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Abstract. Quality of Service (QoS) information for Web services is essential to 
QoS-aware service management and composition.  Currently, most QoS-aware 
solutions assume that the QoS for component services is readily available, and 
that the QoS for composite services can be computed from the QoS for 
component services. The issue of how to obtain the QoS for component services 
has largely been overlooked.  In this paper, we tackle this fundamental issue. 
We argue that most of QoS metrics can be observed/computed based on service 
operations. We present the design and implementation of a high-performance 
QoS monitoring system. The system is driven by a QoS observation model that 
defines IT- and business-level metrics and associated evaluation formulas.  
Integrated into the SOA infrastructure at large, the monitoring system can 
detect and route service operational events systemically. Further, a model-
driven, hybrid compilation/interpretation approach is used in metric 
computation to process service operational events and maintain metrics 
efficiently. Experiments suggest that our system can support high event 
processing throughput and scales to the number of CPUs. 

1   Introduction 

Web services are autonomous software systems identified by URIs which can be 
advertised, located, and accessed through messages encoded according to XML-based 
standards such as SOAP, WSDL and UDDI. Web services encapsulate application 
functions and information resources, and make them available through programmatic 
interfaces, as opposed to the human-computer interfaces provided by traditional Web 
applications. Since they are intended to be discovered and used by other applications 
across the Web, Web services need to be described and understood in terms of both 
functional capabilities and non-functional, i.e., Quality of Service (QoS) metrics. 

Given the rapidly increasing number of functionally similar Web services available 
on the Internet, there is a need to be able to distinguish them using a set of well-
defined QoS metrics. Further, in situations where a number of component services are 
aggregated to form a composite service, it is necessary to manage the QoS for the 
composite service based on the QoS for individual component services. Most systems 
for QoS-aware service selection [2][4][5][6] and management [22][23] assume that 
the QoS information for component services is pre-existing. How to obtain this QoS 
information is largely overlooked. In this paper, we try to address this fundamental 
issue.  
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In general, QoS metrics can be classified into three categories, based on the 
approaches to obtaining them: 

• Provider-advertised metrics.  This type of metrics is usually provided by service 
providers, which is subjective to service providers. One example is the execution 
prices advertised by service providers. 

• Consumer-rated metrics. This type of metrics can be computed based on service 
consumer's evaluations and feedback, which is therefore subjective to service 
consumers. For example, the service reputation is considered average according to 
service consumers' evaluations. 

• Observable metrics. This type of metrics can be observed, i.e., computed, based on 
monitored service operational events, which is objective to both service providers 
and consumers. Majority of QoS metrics in fact can be observed, including those 
of IT level and of business level. IT-level metrics include service execution 
duration, reliability, and etc. At business level, metrics are usually domain-specific 
and require some modeling efforts to define the formulas [5]. For example, the 
metric "forecast accuracy" for forecast services  in supply chain management is 
usually defined as: 
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In order to compute such a metric value, both actual demand and forecasted 
demand need to be monitored. It should be noted that the metric value needs to be 
recomputed whenever the execution of a service instance is completed. 
 

In this paper, we focus on these observable metrics. We adopt a model-driven 
approach to the definition and monitoring of Web service QoS metrics. We introduce 
an observation metamodel that specifies a set of standard building blocks for 
constructing various QoS observation models. An observation model defines the 
specific QoS metric types that are of interest, as well as rules on when and how the 
metric values are computed.  

An observation model has to be executed by a QoS monitoring system. There are 
two main issues in designing and implementing such a monitoring system:  

• Service monitoring architecture. To detect service operational events, service 
monitoring needs to be integrated into the SOA infrastructure at large. It is 
important to leverage existing components in the SOA infrastructure, and to enable 
detection and routing of the service operational events systematically.  

• QoS metric computation. There are  three main challenges in designing an efficient 
computation runtime: 
• High volume of service operational events. In large-scale SOA solutions, there 

can be thousands of business process instances concurrently running. Even if 
each process instance generates only one operational event per second, there 
may be thousands of events that need to be processed per second. It is thus 
important for the runtime to support high event-processing throughput. 

• Complexity of metric computation. The ECA rules for metric computation 
actually create a workflow representable as statecharts. The complexity of 
metric computation stems from two aspects: the topology of the statecharts and 
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the formulas for computing the metric values. For example, hundreds of 
expressions may be triggered directly or indirectly to update a series of metric 
values due to the occurrence of a single service operational event. Unlike most 
complex event processing systems that focus on event filtering and composite 
event detection, metric computation is concerned with the expression evaluation 
triggered by events. The potentially large number of expressions that need to be 
evaluated significantly increases the overall complexity of the system. 

• Metric value persistence. QoS metric values need to be saved in persistent 
storage after they are computed/updated, in order to make them available for 
other components (e.g., service selectors). Given the high volume of service 
operational events and the complexity of metric networks, an appropriate 
persistence mechanism is required, in order to support both efficient metric 
value persistence and queries. 

Given QoS metrics are time-critical and time-sensitive information, it is important 
to develop a high performance metric computation engine that can compute/update  
metric values in real time.  
 

In order to tackle the above challenges, we design and implement a service QoS 
monitoring system. It provides a user-friendly programming model that allows users 
to define the QoS metrics and associated ECA rules. It enables declarative service 
QoS monitoring in the SOA infrastructure. It employs a collection of model-analysis 
techniques to improve the performance of metric computation. In a nutshell, the main 
contributions of this paper are: 

• Monitoring-enabled SOA Infrastructure. Building upon our previous work on 
semantic service mediation [21] and semantic pub/sub [18] that enables flexible 
interoperation among Web services, we further enrich the SOA infrastructure to 
enable declarative event detection and routing in dynamic and heterogeneous 
environments. Such an extension allows the QoS for Web services to be monitored 
with small programming efforts. 
• Efficient QoS computation. We present a novel hybrid compilation-
interpretation approach to QoS metric computation. A series of model-analysis 
techniques is applied to improve event processing throughput. At build time, 
custom executable code is generated for each ECA rule. The custom code is more 
efficient to execute than generic code driven by ECA rules. At runtime, model-
driven mediators interpret a transformed observation model to invoke generated 
code at appropriate points. Also, model-driven planning is adopted to enable wait-
free concurrent threads for metric computation, which eliminates the overhead of 
concurrency control. Our experiments suggest that the system not only can support 
high event throughput but also can scale to the number of CPUs.  

 
The rest of this paper is organized as follows. Section 2 presents the QoS 

observation metamodel. Section 3 illustrates the SOA infrastructure that enables 
service QoS monitoring. Section 4 discusses the design of a high performance metric 
computation engine. Section 5 briefly describes the implementation and 
experimentation. Following discussion on related work in Section 6, Section 7 
provides concluding remarks.  
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2   QoS Observation Model 

In the presence of multiple Web services with overlapping or identical functionality, 
service requesters need some QoS metrics to distinguish one service from another. 
We argue that it is not practical or sufficient to come up with a standard QoS model 
that can be used for all Web services in all domains.  This is because QoS is a broad 
concept that encompasses a large number of context-dependent and domain-specific 
nonfunctional properties. Therefore, instead of trying to enumerate all possible 
metrics, we develop a QoS observation metamodel which can be used to construct 
various QoS observation models. The observation models in turn define the generic or 
domain-specific QoS metrics.  

 

Fig. 1. Simplified Class Diagram of the Observation Metamodel 

As indicated by the metamodel in Figure 1, an observation model can include three 
types of monitor contexts.  Each type of monitor context corresponds to a type of 
entity to be monitored.  A ProcessMonitorContext corresponds to a business process 
and specifies how a composite service should be observed. A ServiceMonitorContext 
(resp. ServiceInterfaceMonitorContext) corresponds to a service (resp. service 
interface).  These two kinds of monitor contexts specify how component services 
should be observed. Users can define a collection of QoS metrics in a monitor 
context.  A QoS metric can be of either a primitive type or a structure type, and can 
assume a single value or multiple values. For the computation logic, we adopt Event–
Condition-Action (ECA) rules (c.f. Expression 1) to describe when and how the 
metric values are computed. Such a rule-based programming model frees users from 
the low-level details of procedural logic. 

Event(eventPattern)[condition]|expression (1) 

In an ECA rule, the event pattern component indicates either a service operational 
event or the value change of a metric value. For example, when a service instance starts 
execution, a service activation event can be detected. The condition component in a rule 
is a Boolean expression specifying the circumstance to fire the computation action 
described in the expression component. The expression consists of an association 
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predicate and a value assignment expression. The association predicate identifies which 
monitor context instance should receive the event. The operators allowed in the 
predicate expressions include relational operators, event operators, vector operators, set 
operators, scalar operators, Boolean operators and mathematical operators, etc.    An 
example ECA rule for metric computation is given in equation (2). 

1 2 1 1 2 1
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In the above example, when an instance of event E1, 
denoted as e, occurs, if e..a2 

>12, then the event is delivery to the instance of MC1 whose serviceID metric 
matches the serviceID field of event instance e, and the metric value of m2 is 
computed by function f1(e). When there is no matching context instance, a new 
monitor context instance is created. It should be noted that the monitor context 
represents the entity that is being monitored, which is a service instance in this case. 
Another example ECA rule is given in equation (3). In the example, when the value of 
metric MC1.m2 changes, the value of metric MC1.m3 is updated by function 
f2(MC1.m1,MC1.m2). 

1 2 1 3 2 1 1 21( ( . )[] |  . : ( , . ) .Event changeValue MC m MC m f MC m MC m=
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3   Monitoring-Enabled SOA Infrastructure 

Figure 1 illustrates the proposed monitoring-enabled SOA infrastructure. Basing on 
the generic SOA infrastructure, three specific components that enable QoS monitoring 
are introduced. The Web Service Observation Manager provides interfaces that allow 
users to create observation models. The Metric Computation Engine generates 
executable code, detects service operational events and computes and saves metric 
values. The QoS Data Service provides an interface that allows other SOA 
components to access QoS information via a Service Bus. In this section, we mainly 
focus on the creation of observation models and the detection of service operational 
events. The details of metric computing and saving are presented in next section. 

3.1   Observation Model Creation 

We start with the observation model creation. When importing a process schema, the 
Web Service Observation Manager generates a ProcessMonitorContext first. For each 
service request in the process, it creates a ServiceInterfaceMonitorContext definition, 
in which two types of event definitions are also created, namely execution activation 
event and execution completion event. For example, if a service request is defined as 
R (TaskName, Cin, Cout), where Cin (Cin=<C1, C2,…, Cn >) indicates input types and 
Cout (Cout=<C1, C2,…, Cm >) indicates excepted output types, then the execution 
activation event can be defined as Es(PID, SID, TimeStamp, TaskName, ServiceName, 
ServiceInterfaceName, <C1, C2,…, Cn>), where the PID is the process instance ID and 
the SID is the service ID. The execution completion event is defined as Ec(PID, SID, 
TimeStamp, TaskName, ServiceName, ServiceInterfaceName, <C1,C2,…,Cm>). Based 
on these service operational event definitions, the designers can further define the 
QoS metrics and their computation logic by creating ECA rules.  
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Fig. 2. Simplified QoS Monitoring-enabled SOA infrastructure 

3.2   Detection and Routing of Service Operational Events 

Given that the observation model is an event-driven programming model, there are 
two main steps before processing the events to compute the QoS metric values: event 
detection and event routing. If we assume that the data types are standardized across 
different process schemas and service interfaces, these two steps can be performed 
based on the syntactic information on service interfaces and service operational 
events. 

However, such an assumption is impractical. Since services are operated in 
heterogeneous and dynamic environments, it is inappropriate to assume that all the 
service providers adopt the same vocabulary to define service interfaces. To improve 
the flexibility of SOA solutions, we have introduced semantics in service mediation 
[3], wherein service interfaces can be semantically matched with service requests. 
Therefore, when there are not any syntactically matched service interfaces for a 
service request, semantic match is applied to identify service interfaces. In cases of 
semantic matches, the data format transformations are required when invoking the 
matched service and returning the execution results to service consumers. In such 
cases, semantic matching is also required between the event definitions in observation 
models and the actual operational events detected. Fortunately we can leverage the 
same semantic-mapping capability provided by semantic service mediation to 
transforms operational events into formats that conform to the event definitions in the 
observation model.  

If we assume that a service request is defined as R(TaskName, Cr
in, Cr

out) and 
Cr

out=<C1,C2,…,Cm>,  the generated service activation event definition in the 
observation model is then Ec(PID, SID, TimeStamp, TaskName, ServiceName, 
ServiceInterfaceName,<C1,C2,…,Cm>). We also assume that the matched service 
interface is defined as i (serviceInterfaceName, Ci

in, Ci
out), and that the execution 
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output is <o1,o2,…,ol>. If <o1,o2,…,ol> does not exactly match <C1,C2,…,Cm>, but is 
semantically compatible (see Definition 1),, a semantic transformation that converts 
<o1,o2,…,ol> to <o'1,o'2,…,o'm> is needed.  Similarly, if the detected service 
completion event ec(pID, sID, timeStamp, taskName, serviceName, <o1,o2,…,ol>) 
dose not exactly match the event definition Ec, same semantic transformation from 
<o1,o2,…,ol> to <o'1,o'2,…,o'm> is also required before the service completion event is 
emitted. 

 

Definition 1. (Semantic Compatibility) <o1,o2,…,ol>  is semantically compatible  
with <C1,C2,…,Cm>, if  for  each Ci, there is a oj that is either an instance of Ci or an 
instance of Ci's descendant class.  

 

In our design, the Metric Computation Engine takes observation models as input and 
generates event detection requests to the Semantic Service Mediator. The Semantic 
Service Mediator maintains a repository of service event detection requests (not 
shown in the Figure 1). Whenever a service execution is activated or completed, it 
searches the repository to determinate whether a service activation (or completion) 
event needs to be emitted.  The search is done by semantically matching the service 
input and output with entries in the event detection request repository.  

Similarly, it is impractical to assume that different process schemas use 
standardized data types and service interfaces. Therefore, when the event definitions 
in observation models are derived from service requests, it is necessary to consolidate 
those semantically matched monitored events. For example, consider two service 
requests R1(TaskName1, C1

in, C1
out) and R2(TaskName2, C2

in, C2
out) in two process 

schemas PS1 and PS2.  Two execution activation event definitions can be generated as 
Es

1 (PID, SID, TimeStamp, TaskName, ServiceName ServiceInterfaceName, <C1, 
C2,…,Cn>) and  Es

2 (PID, SID, TimeStamp, TaskName, ServiceName, 
ServiceInterfaceName, <C1, C2,…,Cm>) in two observation models OM1 and OM2 
respectively.  If <C1, C2,…,Cn > is semantically matched with <C1, C2,…,Cm>, then 
the service operational events detected when executing PS1 (resp. PS2) should also be 
transformed and delivered to  context instances in OM2 (resp. OM1). These 
transformations are performed by a semantic pub/sub engine [4]. Specifically, the 
Metric Computation Engine takes observation models as input and generates event 
subscriptions for the semantic pub/sub engine, relying on the latter to perform event 
transformation and event routing. For example, given OM1, the Metric Computation 
Engine subscribes to event Es

1 (PID, SID, TimeStamp, TaskName, ServiceName, 
ServiceInterfaceName, <C1, C2,…,Cn>). When an event es

2 (pID, sID, timeStamp, 
taskName, serviceName, serviceInterfaceName,<o1,o2,…,om>)  (an instance of Es

2) is 
published from the service mediator, the event is transformed to es

1(pID, sID, 
timeStamp, taskName, serviceName, serviceInterfaceName, <o'1,o'2,…,o'n>) by 
semantic pub/sub and delivered to the appropriate context instances of OM1. 

4   High Performance Metric Computation Engine 

Given a monitoring-enabled infrastructure to detect and route service operational 
events, it is imperative that these events be processed efficiently, and that the QoS 
metric values be computed and saved efficiently as well. The main challenges of the 
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system design are tri-fold: high volume of service operational events, complexity of 
expressions involved in metric computation and persistence of metric values. 
Although most complex event processing systems [12][13][14][15] support high 
throughput of events, they primarily focus on event filtering and compound event 
detection. They do not address metric computation, where event data triggers and 
contributes to a complex flow of computation. Further, they don’t consider the issue 
of state persistence. In this paper, we advocate a series of model analysis techniques 
to improve event throughput in a monitoring environment. In this paper, we only 
sketch out the high-level design but omit more detailed descriptions, due to the 
limitation of space. More complete descriptions of these techniques can be found in 
[11]. 

4.1   Model Transformation and Execution Framework 

As we discussed earlier, event-driven rule-based programming is user friendly, 
particularly for business integration developers. However, because of the overhead in 
locating rules to be executed at runtime, the event-driven model does not lend itself to 
efficient execution, especially when the number of rules is very large, such as in the 
case of service QoS monitoring. In our design, the rule-based model is transformed to 
a state-based model, wherein statecharts are adopted to reorganize the rules. The 
rationale for such a model transformation is that statecharts organize the rules by 
states, which can greatly reduce the overhead in locating rules at runtime. 

The construction of statecharts is based on user-defined ECA rules: a state 
represents either an event or a metric, while a transition between two states represents 
the triggering relationship (see Table 1). For example, if the event pattern is a service 
operational event in an ECA rule (see expression 2 for an example), then there is a 
transition from the event state to the metric state. In another case, the event pattern is 
the value change of a metric (see expression 3 as an example), and the corresponding 
transition is from one metric state to another metric state.  

Table 1. Transforming the ECA rules to Statecharts 

 

 

With the above transformation, each service operational event initiates a statechart. 
Thus, the execution of the ECA rules is converted to the execution of statecharts. An 
example of transformation is shown in Figure 3. In the example, three statecharts are 
generated from twelve ECA rules. The advantage of executing statecharts is that the 
overhead of a full rule set scan is eliminated when identifying the rules to be executed 
at runtime, as the next rules that need to be executed can be located via the outgoing 
transitions of the current state.  

There are two approaches to executing statecharts, compilation and interpretation. 
Both approaches have their own advantages and drawbacks. We discuss the 
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interpreting approach first. In order to execute the statecharts, the interpreter not only 
interprets the state transition logic, but also interprets the expressions in the rules.  
Given that the operators that appear in expressions can be relational, set, vector, 
scalar, and etc., interpretation is less efficient than compilation [9]. With a 
compilation approach, executable code is generated from a statechart. As custom code 
is generated at buildtime for the execution of statecharts, this reduces CPU cycles at 
runtime. However, the compilation approach entails another potential performance 
issue. When using multi-threads to process events, thread scheduling relies on the 
lock-based scheduling mechanism provided by either the operating system or 
language runtime (e.g., JVM). Such lock-based scheduling usually results in high 
system overhead [10], especially in multiple CPUs systems.  

We take advantages of both approaches and propose a hybrid approach. In the 
hybrid approach, state transition logic is interpreted, while the expression in a rule is 
compiled into standalone executable code. The advantages of such a hybrid approach 
are twofold. On the one hand, by interpreting the state transition logic, the 
computation engine can plan the execution of rules in finer granularity, i.e., at the 
transition level instead of the statechart level. For example, information about the 
dataflow among the rules can be used to plan the wait-free execution of the 
expressions (details can be found in next subsection). On the other hand, the 
execution of an individual expression is done by executing pre-complied code, which 
enjoys the efficiency of the compilation approach. 

Adopting the hybrid approach, we further develop a queuing network to execute 
the statecharts, in order to enable dynamic CPU allocation at runtime. At deployment 
time, the ECA rules in different statecharts are distributed to a collection of mediators. 
  

 

Fig. 3. Execution Model Transformation 
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Each mediator in the network possesses a work item queue, an interpreter and a thread 
pool. The queue buffers available work items. The interpreter executes the complied 
code of expressions in the rules. The thread pool enables multi-thread concurrent 
processing on work items, wherein the number of thread can be configured 
dynamically. The threads in different thread pools have the same level of priority. The 
CPU resource allocation for a mediator is determined by the size of its thread pool. 
By configuring the size of the thread pool dynamically, CPU resource can be 
dynamically allocated.  

The collection of mediators forms a queuing network, wherein the number of 
mediators and the topology of the network are determined by the topologies of 
statecharts. The strategies for constructing the queuing network are: (i) The order of 
rule execution is preserved by the network topology. This is achieved by first sorting 
the rules based on the execution sequence in each statechart and then distributing the 
rules to an ordered collection of mediators based on the rules’ execution order. (ii) 
The communication cost among mediators is minimized by eliminating data access 
contention among the threads in different mediators. This can be done by distributing 
rules that access the same data into the same mediator. An example of queuing 
network is shown in Figure 3.  

4.2   Execution Planning 

One of the key techniques for improve event processing throughput is multi-threaded 
concurrent processing. However, event throughput normally is not proportionate with 
the number of concurrent threads deployed, because of the runtime overhead incurred 
by the concurrency control mechanism. QoS monitoring requires that QoS metric 
values be persistent and we use a relation database for this purpose. In order to reduce 
the amount of I/O between the Metric Computation Engine and the datastore, a cache 
is also instituted. Therefore, either the datastore or the cache needs to provide 
concurrency control. Although modern RDBMs support row-level locking, such an 
option substantially deteriorates database performance. On the other hand, if 
concurrency control is implemented in the cache, a rollback segment needs to be 
maintained for each transaction. Given the large volume of events and that each event 
occurrence initiates a transaction, a large number of rollback segments need be 
managed by the cache. These rollback segments occupy significant memory and 
eventually impair performance. Therefore, an approach of supporting concurrent 
threads without locking, such as a lock-free approach, is more appealing [16][17]. 
However, these lock-free approaches rely on either the hardware or programming 
language support on for compare-and-swap [3]. Aiming at a solution that is 
independent of hardware or programming languages, we plan the execution ahead of 
time using information in the observation model The basic idea is that we plan the 
rule execution in each mediator: if the execution of two rules update the same metric 
or one rule produces operands for another rule, then these two rules need to be 
executed sequentially; otherwise these two rules can be executed concurrently. It 
should be noted that the execution order relationships between the rules are derived 
before the runtime. Therefore, there is not much runtime overhead involved when 
planning the executions.  
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5   Implementation and Experimentation 

Our implementation leverages the Websphere Process Server (WPS) [24]. WPS is a 
SOA solution platform that contains a BPEL engine and provides a service bus for 
Web services. The proposed Metric Computation Engine uses a message driven bean 
to receive service operational events routed from the semantic pub/sub engine. We 
have also developed a dashboard to display the metric values from the QoS Data 
Service. We have conducted a series of experiments to demonstrate the functionality 
of Web service QoS monitoring. We first created a business process called "patient 
visit" (see Figure 4) and deployed it on WPS. From the service request definitions in 
the process, a skeleton observation model was generated by the Web Service 
Observation Manager that consisted of one process monitor context, six service 
interface monitor contexts and twelve service operational event definitions. Given the 
skeleton model, we then created about forty metric definitions and ECA rules. We 
deployed the complete model into the Metric Computation Engine, wherein the model 
information was transformed and executable Java classes were generated. These 
generated Java classes were distributed to five mediators. When the process "patient 
visit" is executed, the related service operational events are detected and published to 
the Semantic Pub/Sub engine. When these events are routing to the Metric 
Computation Engine, the metric values are computed and saved. Eventually, the 
computed metric values are displayed on the dashboard in realtime fashion. 

To test the system throughput, we designed an event emitter that sends simulated 
service operational events to the Metric Computation Engine with a given sending 
rate (i.e., number of events per second). On an Intel CPU Linux server, the Metric 
Computation Engine can process 660 events/sec. In order to test its salability, we 
deployed the Metric Computation Engine on multiple CPU hardware platforms (2 and 
4 CPUs). The experiment results (1210 events/sec and 2012 events/sec respectively) 
demonstrate that our system is scaled to the number of CPUs. 

 

Fig. 4. An Example of Business Process 

6   Related Work 

In this section, we review work in the areas of QoS management and event processing 
systems. QoS management has been widely studiesd in the context of middleware 
systems [18][19][20]. These efforts have addressed the following issues: QoS 
specification to allow description of application behavior and QoS parameters, QoS 
translation and compilation to translate specified application behavior into candidate 
application configurations for different resource conditions, QoS setup to 
appropriately select and instantiate a particular configuration, and QoS adaptation to 
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runtime resource fluctuations. Most efforts in QoS-aware middleware, however, are 
focused on the network transport and system level. Little work has been done at the 
application and business process levels. 

QoS-Aware service composition [1][2][4][5][6][7][8][19][20] aims for selecting 
component services to optimize the overall QoS of a business process. In [2][7], the 
system assumes that the QoS information of components is pre-existing, and 
therefore, the overall QoS of composite service can be computed based on formulas. 
In [8], the formulas that compute the QoS of a workflow based on both the QoS of 
component services and the workflow schemas are discussed. However, it only 
focuses on the QoS at IT level. In [5], a QoS-aggregation system is presented. It 
provides an editor for the QoS aggregation function that allows users to specify QoS 
attributes and their aggregation formulas. It also provides an interpreter that evaluates 
a workflow's global QoS. Again, it assumes that the QoS information of component 
services is pre-existing. Further, it does not provide the details on how to compute the 
aggregation formulas efficiently. Different from above works, this paper tries to 
tackle the fundamental issue: monitor and compute the QoS of component/composite 
services, both at IT and business level. Further, it discusses the design and 
implementation of a high performance metric computation engine.  

Complex event processing systems [12][13][14] focus on event filtering and 
compound event detections However, in service QoS monitoring, event filtering logic 
is relatively simple.  Complicated computation happens after the events are filtered, 
i.e., when the event data is used to compute/update a collection of metrics. rFurther, 
most of the complex event processing systems do not support state persistence, even 
though it is a critical requirement for a service QoS monitoring system to save metric 
values. 

7   Conclusion 

In this paper, we advocate computing the QoS metrics of services by monitoring the 
executions. An observation model is proposed, which allows users to define the 
metric types and formulas. We design a monitoring-enabled SOA infrastructure to 
enable the systematic detection and routing of service operational events. Further, we 
implement a high performance metric computation engine that can support high event 
throughput. Our further work includes supporting the metric network (i.e., 
probabilistic, system dynamics and extensible user-defined dependency) and a careful 
study of the system.  
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