 

 

 

Figure 3: The spatial-temporal pattern of the constant-rate attack 

with H = 1/5 
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Moreover, the attack intensity H may influence the spatial-temporal dynamics. Figure 4 

shows the spatial-temporal pattern of a constant-rate attack with H = 1/10, and the weaker 

visibility of I1 (compared against Figure 3, when H = 1/5). We can easily imagine an attack 

weak enough not to cause an apparent shift of spatial-temporal correlation.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4: The spatial-temporal pattern of the constant-rate attack 

with H = 1/10 

 

While current detection methods seem designed mainly to counter constant-rate DDoS 

attacks, attackers may choose more sophisticated attack dynamics. As defense mechanisms are 

deployed to counter simple attacks, we are likely to see more complex attack patterns that make 

countermeasures against DDoS attacks more difficult.  
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4.2 Increasing rate attack 

Usually, an abrupt change in traffic volume is one important signal to initiate anomaly detection. 

Attacks that exhibit a gradually increasing rate, as shown in Figure 2(b), may lead to slow 

exhaustion of a victim’s resources. The state change in the victim network could be so gradual 

that services degrade slowly over a long period of time, delaying detection of the attack. In the 

case of increasing-rate attacks, an abrupt change in traffic volume will not occur; thus, some 

other form of anomalous pattern must be identified. 

In this experiment, we assume that the steady attack rate (H = 1/5) of each attack source is 

achieved gradually over 300 seconds (from t0 = 500s to t1 = 800s) starting from a weak rate (H = 

1/35). Figure 5 shows the spatial-temporal pattern of this increasing-rate attack. The attack 

gradually builds up congestion in router I1 as attack intensity increases, and thus reveals itself in 

the spatial-temporal evolution. There might be a possibility that an increasing-rate attack 

deliberately accelerates slowly, taking a very long time to reach a steady intensity; however, we 

believe that the congestion caused by this class of attack will still be discovered sooner or later, 

along with the changing traffic demand [15]. 

 

4.3   Natural-network-congestion-like attack  

Flash crowds on the Internet can trigger false alarms among DDoS attack detection mechanisms. 

Further, DDoS attacks may mimic natural network congestion in order to avoid detection [6]. 

Usually, legitimate traffic occurs in waves, while DDoS attacks, such as ICMP ping flooding, 

direct malicious traffic toward victims in a fairly persistent form. An experienced attacker may 

design each attack source to behave like a normal user, exhibiting bursts of traffic followed by 

silent periods, so that the flooding attack would appear similar to natural network congestion. In 
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particular, if attack packets use the same forged source addresses during each burst period, then 

the attacks cannot be detected simply by recognizing sudden change in the number of 

connections [17]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: The spatial-temporal pattern of the increasing-rate attack 

with H = 1/5 increased from H = 1/35 over 300 seconds from t0 = 

500 s to t1 = 800 s 

 

Following the expression formulated by Huang, Kobayashi, and Liu [6], we can calculate the 

minimum number of attack sources required to deplete the link capacity (Cv packets/ms) of a 

victim, 

                                                    onoffonvs CN ''' /)( λλλ +≥ ,                                           (5) 



 18

where λ’
on and λ’

off  denote the mean ON and OFF periods for each source. In our experiments, 

the capacity of the victim subnet is 20 packets per millisecond, i.e., Cv = 20. If we set λ’
on = 5 ms 

and λ’
off  = 50 ms, then Ns ≥ 220. This means that 220 attack sources can completely block a 

victim’s service by launching an attack that mimics natural network congestion. Here, we use 

only 50 such attack sources to degrade victim performance, and we observe if this low-grade 

attack leads to a corresponding shift in spatial-temporal pattern. Figure 6 shows the spatial-

temporal pattern formed by this low-grade attack, which mimics natural network congestion. The 

spatial-temporal evolution reveals the induced congestion. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: The spatial-temporal pattern of the natural-network-

congestion-like attack with λ’
on = 5 ms, λ’

off  = 50 ms, and Ns = 50 
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4.4   Subgroup attack 

If compromised sources are divided into several subgroups that coordinate so that one subgroup 

is always active, then successive attacks by the subgroups can still induce continuous denial of 

service at an attack victim. To simulate a subgroup attack, we divide 50 attack sources into three 

subgroups. As shown in Figure 2(c), each of the three subgroups (I: 17 sources, II: 17 sources, 

and III: 16 sources) is active in turn: the first subgroup attacking from t0 to t1, the second 

subgroup attacking from t1 to t2, and the third subgroup starting from t2. Here, we set t0 = 500 s, 

t1 = 680 s, t2 = 860 s, and H = 1/5. We also arrange the three subgroups spatially in the left, the 

middle, and the right of the network so that the attack changes direction dynamically. Such 

attack dynamics make if difficult for traceback approaches [18, 19] to identify the attack sources 

and for pushback mechanisms [20] to capture the congestion signature.  

Figure 7 shows the spatial-temporal pattern of our simulated subgroup attack, which reveals 

itself through the signature of congestion at victim I1. Comparing against the constant rate attack 

(Figure 3 and Figure 4), we find that for our analysis method the dynamic nature of the subgroup 

attack seems advantageous, because the increased correlation induced by shifts in attack traffic 

keeps the weight of the victim I1 salient over a longer time range. 

 

 

 

 

 

 

 



 20

 

 

 

 

 

 

 

 

 

 

 

Figure 7: The spatial-temporal pattern of the subgroup attack with 

three subgroups and H = 1/5 

 

4.5   Pulsing attack 

Pulsing attacks, exhibiting a fluctuating rate oscillating between H and zero, occasionally reduce 

attack traffic in order to avoid detection. The dynamics of a pulsing attack appear as an ON/OFF 

pattern with period Tp and burst duration lp, as shown in Figure 2(d). During a pulsing attack, 

attack sources periodically abort the attack only to resume it at a later time. Since sources of a 

pulsing attack send out bursts of attack packets instead of steady packet streams, the tradeoff 

between detection accuracy and latency impedes real-time detection. 

In our simulated pulsing attacks, we set Tp = 300 s, lp = 60 s, and H = 1/5. Figure 8 shows the 

resulting spatial-temporal pattern, where the attack is clearly revealed. Similar to the subgroup 
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attack, the dynamic nature of the pulsing attack leads to frequent shifts in the traffic pattern, 

which strengthens correlation and causes the greater weight of victim I1 to persist for a longer 

period. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: The spatial-temporal pattern of the pulsing attack with 

Tp = 300 s, lp = 60 s, and H = 1/5 

 

A sophisticated attacker may attempt to launch a special variant of the pulsing attack: a low-

rate TCP-targeted DDoS attack [21], which exploits the TCP retransmission time-out mechanism 

to throttle TCP flows, while eluding detection. Under such an attack, TCP flows to the victim 

may continually incur loss as they try to exit their timeout states. The TCP-targeted DDoS attack 

transmits short-duration high-rate bursts periodically. We simulate such a TCP-targeted attack 
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with the same parameters used by Kuzmanovic and Knightly [21], i.e., Tp = 1.1 s, lp = 100 ms, 

and H = 1. Figure 9, which shows the spatial-temporal pattern of this TCP-targeted DDoS attack, 

still reveals the induced congestion at the victim I1. 

Note that the weight of the victim in Figure 9 does not benefit from the dynamics of this 

TCP-targeted attack. Figure 9 is similar to Figure 4 and Figure 6, which exhibit more natural 

patterns of congestion. In fact, the actual intensity (
11
1
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11.0

=
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=
×
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) of our simulated TCP-

targeted attack is the same as the intensity (
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1

505
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''

'

=
+

=
+ offon
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λλ
λ

) of our attack that mimics 

natural network congestion, which is similar to the intensity (H = 1/10) of one of our simulated 

constant-rate attacks (Figure 4). The TCP-targeted and the natural-congestion attacks both 

exhibit fluctuating rates but over small timescales (near or under 1 s), so the associated spatial-

temporal traffic patterns tend to become steady more quickly, causing loss of the increased 

correlation associated with changing traffic patterns. However, the dynamics of the pulsing 

attack (Figure 8) varies over a larger time scale (about 300 s), so the increased correlation is 

present not only at onset of the attack, but continues to appear during the entire attack. 
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Figure 9: The spatial-temporal pattern of the TCP-targeted attack 

with Tp = 1.1s, lp = 100 ms, and H = 1 

 

5   Conclusion 

Creating defenses for flooding-based DDoS attacks requires monitoring dynamic network 

activities in order to obtain timely and significant information. While much current effort focuses 

on detecting constant-rate attacks, DDoS attack patterns appear likely to become more 

sophisticated and effective. In this paper, we proposed a means for early detection of DDoS 

flooding attacks by monitoring macroscopic (network-wide) effects. We experimented with 

different attack modes: constant rate, increasing rate, natural-network-congestion-like, subgroup, 

pulsing, and TCP-targeted attacks. We found that these attacks, which have the apparent effect of 
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inducing network congestion, reveal themselves through shifts of spatial-temporal patterns that 

exhibit the same signature: congestion at the victim network. Our simulation results show that 

macroscopic-level monitoring could capture shifting traffic patterns during transient periods with 

only a few observation points. Our analysis method reveals the time and location of an attack 

without traffic observations from the suffering victim. We also find that the dynamic nature of 

selected attack types (e.g., subgroup and pulsing attacks) may be advantageous for our analysis 

method, because increased correlation induced by dynamic changes in attack traffic keeps the 

weight of the attack victim salient for longer periods. Our results suggest that macroscopic-level 

monitoring might be both practical and helpful for triggering more focused detection and 

filtering in transit or source networks.  
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