

Open access • Journal Article • DOI:10.1002/QRE.2412

Monitoring the ratio of two normal variables using variable sampling interval exponentially weighted moving average control charts — Source link

Huu Du Nguyen, Kim Phuc Tran, Cédric Heuchenne

Institutions: Dong-a University, École Normale Supérieure, University of Liège

Published on: 01 Feb 2019 - Quality and Reliability Engineering International (John Wiley & Sons, Ltd)

Topics: EWMA chart, Markov chain, Control chart, Normal distribution and Markov process

Related papers:

- A note on "Monitoring the ratio of two normal variables using variable sampling interval exponentially weighted moving average control charts"
- The performance of the Shewhart-RZ control chart in the presence of measurement error
- · Evaluating properties of variable sampling interval control charts
- Multivariate Control Charts for Monitoring the Process Mean and Variability Using Sequential Sampling
- Multivariate Control Charts for Monitoring the Mean Vector and Covariance Matrix with Variable Sampling Intervals

Monitoring the Ratio of two Normal Variables using Variable Sampling Interval EWMA control charts Huu Nguyen, Kim Phuc Tran, Cédric Heuchenne

► To cite this version:

Wiley, 2019, 10.1002/qre.2412. hal-02562717 Variable Sampling Interval EWMA control charts. Quality and Reliability Engineering International, Huu Nguyen, Kim Phuc Tran, Cédric Heuchenne. Monitoring the Ratio of two Normal Variables using

https://hal.archives-ouvertes.fr/hal-02562717 HAL Id: hal-02562717

Submitted on 4 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Monitoring the Ratio of two Normal Variables using Variable Sampling Interval EWMA control charts

Huu Du Nguyen¹, Kim Phuc Tran^{*2}, and Cédric Heuchenne³

¹Division of Artificial Intelligence, Dong A University, Danang, Vietnam

GEMTEX Laboratory, BP 30329 59056 Roubaix Cedex 1, France, ²Ecole Nationale Supérieure des Arts et Industries Textiles

³HEC Management School, University of Liège, Liège 4000, Belgium *Corresponding author. Email: kim-phuc.tran@ensait.fr

November 15, 2019

Abstract

a direct comparison between the VSI EWMA-RZ charts and standard the VSI EWMA-RZ control charts in the food industry. process shifts. An application is illustrated for the implementation of proposed charts outperform the standard EWMA charts in detecting EWMA-RZ control charts. The numerical simulations show that the that it optimizes the performance of the control chart. We also make introduced allowing us to be free to choose a sampling interval provided one-sided charts instead of one two-sided chart. tribution of the ratio is skewed, we suggest designing two separated monitor the ratio of two normal random variables. with the exponentially weighted moving average (EWMA) scheme to EWMA-RZ by integrating the variable sampling interval feature (VSI) We investigate in this paper a new type of control chart called VSI A new coefficient is Because the dis-

Process Control. Keyword EWMA; VSI; Ratio distribution; Markov chain; Statistical

Introduction

mass-produced to check the quality of each product or batches of products process. This makes the quality inspection becomes a key step in the production is to maintain the quality of their products as committed in agreements. One important concern in manufacturing process of any factory or company Of course, these companies should not wait until the goods are

the information embedded in the entire sequence of samples instead of using chart type compared to classical Shewhart chart type is because it utilizes the exponentially weighted moving average (EWMA) chart type is proven SPC helps manufactures to discover the abnormalities in the production line causes that make the manufacturing out-of-control as soon as they occur stead, they wish to detect the abnormal products as well as the assignable because it would be a huge waste if the batch are not up to standard. In-Castagliola et al.²; Yeong et al.³; Castagliola et al.⁴ for more detail. monitoring a process are carried out based on EWMA contral chart, see, only the latest update of process measurements. A number of research on to be effectively impressive in detecting small or moderate process shifts fective products will be reduced. Among the commonly used control charts and fix this unexpected changes. As a consequence, the cost related to detool for monitoring the quality control process. Through control charts, the By this context, statistical process control (SPC) is an useful and efficient (Castagliola et al. 1). The faster detection of small mean shifts of EWMA

years can be found in, for example, Yeong et al.³; Castagliola et al.⁵; the original charts. Tagaras⁷ presented a comprehensive survey about the one among many other adaptive strategies to improve the performance trol schemes. Various studies about the applications of VSI chart in recent out-of-control situation of the plotted control statistic is indicated. Otheruse of control charts with variable sampling interval (VSI). That is to say, intervals (VSI), variable control limit coefficients, and etc. adaptive charts, including variable sample sizes (VSS), variable sampling and Woodall⁶. quality of the process can be improved significantly by using the VSI conproduction wise, a long sampling interval should be used. Since the amount of defective uation of the first sample. the sampling interval between two consecutive samples depends on the sitis supposed to be constant. The recent interests, however, convert into the In a traditional way of designing a control chart, the sampling interval is directly proportional to the time until detection, the overall It is important to consider that the VSI feature is just A short sampling interval is taken if a possible Linna of

materials is ensured by keeping the percentage between their ingredients important to strictly control the relative proportions of major ingredients recipe can affect the product specifications, see Celano et al.⁸. with additives in control. A general situation is mentioned in Celano and and effective. In material manufacturing, a high performance of produced of drugs in pharmaceutical industry to make sure that the drugs are safe trition associated to the relative weights of two ingredients within a food random variables. In food preparation industry, the correct balance of nu-Castagliola⁹ when the change of a product quality characteristic measured In reality, many processes require monitoring the ratio of two (or more) Also, it is

size from one sample to another. Tran et al. 10 incorporated Run Rules to of n > 1 sample units where each of these units are allowed to change in and Castagliola¹³. They also extended this work to subgroups consisting sionless ratio. More examples of the use of the ratio of random variables can be seen in Celano et al.⁸, Tran et al.¹⁰ Tran et al.¹¹. Nevertheless, toring the compositional data is needed and Tran et al. $^{\rm 17}$ provided a control mixture of multiple components can be modeled as a random vector, monisurement errors. ual measurements (the Shewhart-RZ control chart) are discussed by Celano the glass industry. The statistical properties of a Shewhart chart for individfunction (p.d.f.) is complicated, see Celano et al.⁸. Related to this topic, tive distribution function (c.d.f.) of the ratio while the probability density there is not much SPC literature investigating monitoring the ratio of two chart for this kind of data. Tran et al.¹⁶ firstly considered Shewhart-RZ chart in the presence of mea-Tran et al. 14 process shifts. the Shewhart-RZ control chart to make it more sensitive detecting small whart type control charts monitoring the ratio of two normal variables in $\ddot{\mathrm{O}}\mathrm{ksoy}$ et al. 12 presented a set of guidelines for the implementation of Shevariables since it is impossible to obtain an exact expression for the cumulabefore and after a chemical or physical reaction is represented by the dimen-Tran and Knoth 15 and Tran et al. 11 , respectively. In 2016, The EWMA-RZ and the CUMSUM-RZ are investigated in In a general case when quantity of each component in a

of the fixed scheme. The numerical results show that the VSI EWMA-RZ control charts) have already discovered by Tran et al. 14 and the authors the ratio of population means of a bivariate normal distribution. In fact, we suggest integrating the VSI feature into the EWMA chart on monitoring control chart so that it is able to quickly detect the ratio shifts. In this study type chart outperforms significantly the original EWMA-RZ type chart. be slower than VSI type chart in detecting process changes. Therefore, VSI based on fixed sampling interval (FSI) type chart, which is demonstrated to shifts than other existing charts in the literature. This design, however, is have shown that their proposed charts are more sensitive to the process the EWMA control charts for monitoring this ratio (denoted by EWMA-RZ EWMA-RZ presented in our research can be considered as a logical extension Due to many practical applications, it is necessary to design an efficient

using a Markov Chain-based approach. Section 5 is devoted to optimizing provided to show the implementation of VSI EWMA-RZ control charts in design parameters. An illustrative example from the real industrial data is 3, while formula for average time to signal (ATS) is presented in Section 4 recalled. review of the sample distribution of the ratio of two normal variables is The remainder of the paper is organized as follows: in Section 2, a brief The two one-sided VSI EWMA-RZ charts are defined in Section

Section 6. Some concluding remarks are given in Section 7.

N \mathbf{of} \geq the ratio brief review of the distribution of the sample

Let $\mathbf{W} = (X, Y)^T$ is a bivariate normal random vector with mean vector

$$\boldsymbol{\mu} \boldsymbol{W} = \begin{pmatrix} \mu_X \\ \mu_Y \end{pmatrix} \tag{1}$$

and variance-covariance matrix

$$\Sigma_{W} = \begin{pmatrix} \sigma_X^2 & \rho \sigma_X \sigma_Y \\ \rho \sigma_X \sigma_Y & \sigma_Y^2 \end{pmatrix}.$$
 (2)

ratio between them is $\omega = \frac{\sigma_X}{\sigma_Y}$. and Y; μ_X and σ_X are the mean and the variance of X while μ_Y and σ_Y are X and Y are then defined by $\gamma_X = \frac{\sigma_X}{\mu_X}$ and $\gamma_Y = \frac{\sigma_Y}{\mu_Y}$; the standard-deviation the mean and the variance of Y. In this definition, ρ is the correlation coefficient between two components X The coefficients of variation of two variables

yet. Instead, the distribution of Z can be well approximated by using an et al. 21 , the closed-form expression for its distribution has not been given of the c.d.f. of Z: and Castagliola¹³. In this paper, we will resort to a following approximation approach similar to the one suggested by Geary $^{18},\,\mathrm{Hayya}$ et al. 19 and Celano for example Geary 18 and Hayya et al. $^{19},$ Cedilnik et al. 20 and Pham-Gia number of study about the distribution of the ratio of two normal variables, The ratio of X to Y, $Z = \frac{X}{Y}$, is in our interest. Although there are a

$$F_Z(z|\gamma_X,\gamma_Y,\omega,\rho) \simeq \Phi\left(\frac{A}{B}\right),$$
(3)

functions of z, γ_X , γ_Y , ω and ρ , i.e. where $\Phi(.)$ is the *c.d.f.* of the standard normal distribution; A and B are

$$A = \frac{z}{\gamma_Y} - \frac{\omega}{\gamma_X},\tag{4}$$

$$B = \sqrt{\omega^2 - 2\rho\omega z + z^2}.$$
 (5)

The p.d.f. of Z can be approximated by

$$f_Z(z|\gamma_X,\gamma_Y,\omega,\rho) \simeq \left(\frac{1}{B\gamma_Y} - \frac{(z-\rho\omega)A}{B^3}\right) \times \phi\left(\frac{A}{B}\right),$$
 (6)

and Castagliola¹³ where $\phi(.)$ is the *p.d.f.* of the standard normal distribution, see Celano In Figure 1, the p.d.f of Z is displayed with different

parameters. The inverse distribution function (i.d.f.) of Z is obtained by inverting the c.d.f. of Z in (3), leading to

$$F_Z^{-1}(p|\gamma_X, \gamma_Y, \omega, \rho) \simeq \begin{cases} \frac{-C_2 - \sqrt{C_2^2 - 4C_1C_3}}{2C_1} & \text{if } p \in (0, 0.5], \\ \frac{-C_2 + \sqrt{C_2^2 - 4C_1C_3}}{2C_1} & \text{if } p \in [0.5, 1), \end{cases}$$
(7)

where C_1 , C_2 and C_3 are functions of p, γ_X , γ_Y , ω and ρ , i.e.

$$C_1 = \frac{1}{\gamma_Y^2} - (\Phi^{-1}(p))^2, \tag{8}$$

$$C_{2} = 2\omega \left(\rho(\Phi^{-1}(p))^{2} - \frac{1}{\gamma_{X}\gamma_{Y}} \right), \qquad (9)$$

$$C_3 = \omega^2 \left(\frac{1}{\gamma_X^2} - (\Phi^{-1}(p))^2 \right), \qquad (10)$$

and where $\phi^{-1}(.)$ stands for the *i.d.f.* of the standard normal distribution.

The ratio Z is monitored in practice by firstly collecting a sample of n independent couples $\{\mathbf{W}_{i,1}, \mathbf{W}_{i,2}, ..., \mathbf{W}_{i,n}\}$ at each sampling period i = 1, 2, ..., n where $\mathbf{W}_{i,j} = (X_{i,j}, Y_{i,j})^T \sim N(\mu_{\mathbf{W},i}, \Sigma_{\mathbf{W},i}), j = 1, ..., n$. That is to say, each $\mathbf{W}_{i,j}$ is a bivariate normal random vector with mean vector

$$\boldsymbol{\mu}_{\mathbf{W},i} = \begin{pmatrix} \mu_{X,i} \\ \mu_{Y,i} \end{pmatrix} \tag{11}$$

and variance-covariance matrix

$$\mathbf{\Sigma}_{\mathbf{W},i} = \begin{pmatrix} \sigma_{X,i}^2 & \rho \sigma_{X,i} \sigma_{Y,i} \\ \rho \sigma_{X,i} \sigma_{Y,i} & \sigma_{Y,i}^2 \end{pmatrix}.$$
 (12)

and $\sigma_{Y,i} = \gamma_Y \times \mu_{Y,i}$ hold for every *i*. The second one is that the ratio sample, i.e. it is not necessary to impose the constraints $\mu_{\mathbf{W},i} = \mu_{\mathbf{W},k}$ and $\frac{\mu_{X,i}}{\mu_{Y,i}}$ is equal to z_0 for every samples provided that the process is in-control. Also, the sample units are permitted to be free to change from sample to variation of both X and Y. relationship between the mean and the standard deviation of X and Y. supposed for the collected samples. The first assumption is about the linear $\Sigma_{\mathbf{W},i} = \Sigma_{\mathbf{W},k}$ for $i \neq k$. Then, the observed statistic is population mean, it is practical to use a known and constant coefficient of Because many quality characteristics have a dispersion proportional to the Following the discussion in Celano and Castagliola¹³, some assumptions are That means the equations $\sigma_{X,i} = \gamma_X \times \mu_{X,i}$

$$\hat{Z}_{i} = \frac{\hat{\mu}_{X,i}}{\hat{\mu}_{Y,i}} = \frac{\bar{X}_{i}}{\bar{Y}_{i}} = \frac{\sum_{j=1}^{n} X_{i,j}}{\sum_{j=1}^{n} Y_{i,j}}, i = 1, 2, \dots$$
(13)

the *c.d.f.* and the *i.d.f.* of \hat{Z}_i as follows: Based on the c.d.f. and the i.d.f. of Z, Celano and Castagliola¹³ deduced

$$F_{\hat{Z}_i}(z|n,\gamma_X,\gamma_Y,z_0,\rho_0) = F_Z\left(z|\frac{\gamma_X}{\sqrt{n}},\frac{\gamma_Y}{\sqrt{n}},\frac{z_0\gamma_X}{\gamma_Y},\rho_0\right), \quad (14)$$

$$F_{\hat{Z}_i}^{-1}(p|n,\gamma_X,\gamma_Y,z_0,\rho_0) = F_Z^{-1}\left(p|\frac{\gamma_X}{\sqrt{n}},\frac{\gamma_Y}{\sqrt{n}},\frac{z_0\gamma_X}{\gamma_Y},\rho_0\right). \quad (15)$$

ω Implementation of VSI EWMA-RZ control charts

/

Since the distribution of Z is non-symmetric, we investigate in this paper EWMA-RZ control charts suggested in Tran et al. 14 as follows. two separate one-sided VSI EWMA-RZ control charts. We firstly recall FSI

An upward EWMA chart for detecting the increase in the ratio that monitors the statistic

$$Y_i^+ = \max(z_0, (1 - \lambda^+)Y_{i-1}^+ + \lambda^+ \hat{Z}_i)$$
(16)

with the single upper control limit is $UCL^+ = H_U \times z_0$ and the initial value $Y_0^+ = z_0$. The corresponding lower control limit is $LCL^+ = z_0$.

• A downward EWMA chart for detecting the decrease in the ratio that monitors the statistic

$$Y_i^- = \min(z_0, (1 - \lambda^-) Y_{i-1}^- + \lambda^- \hat{Z}_i)$$
(17)

value $Y_0^$ with the single lower control limit is $LCL^- = H_D \times z_0$ and the initial $= z_0$. The corresponding upper control limit is $UCL^ = z_0.$

spectively. It is proven that the EWMA-RZ chart is sensitive to small and toward large shifts. The incorporation of the VSI feature into EWMA-RZ the smoothing and chart parameters of the upward (downward) chart, reincrease the performance of the charts. chart is then expected to improve this insensitivity toward large shifts and moderate shifts. In this definition, $\lambda^+ \in (0, 1]$ and $H_U > 1$ ($\lambda^- \in (0, 1]$ and $H_D < 1$) are In comparison with others, however, it is less sensitive

value of Y_i^+ or Y_i^- . For the upward (downward) control cnart, a rouger sampling interval, h_L , is used when the control statistic falls within region successive samples Z_i and Z_{i+1} , is allowed to vary based on the current The difference is that the sampling interval, i.e., the time between two z_0 and $LCL^- = H_D \times z_0$ are hold the same as those in original FSI charts. $[z_0, UWL^+]([LWL^-, z_0])$, in which In the VSI EWMA-RZ control charts, the control limits $UCL^+ = H_U \times$

- UWL^+ || $z_0 + R_U(UCL^+ - z_0)$ is the upper warning limit.
- LWL^{-} $= z_0 - R_D(z_0 - LCL^-)$ is the lower warning limit.

are the values of R_U or R_D , the smaller is the "safe region" new parameters are called the warning limit coefficients. They represent the defined through the new parameters $R_U \in (0,1)$ or $(R_D \in (0,1))$. These the upward VSI EWMA-RZ chart. The warning limit UWL^+ or LWL^- are of-control region. Figure 2 illustrates a graphical view of the operation of three regions: the "safe" or central region, the warning region and the out-Thus, in VSI EWMA-RZ scheme, the control interval is separated into falls within the region $[UWL^+, UCL^+]$ (upward case) and $[LCL^-, LWL^-]$ warning region. relation between warning region and safe region in the sense that the smaller Similarly, the short sampling interval, h_S , is used when the control statistic $Z_i^+ > UCL^+$ for the upward chart or $Z_i^- < LCL^-$ for downward chart. (downward case). Moreover, an out-of-control signal is given at time i if compared to

4 Design of optimal VSI EWMA-RZ control charts

of the zero-state time to signal for the two one-sided VSI EWMA-RZ control $\rho = \rho_1$. We firstly discuss in this Section a method to compute the average Suppose that the occurrence of an assignable cause shifts the in-control ratio out-of-control condition after the occurrence of an assignable cause or the charts. The ATS counts the expected time before a control chart signals an control condition, the coefficient of correlation can be shifted from $\rho = \rho_0$ to the increase of the nominal ratio z_0 . When the process shifts to the out-ofto the decrease of the nominal ratio z_0 , while the values $\tau > 1$ represent z_0 to $z_1 = \tau \times z_0$, where $\tau > 0$ is the shift size. The values $\tau < 1$ correspond

a chart with smaller ATS_1 while the ATS_0 is still the same in comparison otherwise, it is denoted by ATS_1 . By its meaning, it is desirable to design sampling interval h_F is fixed, namely, with others. For a FSI model, the ATS is a multiple of the ARL since the issue of a false alarm. When a process runs in-control, it is denoted by ATS_0 ;

$$ATS^{\text{FSI}} = h_F \times ARL^{\text{FSI}}.$$
 (18)

For a VSI model, the ATS is defined as:

$$4TS^{\text{VSI}} = E(h) \times ARL^{\text{VSI}}.$$
(19)

where E(h) is the average sampling interval.

states of the Markov chain. The width of each sub-interval is 2δ where $\delta = \frac{UCL^{+}-1}{2p} (\delta = \frac{1-LCL^{-}}{2p})$. The value of p is chosen so that each midpoint H_j , $j = 1, \ldots, p$ can be considered as the representative of the sub-interval reaches absorbing state. The transition probability matrix ${\bf P}$ of this discrete the Markov chain is in the transient sate j for sample i; if not, the chain or absorbing state. to the j^{th} sub-intervals, j = 1, ..., p while the state p + 2 is out-of-control proposed by Brook and Evans²². The method is performed by partitioning is corresponding to the line H_0 , the in-control transient state j corresponds that $z_0 = 1$.) Among p+2 states of Markov chain in the Figure 3, the state 0 the control interval into a finite set of p sub-intervals corresponding to p+2(without loss of generality, in the remaining part of this paper we suppose $(H_j - \delta, H_j + \delta]$. Figure 3 illustrates this subdivision for upward chart The ATS measure is calculated using the discrete Markov chain approach If the statistic Y_i^+ or Y_i^- fall into the sub-interval j,

intervals of width 2δ . Figure 3: Sub-division of the control interval of upward chart into p sub-

Markov chain is

$$\mathbf{P} = \begin{pmatrix} \mathbf{Q} & \mathbf{r} \\ \mathbf{0}^{T} & 1 \end{pmatrix} = \begin{pmatrix} Q_{0,0} & Q_{0,1} & \dots & Q_{0,p} & r_{0} \\ Q_{1,0} & Q_{1,1} & \dots & Q_{1,p} & r_{1} \\ \vdots & \vdots & \ddots & Q_{1,p} & r_{1} \\ Q_{p,0} & Q_{p,1} & \dots & Q_{p,p} & r_{p} \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix}.$$

In the above formula, **Q** is the (p+1, p+1) matrix of transient probabilities, $\mathbf{0} = (0, 0, \dots, 0)^T$ and the (p+1) vector **r** satisfies $\mathbf{r} = (\mathbf{1} - \mathbf{Q}\mathbf{1})$ (row probabilities must sum to 1) with $\mathbf{1} = (1, 1, \dots, 1)^T$. Denote **q** the (p+1, 1)vector of initial probabilities associated with the p+1 transient states, i.e., $\mathbf{q} = (q_0, q_1, \dots, q_p)^T$. The generic element $Q_{i,j}, i = 0, 1, \dots, p$, of the matrix ${\bf Q}$ of transient probabilities is defined by

• if j = 0,

for the upward chart :
$$Q_{i,0} = F_{\hat{Z}_i} \left(\frac{1 - (1 - \lambda^+) H_i}{\lambda^+} \right| n, \gamma_X, \gamma_Y, z_1, \rho_1),$$
 (20)

for the downward chart : $Q_{i,0} = 1 - F_{\hat{\mathbb{Z}}_i}\left(\frac{1-(1-\lambda^-)H_i}{\lambda^-}\middle| n, \gamma_X, \gamma_Y, z_1, \rho_1\right);$ (21)

• if $j = 1, 2, \dots, p$, for both cases,

$$\mathcal{Q}_{i,j} = F_{\hat{Z}_i} \left(\frac{H_j + \delta - (1 - \lambda)H_i}{\lambda} \middle| n, \gamma_X, \gamma_Y, z_1, \rho_1 \right) \\ - F_{\hat{Z}_i} \left(\frac{H_j - \delta - (1 - \lambda)H_i}{\lambda} \middle| n, \gamma_X, \gamma_Y, z_1, \rho_1 \right), \quad (22)$$

abilities, concerning the zero-state condition, is equal to $\mathbf{q} = (1, 0, \dots, 0)$. responding to upward or downward case. Also, the vector \mathbf{q} of initial probwhere $F_{\hat{Z}_i}(.)$ is the *c.d.f.* of \hat{Z}_i as defined in (3) while λ is either λ^+ or λ^- , cor-

The formula of ATS is suggested by Saccucci et al.²³ as

$$4TS = \mathbf{q}^T (\mathbf{I} - \mathbf{Q})^{-1} \mathbf{g}, \qquad (23)$$

sponding to the discretized states of the Markov chain. The element g_j of j (denoted by H_j). That is to say, the vector \mathbf{g} is the sampling interval when the control statistic is in the state where \mathbf{I} is the identity matrix, \mathbf{g} is the vector of sampling intervals corre-

$$g_{j} = \begin{cases} h_{S} & \text{if } H_{j} \in [UWL^{+}, UCL^{+}] \text{ or } H_{j} \in [LCL^{-}, LWL^{-}] \\ h_{L} & \text{if } H_{j} \in [z_{0}, UWL^{+}] \text{ or } H_{j} \in [LWL^{-}, z_{0}] \end{cases}$$
(24)

calculated by From the equations (19) and (23), the expected sampling interal E(h) is

$$E(h) = \frac{\mathbf{q}^T (\mathbf{I} - \mathbf{Q})^{-1} \mathbf{g}}{\mathbf{q}^T (\mathbf{I} - \mathbf{Q})^{-1} \mathbf{1}},$$
(25)

 $E vans^{22}$. where the denominator in (25) is the formula for ARL as in Brook and

the optimal parameters now is (λ^+, H_U, h_L) for upward chart and (λ^-, H_D, h_L) the combination $(\lambda^{+*}, H_U^*, h_L^*)$ or $(\lambda^{-*}, H_D^*, h_L^*)$ such that for downward chart, using fixed values of h_S . Given the size τ , we find out not affect the performance of the chart. For this reason, we suggest to fix and the next sampling interval can be free to choose as long as it does the control statistic drops into central region, the process is still 'in safe' it is quite reasonable to fix the value of h_S according to the manufacturing feasible time interval between subgroups from the process Castagliola et al. $^{\rm 1},$ in Yeong et al.³ and Castagliola et al.⁵. Because h_S represents the shortest or any control scheme that can be represented as a Markov chain. A fixed intervals is optimal for detecting a specified shift of the process target value the same in-control values of both average time to signal ATS_0 and average sampling interval $E_0(h)$. Saccucci et al.²³ insisted that using two sampling is supposed to be time unit, i.e. $h_F = 1$. As a result, ATS_0^{FSI} the value of warning limit is determined given the value of $R_U(R_D)$. The conditions. couple (h_S, h_L) is then typically used which is chosen from a suggested list as fair comparison between two types of control charts is made by constraining It is quite often that the constant sampling interval in FSI control charts warning limit coefficient $R_U(R_D)$. However, it seems not practical to fix the value of h_L . Once the control limit is defined, $= ARL_0$. A Once

• for downward chart,

$$(\lambda^{+*}, H_U^*, h_L^*) = \operatorname*{argmin}_{(\lambda^+, H_U, h_L)} ATS(n, \lambda^+, H_U, R_U, \rho, \gamma_X, \gamma_Y, \tau, h_L, h_S)$$
(26)

subject to the constraint

$$ATS(n, \lambda^{+*}, H_U^*, R_U, \rho, \gamma_X, \gamma_Y, \tau = 1, h_L^*, h_S) = ATS_0 \quad ; \quad (27)$$
$$E_0(h) = 1$$

• for upward chart,

$$(\lambda^{-*}, H_D^*, h_L^*) = \operatorname*{argmin}_{(\lambda^-, H_D, h_L)} ATS(n, \lambda^-, H_D, R_D, \rho, \gamma_X, \gamma_Y, \tau, h_L, h_S)$$
(28)

subject to the constraint

$$ATS(n, \lambda^{-*}, H_D^*, R_D, \rho, \gamma_X, \gamma_Y, \tau = 1, h_L^*, h_S) = ATS_0$$

$$E_0(h) = 1$$
(29)

5 Numerical results and comparison

subject to constraints $ATS_0 = 200$ and $E_0(h) = 1$. The optimizing method We firstly compute in this Section the optimal parameters $(\lambda^{+*}, H_L^*, h_L^*)$ for upward chart or $(\lambda^{-*}, H_D^*, h_L^*)$ for downward chart that minimize ATS_1 is applied based on a number of following scenarios of parameters:

- $\gamma_X \in \{0.01, 0.2\}, \gamma_Y \in \{0.01, 0.2\};$
- $\rho_0 \in \{0.0, \pm 0.4, \pm 0.8\};$
- $n \in \{1, 5, 10, 15\};$
- $\tau \in \{0.9, 0.95, 098, 0.99, 1.01, 1.02, 1.05, 1.1\};$
- $R_U, R_D \in \{0.1, 0.2, 0.3, 0.5\};$
- $h_S \in \{0.1, 0.5\}.$

is corresponding to small sample size while n = 15 is for large sample size. The value $R_U = 0.1(R_D = 0.1)$ represents very small central region, the sible situations of parameters. For example, the values 0.01 and 0.2 of γ_X positive correlation between X and Y. Similarly, the value n = 1 or n = 5vary from -0.8 to 0.8 of ρ_0 is to describe the strong or weak, negative or value $R_U = 0.5(R_D = 0.5)$ represents an equal central region compared to (or γ_Y) represent the small and large variation of X (or Y). The values These scenarios are supposed for a desire of covering a large range of pos-

of h_S is recommended by Reynolds and Arnold Reynolds and Arnold 24 shift and $\tau = 1.01$ is for the small increase of process shift. Finally, the value the warning region. The value $\tau = 0.9$ is for the large decrease of process

sake of brevity but are available upon request from authors. Some remarks results corresponding to the different values of ρ_1 are not presented for the sults are shown in Tables 1-8. The corresponding parameters in FSI EWMA-RZ chart are also provided in column titled FSI. These tables show only the not depend on the condition of the process, namely $\rho_1 = \rho_0$. The numerical can be drawn as follows results for the case the correlation coefficient between two variables does ATS are numerically obtained given a specific shift size τ . The obtained re-After computing these optimal parameters, the out-of-control value of

- dard EWMA-RZ control charts in detecting the process shifts. In general, the VSI EWMA-RZ control charts outperform the stanand n = 15 in Table 4, $ARL_1 = 20.1$ while $ATS_1 = 10.6$. ample, with $\gamma_X = \gamma_Y = 0.2, \rho_0 = -0.8, R_U = 0.1, h_S = 0.1, \tau = 1.05$ are relatively larger than those the values of ATS_1 , representing the VSI EWMA-RZ charts performance, in most cases observed. For exvalues of ARL_1 , representing the performance of EWMA-RZ charts The
- The performance of the proposed charts is strongly influenced by the $\gamma_X = 0.01, \gamma_Y = 0.2$ (Table 6). $ATS_1 = 4.3$ for $\gamma_X = \gamma_Y = 0.01$ (Table 1) and $ATS_1 =$ $0.5, n = 1, R_D = 0.2, \rho = -0.4$ and $\tau = 0.98$ as an example; we have when the CV of two variables increases. Taking the case where $h_S =$ chart are very sensitive to the ratio shifts. This sensitivity decreases cases where the two variables have small CV, the VSI EWMA-RZ coefficient of variation (CV) γ_X and γ_Y of both two variables. 20.6 for For
- Given the value of others, the values of ATS_1 and $H^*_U(H^*_D)$ vary h_S trol intervals, it generally reduces the values of $H_U^*(H_D^*)$. For example, with $n = 1, \gamma_X = 0.01, \gamma_Y = 0.2, \tau = 0.99, R_D = 0.5$ and $(ATS_1, H_D^*) = (131.3, 0.953)$ for $\rho = 0.8$ (Table 5). VSI EWMA-RZ charts performance better. With respect to the conwith ρ . = 0.1, we have $(ATS_1, H_D^*) = (134.7, 0.985)$ for $\rho = -0.4$ while Particularly, the increase of the correlation ρ makes the $0.01, \gamma_Y$
- The chart efficiency is also affected by h_S . The values of ATS_1 in the $\gamma_X = 0.2, \gamma_Y = 0.01, n = 1, R_D = 0.2, \rho = 0.4 \text{ and } \tau = 0.98 \text{ in Table 7},$ value of h_S also leads to the larger value of h_L^* . For example, with in the right block (corresponding to $h_S = 0.5$). In addition the smaller left block (corresponding to $h_S = 0.1$) are always smaller than those

and $h_L^* = 1.628$ for $h_S = 0.5$. we obtain $ATS_1 = 83.0$ and $h_L^* = 2.132$ for $h_S = 0.1$, but $ATS_1 = 91.9$

٠ ing to the trend towards outside of the control interval are detected to 0 of $R_U(R_D)$ correspond to the larger warning region in comparison (1.119, 127.4) for $R_U = 0.5$ when $\gamma_X = 0.2$, $\gamma_Y = 0.1$, $\rho = 0.8$, n = 1, $h_S = 0.5$ and $\tau = 1.01$ in Table 7. This is because the values closer posite effect on the VSI EWMA-RZ control charts performance and the The predetermined value of warning limit coefficient $R_U(R_D)$ has opprocess shift. faster and the VSI EWMA-RZ control charts is more sensitive to the with central region. As a consequence, the sample points correspondhave $(h_L^*, ATS_1) = (2.172, 122.6)$ for $R_U = 0.1$ and (h_L^*, ATS_1) reduces the value of h_L^* but the value of ATS_1 . For example, sampling interval in central region. Generally, the increase of $R_U(R_D)$ we ||

to signal (EATS) as an alternative measure of the ATS. That is shift size. In such situations, it is suggested to use an expected average time reasonable explanations for the difficulty of predicting an exact value of the according to the discussion of Castagliola et al.⁵, there are a number of The above analysis is based on the deterministic values of τ . However

$$EATS = \int_{a}^{b} ATS \times f_{\tau}(\tau) \mathrm{d}\tau, \qquad (30)$$

distribution can be applied, namely $f_{\tau}(\tau) = \frac{1}{b-a}$. The new optimal triples function of τ . In the case there is no information about τ , an uniform where [a, b] is the predicted interval of the shift size τ and $f_{\tau}(\tau)$ is density for a given in-control ATS_0 and subject to the constraints $E_0(h) = 1$ and $(\lambda^{+*}, H_U, h_L^*)$ or $(\lambda^{-*}, H_D, h_L^*)$ is now to minimize the out-of-control $EATS_1$ $ATS_0 = 200$. This procedure consists of two following steps:

- ÷ Solve the potential triples (λ^+, H_U, h_L) or (λ^-, H_D, h_L) such that $ATS = ATS_0$ and $E_0(h) = 1$.
- $\dot{\mathbf{v}}$ Choose from these triples the one $(\lambda^{+*}, H_U^*, h_L)$ or $(\lambda^{-*}, H_D^*, h_L)$ corresponding to the smallest value of the *EATS*.

ent ranges of shifts, [a, b] = [0.9, 1) (decreasing shift sizes) and [a, b] = (1, 1.1]a somewhat more overview. for the deterministic shift size discussed above. Moreover, they also reveal EWMA chart. The obtained results in these tables show a similar trend as $EARL_1$, the control limits and the chart parameters H_U or H_D of FSI (increasing cases). For comparison purpose we also compute the values of Table 9 - 12 present the values of the EATS corresponding to two differ-

- ٠ In general, the smaller values of warning limit coefficient results in corresponding to $R_U = R_D = 0.3$, see Table 9. the smallest value of $EATS_1$ is corresponding to the smallest value of $R_U(R_D)$, which is 0.1 in this paper. When γ_X and γ_Y are both small, the better efficiency of proposed chart. In most situations observed, however, the best performance of VSI EWMA-RZ chart is obtained
- both cases are approximate. For example, in Table 9 when $(\gamma_X, \gamma_Y) =$ When $\gamma_X = \gamma_Y$ and they are both small, the value of $EATS_1$ for situations, the symmetrical performance does not hold. $(0.01, 0.01), n = 1, \rho = 0.4, h_S = 0.1, \text{ and } R_U = R_D = 0.3, \text{ it results}$ $EATS_1 = 1.8$ for both the increasing and decreasing cases. In other

6 Illustrative example

each box using a mechanical procedure in the quality control laboratory. The ratio $\hat{Z}_i = \frac{\bar{W}_{Pi}}{\bar{W}_{fi}}$ is then computed and exhibited on the VSI EWMA-RZ control chart. For this example, the following assumptions are supposed: $\bar{W}_{p,i} = \frac{1}{n} \sum_{j=1}^{n} W_{p,i,j}$ and $\bar{W}_{f,i} = \frac{1}{n} \sum_{j=1}^{n} W_{f,i,j}$ are kept account by separating the "pumpkin seeds" and "flaxseeds" from the muesli mixture filling dosing machine, the manufacturers wish to perform on-line SPC monitoring ment an upward VSI EWMA-RZ control chart. The sample average weights mean weights for "pumpkin seeds" and "flaxseeds", respectively. $z_0 = \frac{\mu_{p,i}}{\mu_{f,i}} = \frac{0.1}{0.1} = 1$ for every size of boxes, where $\mu_{p,i}$ and $\mu_{f,i}$ denote the at regular intervals $i = 1, 2, \ldots$ to check deviations from the in-control ratio to meet the need of customers. Because of the problems occurring at the fixed at $p_p = p_f = 0.1$. The brand boxes are manufactured in different sizes company produces a muesli brand recipe which is a mixture of several ingreillustrative example of implementation of the VSI EWMA-RZ chart. A food problem from the food industry as shown in Celano et al.⁸ minutes, the quality practitioner collects a sample of n = 5 boxes to impleby ensuring the equal weights of "pumpkin seeds" and "flaxseeds", which is added spices. The requirements of food's nutrient composition is maintained dients, involving two main components pumpkin seeds and flaxseeds with In this Section, using the same dataset simulating a real quality control , we present an Every 30

- tively. Both $W_{p,i,j}$ and $W_{f,i,j}$ can be well approximated by normal variables with constant coefficients of variation $\gamma_p = 0.02$ and $\gamma_f = 0.01$, respec-
- The in-control correlation coefficient between these two variables is $\rho_0 = 0.8.$
- The shift size $\tau = 1.01$ is anticipated.

Table 1: The parameters $(\lambda^+, H_U, h_L, ATS_1)$ and $(\lambda^-, H_D, h_L, ATS_1)$ of the VSI EWMA-RZ control charts compared to those (λ^+, H_U, ARL_1) and (λ^-, H_D, ARL_1) of FSI EWMA charts (second column) for $\gamma_X = \gamma_Y = 0.01, n = 1, ASI_0 = 1$ and $ATS_0 = 200$

		1	$h_S = 0.1$				h_S :	= 0.5	
au	FSI	R = 0.1	R = 0.2	R = 0.3	R = 0.5	R = 0.1	R = 0.2	R = 0.3	R = 0.5
					$\rho =$	-0.8			
0.90	(0.999, 0.952, 1.0)	(0.951, 0.954, 1.630, 1.6)	(0.946, 0.954, 1.417, 1.4)	(0.992, 0.952, 1.264, 1.3)	(1.000, 0.952, 1.101, 1.1)	(0.951, 0.954, 1.350, 1.4)	(0.946, 0.954, 1.231, 1.2)	(0.992, 0.952, 1.146, 1.1)	(1.000, 0.952, 1.056, 1.1)
0.95	(0.759, 0.961, 1.7)	(0.951, 0.954, 1.630, 1.7)	(0.946, 0.954, 1.417, 1.5)	(0.969, 0.953, 1.267, 1.4)	(0.796, 0.960, 1.110, 1.3)	(0.923, 0.955, 1.356, 1.8)	(0.862, 0.957, 1.242, 1.6)	(0.795, 0.960, 1.162, 1.6)	(0.769, 0.961, 1.062, 1.5)
0.98	(0.203, 0.984, 7.0)	(0.318, 0.978, 2.076, 3.8)	(0.269, 0.981, 1.695, 3.6)	(0.249, 0.981, 1.450, 3.7)	(0.220, 0.983, 1.150, 4.4)	(0.249, 0.981, 1.660, 5.3)	(0.231, 0.982, 1.405, 5.2)	(0.225, 0.983, 1.256, 5.2)	(0.190, 0.984, 1.090, 5.6)
0.99	(0.074, 0.991, 18.3)	(0.102, 0.989, 2.617, 9.6)	(0.092, 0.990, 1.974, 9.8)	(0.084, 0.990, 1.566, 10.5)	(0.071, 0.991, 1.199, 12.5)	(0.087, 0.990, 1.942, 13.5)	(0.087, 0.990, 1.546, 13.6)	(0.081, 0.991, 1.317, 14.0)	(0.071, 0.991, 1.111, 15.1)
1.01	(0.074, 1.008, 18.6)	(0.107, 1.011, 2.647, 9.8)	(0.095, 1.010, 1.991, 10.0)	(0.088, 1.009, 1.576, 10.7)	(0.072, 1.008, 1.204, 12.6)	(0.088, 1.009, 1.974, 13.7)	(0.083, 1.009, 1.570, 13.8)	(0.088, 1.009, 1.320, 14.2)	(0.074, 1.008, 1.112, 15.3)
1.02	(0.195, 1.016, 7.2)	(0.311, 1.021, 2.094, 3.8)	(0.265, 1.019, 1.696, 3.7)	(0.262, 1.019, 1.439, 3.8)	(0.211, 1.016, 1.149, 4.5)	(0.244, 1.018, 1.673, 5.4)	(0.223, 1.017, 1.409, 5.3)	(0.221, 1.017, 1.256, 5.4)	(0.202, 1.016, 1.088, 5.7)
1.05	(0.700, 1.037, 1.9)	(0.987, 1.049, 1.607, 1.7)	(0.987, 1.049, 1.395, 1.5)	(0.888, 1.045, 1.266, 1.4)	(0.737, 1.039, 1.106, 1.3)	(0.856, 1.044, 1.365, 1.8)	(0.800, 1.041, 1.244, 1.7)	(0.754, 1.039, 1.159, 1.6)	(0.709, 1.037, 1.060, 1.6)
1.10	(0.999, 1.050, 1.0)	(0.987, 1.049, 1.607, 1.6)	(0.987, 1.049, 1.395, 1.4)	(0.907, 1.046, 1.263, 1.3)	(0.999, 1.050, 1.095, 1.1)	(0.987, 1.049, 1.337, 1.3)	(0.987, 1.049, 1.219, 1.2)	(0.907, 1.046, 1.146, 1.2)	(0.999, 1.050, 1.052, 1.1)
					$\rho =$	-0.4			
0.90	(0.999, 0.957, 1.0)	(0.923, 0.960, 1.640, 1.6)	(0.987, 0.958, 1.407, 1.4)	(0.999, 0.957, 1.262, 1.3)	(1.000, 0.957, 1.101, 1.1)	(0.923, 0.960, 1.355, 1.4)	(0.987, 0.958, 1.226, 1.2)	(0.999, 0.957, 1.145, 1.1)	(1.000, 0.957, 1.056, 1.1)
0.95	(0.879, 0.962, 1.4)	(0.923, 0.960, 1.640, 1.7)	(0.987, 0.958, 1.407, 1.5)	(0.999, 0.957, 1.262, 1.3)	(0.947, 0.959, 1.103, 1.2)	(0.923, 0.960, 1.355, 1.6)	(0.987, 0.958, 1.226, 1.5)	(0.972, 0.958, 1.147, 1.4)	(0.898, 0.961, 1.058, 1.3)
0.98	(0.240, 0.984, 5.9)	(0.390, 0.978, 1.986, 3.2)	(0.329, 0.980, 1.651, 3.1)	(0.303, 0.981, 1.427, 3.1)	(0.270, 0.983, 1.144, 3.6)	(0.303, 0.981, 1.610, 4.5)	(0.275, 0.983, 1.383, 4.3)	(0.270, 0.983, 1.244, 4.3)	(0.254, 0.983, 1.085, 4.6)
0.99	(0.089, 0.991, 15.5)	(0.124, 0.989, 2.524, 8.0)	(0.112, 0.990, 1.931, 8.2)	(0.100, 0.991, 1.550, 8.7)	(0.092, 0.991, 1.189, 10.4)	(0.104, 0.990, 1.896, 11.4)	(0.102, 0.990, 1.528, 11.5)	(0.099, 0.991, 1.305, 11.7)	(0.092, 0.991, 1.105, 12.7)
1.01	(0.088, 1.008, 15.8)	(0.128, 1.010, 2.549, 8.2)	(0.107, 1.009, 1.962, 8.3)	(0.108, 1.009, 1.550, 8.8)	(0.086, 1.008, 1.195, 10.5)	(0.111, 1.009, 1.903, 11.6)	(0.102, 1.009, 1.540, 11.6)	(0.095, 1.008, 1.314, 11.9)	(0.088, 1.008, 1.108, 12.9)
1.02	(0.233, 1.015, 6.0)	(0.403, 1.022, 1.972, 3.3)	(0.320, 1.019, 1.652, 3.2)	(0.289, 1.018, 1.427, 3.2)	(0.257, 1.016, 1.151, 3.7)	(0.306, 1.018, 1.611, 4.6)	(0.267, 1.017, 1.386, 4.5)	(0.257, 1.016, 1.245, 4.5)	(0.244, 1.016, 1.080, 4.8)
1.05	(0.817, 1.037, 1.6)	(0.989, 1.043, 1.607, 1.7)	(0.995, 1.043, 1.394, 1.5)	(0.999, 1.044, 1.252, 1.3)	(0.873, 1.039, 1.100, 1.2)	(0.988, 1.043, 1.337, 1.6)	(0.972, 1.043, 1.221, 1.5)	(0.842, 1.038, 1.152, 1.4)	(0.835, 1.037, 1.056, 1.4)
1.10	(0.999, 1.044, 1.0)	(0.989, 1.043, 1.607, 1.6)	(0.995, 1.043, 1.394, 1.4)	(0.999, 1.044, 1.252, 1.3)	(1.000, 1.044, 1.095, 1.1)	(0.989, 1.043, 1.337, 1.3)	(0.995, 1.043, 1.219, 1.2)	(1.000, 1.044, 1.140, 1.1)	(1.000, 1.044, 1.053, 1.1)
					ρ =	= 0.0			
0.90	(0.999, 0.964, 1.0)	(0.993, 0.964, 1.614, 1.6)	(0.999, 0.964, 1.403, 1.4)	(0.985, 0.964, 1.263, 1.3)	(0.995, 0.964, 1.100, 1.1)	(0.993, 0.964, 1.341, 1.3)	(0.999, 0.964, 1.224, 1.2)	(0.985, 0.964, 1.146, 1.1)	(0.995, 0.964, 1.055, 1.1)
0.95	(0.999, 0.964, 1.2)	(0.993, 0.964, 1.614, 1.6)	(0.999, 0.964, 1.403, 1.4)	(0.985, 0.964, 1.263, 1.3)	(0.995, 0.964, 1.100, 1.1)	(0.993, 0.964, 1.341, 1.4)	(0.999, 0.964, 1.224, 1.3)	(0.985, 0.964, 1.146, 1.2)	(0.995, 0.964, 1.055, 1.1)
. 0.98	(0.310, 0.984, 4.6)	(0.499, 0.978, 1.880, 2.7)	(0.427, 0.980, 1.593, 2.5)	(0.366, 0.982, 1.404, 2.5)	(0.300, 0.984, 1.149, 2.8)	(0.382, 0.982, 1.553, 3.6)	(0.354, 0.983, 1.352, 3.5)	(0.339, 0.983, 1.230, 3.4)	(0.300, 0.984, 1.082, 3.6)
0.99	(0.112, 0.991, 12.4)	(0.179, 0.989, 2.349, 6.4)	(0.136, 0.990, 1.889, 6.4)	(0.123, 0.991, 1.528, 6.8)	(0.113, 0.991, 1.181, 8.1)	(0.140, 0.990, 1.816, 9.1)	(0.128, 0.991, 1.502, 9.1)	(0.122, 0.991, 1.293, 9.3)	(0.113, 0.991, 1.101, 10.0)
1.01	(0.114, 1.008, 12.6)	(0.177, 1.011, 2.374, 6.5)	(0.147, 1.009, 1.881, 6.5)	(0.119, 1.008, 1.538, 6.9)	(0.114, 1.008, 1.172, 8.3)	(0.141, 1.009, 1.828, 9.2)	(0.134, 1.009, 1.502, 9.2)	(0.119, 1.008, 1.298, 9.4)	(0.114, 1.008, 1.096, 10.2)
1.02	(0.292, 1.015, 4.7)	(0.489, 1.021, 1.886, 2.8)	(0.413, 1.019, 1.593, 2.6)	(0.385, 1.018, 1.391, 2.6)	(0.332, 1.016, 1.142, 2.9)	(0.365, 1.017, 1.565, 3.7)	(0.338, 1.016, 1.355, 3.6)	(0.323, 1.016, 1.230, 3.5)	(0.308, 1.015, 1.076, 3.7)
1.05	(0.991, 1.036, 1.2)	(0.991, 1.036, 1.607, 1.6)	(0.892, 1.033, 1.418, 1.4)	(0.980, 1.036, 1.255, 1.3)	(1.000, 1.037, 1.095, 1.1)	(0.991, 1.036, 1.337, 1.5)	(0.990, 1.036, 1.220, 1.3)	(0.980, 1.036, 1.141, 1.3)	(0.999, 1.037, 1.053, 1.2)
1.10	(0.999, 1.037, 1.0)	(0.991, 1.036, 1.607, 1.6)	(0.892, 1.033, 1.418, 1.4)	(0.980, 1.036, 1.255, 1.3)	(0.999, 1.037, 1.095, 1.1)	(0.991, 1.036, 1.337, 1.3)	(0.892, 1.033, 1.232, 1.2)	(0.980, 1.036, 1.141, 1.1)	(0.999, 1.037, 1.053, 1.1)
					ρ =	= 0.4			
0.90	(0.999, 0.972, 1.0)	(0.931, 0.973, 1.636, 1.6)	(0.945, 0.973, 1.414, 1.4)	(0.943, 0.973, 1.268, 1.3)	(0.999, 0.972, 1.100, 1.1)	(0.931, 0.973, 1.353, 1.4)	(0.945, 0.973, 1.230, 1.2)	(0.943, 0.973, 1.149, 1.1)	(0.999, 0.972, 1.055, 1.1)
0.95	(0.999, 0.972, 1.0)	(0.931, 0.973, 1.636, 1.6)	(0.945, 0.973, 1.414, 1.4)	(0.943, 0.973, 1.268, 1.3)	(0.999, 0.972, 1.100, 1.1)	(0.931, 0.973, 1.353, 1.4)	(0.945, 0.973, 1.230, 1.2)	(0.943, 0.973, 1.149, 1.2)	(0.999, 0.972, 1.055, 1.1)
0.98	(0.442, 0.984, 3.1)	(0.732, 0.978, 1.725, 2.1)	(0.624, 0.980, 1.506, 2.0)	(0.551, 0.982, 1.336, 1.9)	(0.490, 0.983, 1.126, 2.0)	(0.603, 0.981, 1.445, 2.6)	(0.529, 0.982, 1.302, 2.5)	(0.467, 0.984, 1.197, 2.4)	(0.464, 0.984, 1.071, 2.5)
0.99	(0.162, 0.991, 8.7)	(0.252, 0.989, 2.186, 4.5)	(0.215, 0.990, 1.783, 4.4)	(0.197, 0.990, 1.475, 4.6)	(0.173, 0.991, 1.157, 5.5)	(0.197, 0.990, 1.723, 6.4)	(0.186, 0.991, 1.454, 6.4)	(0.183, 0.991, 1.269, 6.4)	(0.170, 0.991, 1.087, 6.9)
1.01	(0.163, 1.008, 8.8)	(0.250, 1.010, 2.197, 4.6)	(0.216, 1.009, 1.784, 4.5)	(0.199, 1.009, 1.474, 4.7)	(0.169, 1.008, 1.157, 5.6)	(0.194, 1.009, 1.735, 6.5)	(0.183, 1.008, 1.459, 6.5)	(0.179, 1.008, 1.270, 6.5)	(0.165, 1.008, 1.088, 7.0)
1.02	(0.427, 1.015, 3.2)	(0.709, 1.021, 1.732, 2.2)	(0.605, 1.019, 1.506, 2.0)	(0.542, 1.017, 1.331, 1.9)	(0.469, 1.016, 1.124, 2.0)	(0.534, 1.017, 1.471, 2.7)	(0.474, 1.016, 1.312, 2.6)	(0.467, 1.016, 1.194, 2.5)	(0.446, 1.015, 1.069, 2.6)
1.05	(0.999, 1.028, 1.0)	(0.952, 1.027, 1.622, 1.6)	(0.882, 1.025, 1.421, 1.4)	(0.990, 1.028, 1.255, 1.3)	(0.999, 1.028, 1.096, 1.1)	(0.952, 1.027, 1.345, 1.4)	(0.882, 1.025, 1.234, 1.3)	(0.990, 1.028, 1.141, 1.2)	(0.999, 1.028, 1.053, 1.1)
1.10	(0.999, 1.028, 1.0)	(0.952, 1.027, 1.622, 1.6)	(0.882, 1.025, 1.421, 1.4)	(0.990, 1.028, 1.255, 1.3)	(0.999, 1.028, 1.096, 1.1)	(0.952, 1.027, 1.345, 1.3)	(0.882, 1.025, 1.234, 1.2)	(0.990, 1.028, 1.141, 1.1)	(0.999, 1.028, 1.053, 1.1)
		/	/	/	ρ =	= 0.8	· · · · · · · · · · · · · · · · · · ·	/	<u></u>
0.90	(0.550, 0.989, 1.0)	(0.920, 0.984, 1.639, 1.6)	(0.918, 0.984, 1.419, 1.4)	(0.977, 0.984, 1.262, 1.3)	(0.993, 0.983, 1.099, 1.1)	(0.920, 0.984, 1.355, 1.4)	(0.918, 0.984, 1.232, 1.2)	(0.977, 0.984, 1.145, 1.1)	(0.993, 0.983, 1.055, 1.1)
0.95	(0.999, 0.983, 1.0)	(0.920, 0.984, 1.639, 1.6)	(0.918, 0.984, 1.419, 1.4)	(0.977, 0.984, 1.262, 1.3)	(0.993, 0.983, 1.099, 1.1)	(0.920, 0.984, 1.355, 1.4)	(0.918, 0.984, 1.232, 1.2)	(0.977, 0.984, 1.145, 1.1)	(0.993, 0.983, 1.055, 1.1)
0.98	(0.915, 0.984, 1.4)	(0.920, 0.984, 1.639, 1.7)	(0.918, 0.984, 1.419, 1.5)	(0.977, 0.984, 1.262, 1.3)	(0.992, 0.983, 1.099, 1.2)	(0.920, 0.984, 1.355, 1.5)	(0.918, 0.984, 1.232, 1.4)	(0.976, 0.984, 1.145, 1.3)	(0.939, 0.984, 1.056, 1.3)
0.99	(0.352, 0.992, 3.9)	(0.572, 0.989, 1.822, 2.4)	(0.503, 0.990, 1.554, 2.3)	(0.452, 0.991, 1.359, 2.2)	(0.399, 0.991, 1.139, 2.4)	(0.444, 0.991, 1.516, 3.1)	(0.408, 0.991, 1.334, 3.0)	(0.387, 0.991, 1.209, 3.0)	(0.376, 0.992, 1.078, 3.1)
1.01	(0.348, 1.007, 4.0)	(0.582, 1.010, 1.813, 2.5)	(0.474, 1.009, 1.563, 2.3)	(0.440, 1.008, 1.376, 2.2)	(0.393, 1.008, 1.138, 2.4)	(0.419, 1.008, 1.530, 3.2)	(0.402, 1.008, 1.334, 3.1)	(0.385, 1.008, 1.208, 3.0)	(0.368, 1.007, 1.077, 3.1)
1.02	(0.899, 1.015, 1.4)	(0.872, 1.014, 1.654, 1.7)	(0.971, 1.016, 1.402, 1.5)	(0.971, 1.016, 1.259, 1.3)	(0.979, 1.016, 1.103, 1.2)	(0.872, 1.014, 1.363, 1.6)	(0.971, 1.016, 1.223, 1.4)	(0.971, 1.016, 1.143, 1.4)	(0.918, 1.015, 1.058, 1.3)
1.05	(0.999, 1.016, 1.0)	(0.872, 1.014, 1.654, 1.7)	(0.971, 1.016, 1.402, 1.4)	(0.971, 1.016, 1.259, 1.3)	(0.999, 1.016, 1.102, 1.1)	(0.872, 1.014, 1.363, 1.4)	(0.971, 1.016, 1.223, 1.2)	(0.971, 1.016, 1.143, 1.1)	(0.999, 1.016, 1.056, 1.1)
1.10	(0.550, 1.010, 1.0)	(0.872, 1.014, 1.654, 1.7)	(0.971, 1.016, 1.402, 1.4)	(0.971, 1.016, 1.259, 1.3)	(0.999, 1.016, 1.102, 1.1)	(0.872, 1.014, 1.363, 1.4)	(0.971, 1.016, 1.223, 1.2)	(0.971, 1.016, 1.143, 1.1)	(0.999, 1.016, 1.056, 1.1)

Table 2: The parameters $(\lambda^+, H_U, h_L, ATS_1)$ and $(\lambda^-, H_D, h_L, ATS_1)$ of the VSI EWMA-RZ control charts compared to those (λ^+, H_U, ARL_1) and (λ^-, H_D, ARL_1) of FSI EWMA charts (second column) for $\gamma_X = \gamma_Y = 0.01, n = 15, ASI_0 = 1$ and $ATS_0 = 200$

		h_S	r = 0.1			$h_{S} = 0.5$				
τ	FSI	R = 0.1	R = 0.2	R = 0.3	R = 0.5	R = 0.1	R = 0.2	R = 0.3	R = 0.5	
					ρ	= -0.8				
0.90	(0.550, 0.992, 1.0)	(0.986, 0.987, 1.614, 1.6)	(0.996, 0.987, 1.401, 1.4)	(0.894, 0.988, 1.273, 1.3)	(0.999, 0.987, 1.099, 1.1)	(0.986, 0.987, 1.341, 1.3)	(0.996, 0.987, 1.223, 1.2)	(0.894, 0.988, 1.151, 1.2)	(0.999, 0.987, 1.055, 1.1)	
0.95	(0.995, 0.987, 1.0)	(0.986, 0.987, 1.614, 1.6)	(0.996, 0.987, 1.401, 1.4)	(0.894, 0.988, 1.273, 1.3)	(0.999, 0.987, 1.099, 1.1)	(0.986, 0.987, 1.341, 1.3)	(0.996, 0.987, 1.223, 1.2)	(0.894, 0.988, 1.151, 1.2)	(0.999, 0.987, 1.055, 1.1)	
0.98	(0.999, 0.987, 1.1)	(0.986, 0.987, 1.614, 1.6)	(0.996, 0.987, 1.401, 1.4)	(0.894, 0.988, 1.273, 1.3)	(0.999, 0.987, 1.099, 1.1)	(0.986, 0.987, 1.341, 1.4)	(0.996, 0.987, 1.223, 1.3)	(0.981, 0.987, 1.145, 1.2)	(0.999, 0.987, 1.055, 1.1)	
0.99	(0.514, 0.992, 2.7)	(0.845, 0.989, 1.669, 2.0)	(0.738, 0.990, 1.467, 1.8)	(0.641, 0.991, 1.315, 1.7)	(0.518, 0.992, 1.130, 1.7)	(0.590, 0.991, 1.450, 2.3)	(0.590, 0.991, 1.287, 2.2)	(0.550, 0.992, 1.186, 2.1)	(0.517, 0.992, 1.072, 2.1)	
1.01	(0.506, 1.007, 2.7)	(0.879, 1.011, 1.652, 2.0)	(0.720, 1.009, 1.468, 1.8)	(0.585, 1.008, 1.324, 1.7)	(0.534, 1.007, 1.127, 1.7)	(0.620, 1.008, 1.437, 2.4)	(0.587, 1.008, 1.286, 2.2)	(0.550, 1.008, 1.184, 2.2)	(0.534, 1.007, 1.071, 2.2)	
1.02	(0.999, 1.012, 1.1)	(0.992, 1.012, 1.609, 1.6)	(0.982, 1.012, 1.401, 1.4)	(0.993, 1.012, 1.256, 1.3)	(0.999, 1.012, 1.097, 1.1)	(0.992, 1.012, 1.338, 1.4)	(0.982, 1.012, 1.222, 1.3)	(0.993, 1.012, 1.142, 1.2)	(1.000, 1.012, 1.054, 1.1)	
1.05	(0.999, 1.012, 1.0)	(0.992, 1.012, 1.609, 1.6)	(0.982, 1.012, 1.401, 1.4)	(0.993, 1.012, 1.256, 1.3)	(0.999, 1.012, 1.097, 1.1)	(0.992, 1.012, 1.338, 1.3)	(0.982, 1.012, 1.222, 1.2)	(0.993, 1.012, 1.142, 1.1)	(0.999, 1.012, 1.054, 1.1)	
1.10	(0.550, 1.008, 1.0)	(0.992, 1.012, 1.609, 1.6)	(0.982, 1.012, 1.401, 1.4)	(0.993, 1.012, 1.256, 1.3)	(0.999, 1.012, 1.097, 1.1)	(0.992, 1.012, 1.338, 1.3)	(0.982, 1.012, 1.222, 1.2)	(0.993, 1.012, 1.142, 1.1)	(0.999, 1.012, 1.054, 1.1)	
-					ρ	= -0.4		· · · · · · · · ·	· · · · · · ·	
0.90	(0.550, 0.993, 1.0)	(0.984, 0.989, 1.614, 1.6)	(0.987, 0.989, 1.403, 1.4)	(0.956, 0.989, 1.264, 1.3)	(0.999, 0.988, 1.098, 1.1)	(0.984, 0.989, 1.341, 1.3)	(0.987, 0.989, 1.224, 1.2)	(0.956, 0.989, 1.146, 1.1)	(0.999, 0.988, 1.054, 1.1)	
0.95	(0.550, 0.993, 1.0)	(0.984, 0.989, 1.614, 1.6)	(0.987, 0.989, 1.403, 1.4)	(0.956, 0.989, 1.264, 1.3)	(0.999, 0.988, 1.098, 1.1)	(0.984, 0.989, 1.341, 1.3)	(0.987, 0.989, 1.224, 1.2)	(0.956, 0.989, 1.146, 1.1)	(0.999, 0.988, 1.054, 1.1)	
0.98	(0.999, 0.988, 1.0)	(0.984, 0.989, 1.614, 1.6)	(0.987, 0.989, 1.403, 1.4)	(0.956, 0.989, 1.264, 1.3)	(0.999, 0.988, 1.098, 1.1)	(0.984, 0.989, 1.341, 1.4)	(0.987, 0.989, 1.224, 1.2)	(0.956, 0.989, 1.146, 1.2)	(0.999, 0.988, 1.054, 1.1)	
0.99	(0.624, 0.992, 2.2)	(0.984, 0.989, 1.614, 1.8)	(0.891, 0.989, 1.425, 1.6)	(0.706, 0.991, 1.303, 1.5)	(0.656, 0.992, 1.115, 1.5)	(0.749, 0.991, 1.397, 2.0)	(0.691, 0.991, 1.267, 1.9)	(0.675, 0.991, 1.171, 1.8)	(0.635, 0.992, 1.064, 1.8)	
1.01	(0.601, 1.007, 2.2)	(0.995, 1.011, 1.608, 1.8)	(0.862, 1.009, 1.429, 1.7)	(0.754, 1.008, 1.292, 1.5)	(0.644, 1.007, 1.114, 1.5)	(0.745, 1.008, 1.397, 2.1)	(0.690, 1.008, 1.265, 1.9)	(0.658, 1.008, 1.171, 1.9)	(0.616, 1.007, 1.064, 1.8)	
1.02	(0.999, 1.011, 1.0)	(0.997, 1.011, 1.608, 1.6)	(0.995, 1.011, 1.398, 1.4)	(0.895, 1.010, 1.269, 1.3)	(0.999, 1.011, 1.097, 1.1)	(0.997, 1.011, 1.337, 1.3)	(0.995, 1.011, 1.221, 1.2)	(0.895, 1.010, 1.149, 1.2)	(0.999, 1.011, 1.054, 1.1)	
1.05	(0.550, 1.007, 1.0)	(0.997, 1.011, 1.608, 1.6)	(0.995, 1.011, 1.398, 1.4)	(0.895, 1.010, 1.269, 1.3)	(0.999, 1.011, 1.097, 1.1)	(0.997, 1.011, 1.337, 1.3)	(0.995, 1.011, 1.221, 1.2)	(0.895, 1.010, 1.149, 1.1)	(0.999, 1.011, 1.054, 1.1)	
1.10	(0.550, 1.007, 1.0)	(0.997, 1.011, 1.608, 1.6)	(0.995, 1.011, 1.398, 1.4)	(0.895, 1.010, 1.269, 1.3)	(0.999, 1.011, 1.097, 1.1)	(0.997, 1.011, 1.337, 1.3)	(0.995, 1.011, 1.221, 1.2)	(0.895, 1.010, 1.149, 1.1)	(0.999, 1.011, 1.054, 1.1)	
					I	p = 0.0				
0.90	(0.550, 0.994, 1.0)	(0.999, 0.990, 1.609, 1.6)	(0.880, 0.991, 1.427, 1.4)	(0.999, 0.990, 1.258, 1.3)	(0.999, 0.990, 1.098, 1.1)	(0.999, 0.990, 1.332, 1.3)	(0.880, 0.991, 1.237, 1.2)	(0.999, 0.990, 1.143, 1.1)	(0.999, 0.990, 1.054, 1.1)	
0.95	(0.550, 0.994, 1.0)	(0.999, 0.990, 1.609, 1.6)	(0.880, 0.991, 1.427, 1.4)	(0.999, 0.990, 1.258, 1.3)	(0.999, 0.990, 1.098, 1.1)	(0.999, 0.990, 1.338, 1.3)	(0.880, 0.991, 1.237, 1.2)	(0.999, 0.990, 1.14376, 1.1)	(0.9999, 0.9906, 1.0549, 1.1)	
· 0.98	(0.99990, 0.990, 1.0)	(0.999, 0.990, 1.609, 1.6)	(0.880, 0.991, 1.427, 1.4)	(0.999, 0.990, 1.258, 1.3)	(0.999, 0.990, 1.098, 1.1)	(0.999, 0.990, 1.338, 1.3)	(0.880, 0.991, 1.237, 1.2)	(0.999, 0.990, 1.143, 1.1)	(0.999, 0.990, 1.054, 1.1)	
0.99	(0.776, 0.992, 1.7)	(0.999, 0.990, 1.609, 1.7)	(0.880, 0.991, 1.427, 1.5)	(0.989, 0.990, 1.260, 1.4)	(0.813, 0.992, 1.107, 1.3)	(0.930, 0.991, 1.352, 1.7)	(0.880, 0.991, 1.237, 1.6)	(0.839, 0.991, 1.156, 1.5)	(0.776, 0.992, 1.060, 1.5)	
1.01	(0.756, 1.007, 1.7)	(0.900, 1.008, 1.644, 1.7)	(0.883, 1.008, 1.424, 1.5)	(0.880, 1.008, 1.272, 1.4)	(0.798, 1.007, 1.106, 1.3)	(0.900, 1.008, 1.358, 1.7)	(0.872, 1.008, 1.237, 1.6)	(0.821, 1.008, 1.156, 1.5)	(0.774, 1.007, 1.059, 1.5)	
1.02	(0.999, 1.009, 1.0)	(0.900, 1.008, 1.644, 1.6)	(0.883, 1.008, 1.424, 1.4)	(0.880, 1.008, 1.272, 1.3)	(0.999, 1.009, 1.097, 1.1)	(0.900, 1.008, 1.358, 1.4)	(0.883, 1.008, 1.235, 1.2)	(0.880, 1.008, 1.151, 1.2)	(0.999, 1.009, 1.054, 1.1)	
1.05	(0.550, 1.005, 1.0)	(0.900, 1.008, 1.644, 1.6)	(0.883, 1.008, 1.424, 1.4)	(0.880, 1.008, 1.272, 1.3)	(0.999, 1.009, 1.097, 1.1)	(0.900, 1.008, 1.358, 1.4)	(0.883, 1.008, 1.235, 1.2)	(0.880, 1.008, 1.151, 1.2)	(0.999, 1.009, 1.054, 1.1)	
1.10	(0.550, 1.005, 1.0)	(0.900, 1.008, 1.644, 1.6)	(0.883, 1.008, 1.424, 1.4)	(0.880, 1.008, 1.272, 1.3)	(0.999, 1.005, 1.097, 1.1)	(0.900, 1.008, 1.358, 1.4)	(0.883, 1.008, 1.235, 1.2)	(0.880, 1.008, 1.151, 1.2)	(0.999, 1.009, 1.054, 1.1)	
		/		/		p = 0.4			/	
0.90	(0.550, 0.995, 1.0)	(0.986, 0.992, 1.613, 1.6)	(0.985, 0.992, 1.403, 1.4)	(0.918, 0.993, 1.269, 1.3)	(0.999, 0.992, 1.098, 1.1)	(0.986, 0.992, 1.340, 1.3)	(0.985, 0.992, 1.224, 1.2)	(0.918, 0.993, 1.149, 1.1)	(0.999, 0.992, 1.054, 1.1)	
0.95	(0.550, 0.995, 1.0)	(0.986, 0.992, 1.613, 1.6)	(0.985, 0.992, 1.403, 1.4)	(0.918, 0.993, 1.269, 1.3)	(0.999, 0.992, 1.098, 1.1)	(0.986, 0.992, 1.340, 1.3)	(0.985, 0.992, 1.224, 1.2)	(0.918, 0.993, 1.149, 1.1)	(0.999, 0.992, 1.054, 1.1)	
0.98	(0.999, 0.992, 1.0)	(0.986, 0.992, 1.613, 1.6)	(0.985, 0.992, 1.403, 1.4)	(0.918, 0.993, 1.269, 1.3)	(0.999, 0.992, 1.098, 1.1)	(0.986, 0.992, 1.340, 1.3)	(0.985, 0.992, 1.224, 1.2)	(0.918, 0.993, 1.149, 1.1)	(0.999, 0.992, 1.054, 1.1)	
0.99	(0.999, 0.992, 1.2)	(0.986, 0.992, 1.613, 1.6)	(0.985, 0.992, 1.403, 1.4)	(0.918, 0.993, 1.269, 1.3)	(0.999, 0.992, 1.098, 1.1)	(0.986, 0.992, 1.341, 1.4)	(0.985, 0.992, 1.224, 1.3)	(1.000, 0.992, 1.143, 1.2)	(0.999, 0.992, 1.054, 1.2)	
1.01	(0.995, 1.007, 1.2)	(0.999, 1.007, 1.607, 1.6)	(0.999, 1.007, 1.398, 1.4)	(0.999, 1.007, 1.256, 1.3)	(0.999, 1.007, 1.097, 1.1)	(0.999, 1.007, 1.337, 1.4)	(0.999, 1.007, 1.221, 1.3)	(0.999, 1.007, 1.142, 1.2)	(0.999, 1.007, 1.054, 1.2)	
1.02	(0.999, 1.007, 1.0)	(0.999, 1.007, 1.607, 1.6)	(0.998, 1.007, 1.398, 1.4)	(0.999, 1.007, 1.256, 1.3)	(0.999, 1.007, 1.097, 1.1)	(0.999, 1.007, 1.337, 1.3)	(0.998, 1.007, 1.221, 1.2)	(0.999, 1.007, 1.142, 1.1)	(0.999, 1.007, 1.054, 1.1)	
1.05	(0.550, 1.004, 1.0)	(0.999, 1.007, 1.607, 1.6)	(0.998, 1.007, 1.398, 1.4)	(0.999, 1.007, 1.256, 1.3)	(0.999, 1.007, 1.097, 1.1)	(0.999, 1.007, 1.337, 1.3)	(0.998, 1.007, 1.221, 1.2)	(0.999, 1.007, 1.142, 1.1)	(0.999, 1.007, 1.054, 1.1)	
1.10	(0.550, 1.004, 1.0)	(0.999, 1.007, 1.607, 1.6)	(0.998, 1.007, 1.398, 1.4)	(0.999, 1.007, 1.256, 1.3)	(0.999, 1.007, 1.097, 1.1)	(0.999, 1.007, 1.337, 1.3)	(0.998, 1.007, 1.221, 1.2)	(0.999, 1.007, 1.142, 1.1)	(0.999, 1.007, 1.054, 1.1)	
0.00	(0 550 0 007 1 0)	(0.044.0.006.1.699.1.6)	(0.004.0.005.1.400.1.4)	(0.060.0.005.1.969.1.9)	(0.000.0.005.1.009.1.1)	0 = 0.8	(0.004.0.005.1.999.1.9)	(0.060.0.005.1.146.1.1)	(0,000,0,005,1,054,1,1)	
0.90	(0.550, 0.997, 1.0)	(0.944, 0.996, 1.628, 1.6)	(0.994, 0.995, 1.400, 1.4)	(0.960, 0.995, 1.263, 1.3)	(0.999, 0.995, 1.098, 1.1)	(0.944, 0.996, 1.349, 1.3)	(0.994, 0.995, 1.222, 1.2)	(0.960, 0.995, 1.146, 1.1)	(0.999, 0.995, 1.054, 1.1)	
0.95	(0.550, 0.997, 1.0)	(0.944, 0.990, 1.028, 1.0)	(0.994, 0.995, 1.400, 1.4)	(0.900, 0.995, 1.203, 1.3)	(0.999, 0.995, 1.098, 1.1)	(0.944, 0.990, 1.349, 1.3)	(0.994, 0.995, 1.222, 1.2)	(0.900, 0.995, 1.140, 1.1)	(0.999, 0.995, 1.054, 1.1)	
0.98	(0.550, 0.997, 1.0)	(0.944, 0.996, 1.628, 1.6)	(0.994, 0.995, 1.400, 1.4)	(0.960, 0.995, 1.263, 1.3)	(0.999, 0.995, 1.098, 1.1)	(0.944, 0.996, 1.349, 1.3)	(0.994, 0.995, 1.222, 1.2)	(0.960, 0.995, 1.146, 1.1)	(0.999, 0.995, 1.054, 1.1)	
0.99	(0.999, 0.995, 1.0)	(0.944, 0.990, 1.028, 1.0)	(0.994, 0.995, 1.400, 1.4)	(0.900, 0.995, 1.203, 1.3)	(0.999, 0.995, 1.098, 1.1)	(0.944, 0.990, 1.349, 1.3)	(0.994, 0.995, 1.222, 1.2)	(0.900, 0.995, 1.140, 1.1)	(0.999, 0.995, 1.054, 1.1)	
1.01	(1.000, 1.004, 1.0)	(0.991, 1.004, 1.010, 1.0)	(0.999, 1.004, 1.398, 1.4)	(0.994, 1.004, 1.257, 1.3)	(0.998, 1.004, 1.098, 1.1)	(0.991, 1.004, 1.339, 1.3)	(0.999, 1.004, 1.221, 1.2)	(0.994, 1.004, 1.143, 1.1)	(0.998, 1.004, 1.054, 1.1)	
1.02	(0.550, 1.002, 1.0)	(0.991, 1.004, 1.610, 1.6)	(0.999, 1.004, 1.398, 1.4)	(0.994, 1.004, 1.257, 1.3)	(0.998, 1.004, 1.098, 1.1)	(0.991, 1.004, 1.339, 1.3)	(0.999, 1.004, 1.221, 1.2)	(0.994, 1.004, 1.143, 1.1)	(0.998, 1.004, 1.054, 1.1)	
1.05	(0.550, 1.002, 1.0)	(0.991, 1.004, 1.010, 1.0)	(0.999, 1.004, 1.398, 1.4)	(0.994, 1.004, 1.257, 1.3)	(0.998, 1.004, 1.098, 1.1)	(0.991, 1.004, 1.339, 1.3)	(0.999, 1.004, 1.221, 1.2)	(0.994, 1.004, 1.143, 1.1)	(0.998, 1.004, 1.054, 1.1)	
1.10	(0.550, 1.002, 1.0)	(0.991, 1.004, 1.610, 1.6)	(0.999, 1.004, 1.398, 1.4)	(0.994, 1.004, 1.257, 1.3)	(0.998, 1.004, 1.098, 1.1)	(0.991, 1.004, 1.339, 1.3)	(0.999, 1.004, 1.221, 1.2)	(0.994, 1.004, 1.143, 1.1)	(0.998, 1.004, 1.054, 1.1)	

Table 3: The parameters $(\lambda^+, H_U, h_L, ATS_1)$ and $(\lambda^-, H_D, h_L, ATS_1)$ of the VSI EWMA-RZ control charts compared to those (λ^+, H_U, ARL_1) and (λ^-, H_D, ARL_1) of FSI EWMA charts (second column) for $\gamma_X = \gamma_Y = 0.2, n = 1, ASI_0 = 1$ and $ATS_0 = 200$

						1			
		h,	S = 0.1				$h_S =$	0.5	
τ	FSI	R = 0.1	R = 0.2	R = 0.3	R = 0.5	R = 0.1	R = 0.2	R = 0.3	R = 0.5
					$\rho =$	-0.8			
0.90	(0.050, 0.90680, 43.5)	(0.050, 0.906, 2.439, 28.2)	(0.051, 0.904, 1.799, 29.8)	(0.050, 0.906, 1.455, 31.8)	(0.050, 0.906, 1.153, 36.1)	(0.050, 0.906, 1.799, 35.0)	(0.050, 0.906, 1.444, 35.9)	(0.050, 0.906, 1.253, 37.0)	(0.050, 0.906, 1.085, 39.4)
0.95	(0.050, 0.906, 86.4)	(0.050, 0.906, 2.439, 69.0)	(0.051, 0.904, 1.799, 71.5)	(0.050, 0.906, 1.455, 74.1)	(0.050, 0.906, 1.153, 79.2)	(0.050, 0.906, 1.799, 76.7)	(0.050, 0.906, 1.444, 78.1)	(0.050, 0.906, 1.253, 79.6)	(0.050, 0.906, 1.085, 82.4)
0.98	(0.050, 0.906, 140.5)	(0.050, 0.906, 2.439, 128.6)	(0.050, 0.906, 1.799, 130.5)	(0.050, 0.906, 1.455, 132.5)	(0.050, 0.906, 1.153, 136.1)	(0.050, 0.906, 1.799, 133.9)	(0.050, 0.906, 1.444, 135.0)	(0.050, 0.906, 1.253, 136.1)	(0.050, 0.906, 1.085, 138.1)
0.99	(0.050, 0.906, 167.2)	(0.050, 0.906, 2.439, 160.0)	(0.050, 0.906, 1.799, 161.2)	(0.050, 0.906, 1.455, 162.5)	(0.050, 0.906, 1.153, 164.6)	(0.050, 0.906, 1.799, 163.2)	(0.050, 0.906, 1.444, 163.9)	(0.050, 0.906, 1.253, 164.6)	(0.050, 0.906, 1.085, 165.8)
1.01	(0.050, 1.225, 167.5)	(0.050, 1.225, 5.301, 153.0)	(0.050, 1.225, 2.963, 154.9)	(0.050, 1.226, 2.023, 157.4)	(0.050, 1.225, 1.296, 162.2)	(0.050, 1.225, 3.389, 159.4)	(0.050, 1.225, 2.090, 160.5)	(0.050, 1.225, 1.572, 161.8)	(0.050, 1.225, 1.164, 164.5)
1.02	(0.050, 1.225, 141.6)	(0.050, 1.225, 5.301, 119.2)	(0.050, 1.225, 2.963, 121.8)	(0.050, 1.226, 2.023, 125.3)	(0.050, 1.225, 1.296, 132.7)	(0.050, 1.225, 3.389, 129.2)	(0.050, 1.225, 2.090, 130.6)	(0.050, 1.225, 1.572, 132.5)	(0.050, 1.225, 1.164, 136.6)
1.05	(0.050, 1.225, 90.7)	(0.050, 1.226, 5.276, 63.9)	(0.050, 1.225, 2.963, 65.4)	(0.050, 1.226, 2.023, 68.5)	(0.050, 1.225, 1.296, 77.2)	(0.050, 1.225, 3.389, 75.9)	(0.050, 1.225, 2.090, 76.6)	(0.050, 1.226, 1.568, 78.5)	(0.050, 1.225, 1.164, 83.2)
1.10	(0.050, 1.225, 51.5)	(0.073, 1.282, 4.012, 31.2)	(0.062, 1.256, 2.696, 31.8)	(0.054, 1.235, 1.980, 33.3)	(0.050, 1.225, 1.296, 38.6)	(0.060, 1.251, 2.922, 40.9)	(0.053, 1.234, 2.040, 40.9)	(0.050, 1.226, 1.568, 41.4)	(0.050, 1.225, 1.164, 44.3)
	(0.000, 1.110, 0110)	(0.010,	(0.002, 0.200, 2.000, 0.00)	(0.00-1, 2.200, 2.000, 00.0)	(0.000, 0.200, 0.000) 0 =	-0.4	(01000, 11201, 21010, 1010)	(0.000, 1.1.20, 1.000, 1.1.2)	(0.000, 1.1.0, 1.101, 1.10)
0.90	(0.050, 0.914, 37.4)	(0.050, 0.914, 2.486, 23.0)	(0.050, 0.914, 1.819, 24.3)	(0.050, 0.914, 1.468, 26.1)	(0.050, 0.914, 1.157, 30, 1)	(0.050, 0.914, 1.825, 29.4)	(0.050, 0.914, 1.455, 30, 2)	(0.050, 0.914, 1.260, 31, 2)	(0.050, 0.914, 1.087, 33, 4)
0.00	(0.050, 0.011, 011) (0.050, 0.914, 78, 1)	(0.050, 0.011, 2.100, 200)	(0.050, 0.011, 1.010, 21.0)	(0.050, 0.011, 1.100, 2011)	(0.050, 0.011, 1107, 0011)	(0.050, 0.014, 1.825, 68.1)	(0.050, 0.914, 1.455, 69.4)	(0.050, 0.914, 1.260, 70.9)	(0.050, 0.011, 1.001, 00.1)
0.00	(0.050, 0.014, 134, 1)	(0.050, 0.014, 2.400, 00.1)	(0.050, 0.014, 1.819, 02.9)	(0.050, 0.014, 1.468, 100.2)	(0.050, 0.014, 1.157, 100)	(0.050, 0.014, 1.825, 00.1)	(0.050, 0.014, 1.455, 00.4)	(0.050, 0.014, 1.200, 10.0)	(0.050, 0.012, 1.001, 10.0)
0.90	(0.050, 0.014, 162.2)	(0.050, 0.012, 2.480, 120.0)	(0.050, 0.014, 1.810, 156, 2)	(0.050, 0.014, 1.408, 125.1)	(0.050, 0.014, 1.157, 129.2)	(0.050, 0.014, 1.025, 120.7)	(0.050, 0.014, 1.455, 150.4)	(0.050, 0.014, 1.200, 120.1)	(0.050, 0.014, 1.087, 101.4)
1.01	(0.050, 0.914, 105.2)	(0.050, 0.914, 2.480, 155.0)	(0.050, 0.914, 1.819, 150.3)	(0.050, 0.914, 1.408, 157.7)	(0.050, 0.914, 1.157, 100.2)	(0.050, 0.914, 1.825, 158.0)	(0.050, 0.914, 1.455, 159.4)	(0.050, 0.914, 1.200, 100.2)	(0.050, 0.914, 1.087, 101.3)
1.01	(0.050, 1.100, 105.5)	(0.050, 1.188, 4.890, 148.1)	(0.050, 1.188, 2.808, 150.3)	(0.050, 1.188, 1.900, 152.7)	(0.050, 1.188, 1.285, 157.8)	(0.050, 1.188, 5.101, 155.0)	(0.050, 1.188, 2.004, 194.0)	(0.050, 1.188, 1.550, 157.5)	(0.050, 1.188, 1.157, 100.3)
1.02	(0.050, 1.188, 135.3)	(0.050, 1.188, 4.890, 112.0)	(0.050, 1.188, 2.808, 114.8)	(0.050, 1.188, 1.900, 118.3)	(0.050, 1.188, 1.283, 120.0)	(0.050, 1.188, 3.161, 122.4)	(0.050, 1.188, 2.004, 124.0)	(0.050, 1.188, 1.536, 125.8)	(0.050, 1.188, 1.157, 130.1)
1.05	(0.050, 1.188, 82.5)	(0.050, 1.188, 4.889, 56.3)	(0.050, 1.188, 2.808, 57.9)	(0.050, 1.188, 1.966, 60.8)	(0.050, 1.188, 1.283, 69.1)	(0.050, 1.188, 3.168, 67.9)	(0.050, 1.188, 2.004, 68.8)	(0.050, 1.188, 1.536, 70.4)	(0.050, 1.188, 1.157, 75.1)
1.10	(0.050, 1.188, 44.9)	(0.077, 1.244, 3.950, 26.3)	(0.062, 1.215, 2.582, 26.9)	(0.056, 1.201, 1.899, 28.3)	(0.053, 1.196, 1.286, 32.9)	(0.061, 1.211, 2.753, 35.2)	(0.054, 1.197, 1.957, 35.2)	(0.050, 1.188, 1.535, 35.8)	(0.050, 1.188, 1.157, 38.3)
		/	/	/	ρ	= 0	· · · · · · · · · · · · · · · · · · ·	/	(
0.90	(0.050, 0.923, 30.4)	(0.050, 0.923, 2.547, 17.4)	(0.050, 0.923, 1.846, 18.5)	(0.050, 0.923, 1.484, 20.0)	(0.050, 0.923, 1.162, 23.4)	(0.050, 0.923, 1.859, 23.2)	(0.050, 0.923, 1.470, 23.8)	(0.050, 0.923, 1.268, 24.6)	(0.050, 0.923, 1.090, 26.5)
0.95	(0.050, 0.923, 67.3)	(0.050, 0.923, 2.547, 48.9)	(0.050, 0.923, 1.846, 51.2)	(0.050, 0.923, 1.484, 53.8)	(0.050, 0.923, 1.162, 59.2)	(0.050, 0.923, 1.859, 57.1)	(0.050, 0.923, 1.470, 58.4)	(0.050, 0.923, 1.268, 59.8)	(0.050, 0.923, 1.090, 62.8)
 0.98 	(0.05000.923, 124.9)	(0.050, 0.923, 2.547, 109.8)	(0.050, 0.923, 1.846, 112.2)	(0.050, 0.923, 1.484, 114.6)	(0.050, 0.923, 1.162, 119.2)	(0.050, 0.923, 1.859, 116.5)	(0.050, 0.923, 1.470, 117.8)	(0.050, 0.923, 1.268, 119.2)	(0.050, 0.923, 1.090, 121.7)
0.99	(0.050, 0.923, 157.2)	(0.050, 0.923, 2.547, 147.5)	(0.050, 0.923, 1.846, 149.1)	(0.050, 0.923, 1.484, 150.7)	(0.050, 0.923, 1.162, 153.7)	(0.050, 0.923, 1.859, 151.8)	(0.050, 0.923, 1.470, 152.7)	(0.050, 0.923, 1.268, 153.6)	(0.050, 0.923, 1.090, 155.2)
1.01	(0.050, 1.148, 157.5)	(0.050, 1.148, 4.509, 140.7)	(0.050, 1.149, 2.653, 143.3)	(0.050, 1.148, 1.896, 145.9)	(0.050, 1.148, 1.268, 151.4)	(0.050, 1.148, 2.949, 148.2)	(0.050, 1.149, 1.918, 149.7)	(0.050, 1.148, 1.497, 151.1)	(0.050, 1.148, 1.149, 154.1)
1.02	(0.050, 1.148, 126.2)	(0.050, 1.148, 4.509, 101.8)	(0.050, 1.149, 2.653, 105.0)	(0.050, 1.148, 1.896, 108.5)	(0.050, 1.148, 1.268, 116.4)	(0.050, 1.148, 2.949, 112.6)	(0.050, 1.149, 1.918, 114.4)	(0.050, 1.148, 1.497, 116.4)	(0.050, 1.148, 1.149, 120.7)
1.05	(0.050, 1.148, 71.7)	(0.050, 1.148, 4.509, 46.8)	(0.051, 1.152, 2.630, 48.5)	(0.050, 1.148, 1.896, 51.1)	(0.050, 1.148, 1.268, 58.7)	(0.050, 1.148, 2.949, 57.9)	(0.050, 1.149, 1.918, 58.8)	(0.050, 1.148, 1.497, 60.2)	(0.050, 1.148, 1.149, 64.5)
1.10	(0.050, 1.148, 37.0)	(0.082, 1.202, 3.628, 20.8)	(0.068, 1.180, 2.404, 21.4)	(0.061, 1.169, 1.800, 22.6)	(0.050, 1.148, 1.268, 26.5)	(0.065, 1.175, 2.537, 28.5)	(0.059, 1.166, 1.840, 28.6)	(0.056, 1.159, 1.468, 29.1)	(0.050, 1.148, 1.149, 31.1)
					ρ =	= 0.4			
0.90	(0.050, 0.937, 22.1)	(0.050, 0.937, 2.638, 11.8)	(0.050, 0.937, 1.885, 12.4)	(0.060, 0.928, 1.502, 13.4)	(0.050, 0.937, 1.169, 15.9)	(0.050, 0.937, 1.910, 16.4)	(0.050, 0.937, 1.492, 16.7)	(0.053, 0.933, 1.280, 17.3)	(0.050, 0.937, 1.094, 18.7)
0.95	(0.050, 0.937, 52.1)	(0.050, 0.937, 2.638, 34.4)	(0.050, 0.937, 1.885, 36.3)	(0.050, 0.936, 1.506, 38.7)	(0.050, 0.937, 1.169, 43.7)	(0.050, 0.937, 1.910, 42.2)	(0.050, 0.937, 1.492, 43.3)	(0.050, 0.936, 1.281, 44.7)	(0.050, 0.937, 1.094, 47.4)
0.98	(0.050, 0.937, 109.7)	(0.050, 0.937, 2.638, 92.0)	(0.050, 0.937, 1.885, 94.7)	(0.050, 0.936, 1.506, 97.5)	(0.050, 0.937, 1.169, 102.8)	(0.050, 0.937, 1.910, 99.9)	(0.050, 0.937, 1.492, 101.4)	(0.050, 0.936, 1.281, 103.0)	(0.050, 0.937, 1.094, 105.9)
0.99	(0.050, 0.937, 146.6)	(0.050, 0.937, 2.638, 134.4)	(0.050, 0.937, 1.885, 136.4)	(0.050, 0.936, 1.506, 138.5)	(0.050, 0.937, 1.169, 142.2)	(0.050, 0.937, 1.910, 139.8)	(0.050, 0.937, 1.492, 140.9)	(0.050, 0.936, 1.281, 142.1)	(0.050, 0.937, 1.094, 144.2)
1.01	(0.050, 1.106, 147.1)	(0.050, 1.107, 4.062, 128.5)	(0.050, 1.106, 2.491, 131.2)	(0.050, 1.107, 1.811, 134.4)	(0.050, 1.106, 1.264, 140.0)	(0.050, 1.106, 2.715, 136.7)	(0.050, 1.106, 1.828, 138.3)	(0.050, 1.106, 1.454, 139.9)	(0.050, 1.106, 1.147, 143.2)
1.02	(0.050, 1.106, 111.2)	(0.050, 1.107, 4.063, 86.0)	(0.050, 1.106, 2.491, 89.0)	(0.050, 1.107, 1.811, 92.9)	(0.050, 1.106, 1.264, 100.5)	(0.050, 1.106, 2.715, 97.1)	(0.050, 1.106, 1.828, 98.9)	(0.050, 1.106, 1.454, 100.9)	(0.050, 1.106, 1.147, 105.3)
1.05	(0.050, 1.106, 56.3)	(0.050, 1.107, 4.062, 34.6)	(0.050, 1.106, 2.491, 35.8)	(0.050, 1.107, 1.811, 38.1)	(0.050, 1.106, 1.264, 44.0)	(0.050, 1.106, 2.715, 44.2)	(0.050, 1.106, 1.828, 44.9)	(0.050, 1.107, 1.451, 46.2)	(0.050, 1.106, 1.147, 49.5)
1.10	(0.054, 1.111, 27.2)	(0.095, 1.160, 3.058, 14.4)	(0.082, 1.146, 2.188, 14.8)	(0.078, 1.141, 1.665, 15.8)	(0.057, 1.115, 1.248, 18.6)	(0.074, 1.136, 2.301, 20.4)	(0.069, 1.130, 1.717, 20.5)	(0.061, 1.120, 1.415, 20.9)	(0.056, 1.114, 1.139, 22.4)
	(0.0001,1.1.1.1,1.1.1)	(0.000, 2.200, 0.000, 2.2.2)	(0.002, 1.1.20, 2.1.00, 1.1.0)	(0.010, 1.1.1, 1.000, 1010)	(0.001, 0.00, 0.00, 0.00)	= 0.8	(0.000, 0.000, 0.001, 0.00)	(0.000,000,000,000,000)	(0.000,,,,)
0.00	(0.114_0.929_10.9)	(0.166, 0.909, 2.289, 5.5)	(0.173, 0.906, 1.787, 5.5)	(0.159, 0.911, 1.471, 5.8)	(0.128, 0.923, 1.158, 7, 0)	(0.133, 0.921, 1.761, 7.9)	(0.123, 0.925, 1.468, 7.9)	(0.123, 0.925, 1.272, 8.1)	(0.121, 0.926, 1.088, 8.8)
0.50	(0.050, 0.050, 27.5)	(0.050, 0.959, 2.200, 0.0)	(0.053, 0.957, 1.950, 15.0)	(0.053, 0.051, 1.111, 0.0)	(0.050, 0.050, 1.180, 1.0)	(0.050, 0.051, 1.001, 1.0)	(0.053, 0.025, 1.100, 1.0)	(0.053, 0.958, 1.301, 21.8)	(0.050, 0.959, 1.1000, 3.0)
0.90	(0.050, 0.050, 21.0)	(0.050, 0.050, 2.000, 10.1)	(0.050, 0.050, 1.050, 10.0)	(0.050, 0.050, 1.040, 17.2)	(0.050, 0.050, 1.101, 20.0)	(0.050, 0.050, 2.002, 20.0)	(0.050, 0.051, 1.021, 21.1)	(0.050, 0.050, 1.001, 21.0)	(0.050, 0.050, 1.100, 20.0)
0.98	(0.050, 0.353, 74.0)	(0.050, 0.959, 2.005, 34.1) (0.050, 0.050, 2.805, 100, 2)	(0.050, 0.959, 1.950, 50.9)	(0.050, 0.959, 1.040, 09.8)	(0.050, 0.959, 1.101, 00.0)	(0.050, 0.959, 2.002, 03.3)	(0.050, 0.959, 1.551, 04.8)	(0.050, 0.959, 1.305, 00.5) (0.050, 0.050, 1.303, 111, 2)	(0.050, 0.959, 1.100, 09.7)
1.01	(0.050, 0.353, 110.2) (0.050, 1.054, 119.0)	(0.050, 0.959, 2.005, 100.2)	(0.050, 0.959, 1.950, 105.1)	(0.050, 0.959, 1.040, 100.0)	(0.050, 0.959, 1.101, 111.3)	(0.050, 0.959, 2.002, 108.2)	(0.050, 0.959, 1.052, 109.7)	(0.050, 0.959, 1.305, 111.3)	(0.050, 0.999, 1.100, 114.3)
1.01	(0.050, 1.054, 118.9)	(0.050, 1.054, 3.594, 90.3)	(0.050, 1.054, 2.294, 99.5)	(0.050, 1.054, 1.721, 102.9)	(0.050, 1.054, 1.241, 109.7)	(0.050, 1.054, 2.441, 100.4)	(0.050, 1.054, 1.719, 108.1)	(0.050, 1.054, 1.401, 110.0)	(0.050, 1.054, 1.154, 113.8)
1.02	(0.050, 1.054, 70.4)	(0.050, 1.054, 3.594, 52.1)	(0.050, 1.054, 2.294, 54.7)	(0.050, 1.054, 1.721, 57.8)	(0.050, 1.050, 1.241, 64.8)	(0.050, 1.054, 2.441, 62.9)	(0.050, 1.05472, 1.719, 64.4)	(0.050, 1.054, 1.401, 66.1)	(0.050, 1.054, 1.134, 70.0)
1.05	(0.050, 1.054, 30.5)	(0.073, 1.070, 3.235, 16.7)	(0.004, 1.064, 2.189, 17.3)	(0.057, 1.059, 1.687, 18.4)	(0.050, 1.054, 1.241, 21.6)	(0.058, 1.060, 2.259, 23.0)	(0.052, 1.056, 1.709, 23.3)	(0.050, 1.054, 1.400, 23.8)	(0.050, 1.054, 1.134, 25.5)
1.10	(0.093, 1.082, 13.2)	(0.170, 1.121, 2.440, 6.5)	(0.149, 1.111, 1.863, 6.6)	(0.135, 1.104, 1.500, 7.0)	(0.104, 1.088, 1.168, 8.5)	(0.124, 1.098, 1.924, 9.7)	(0.117, 1.094, 1.529, 9.6)	(0.111, 1.091, 1.300, 9.8)	(0.099, 1.085, 1.096, 10.6)

Table 4: The parameters $(\lambda^+, H_U, h_L, ATS_1)$ and $(\lambda^-, H_D, h_L, ATS_1)$ of the VSI EWMA-RZ control charts compared to those (λ^+, H_U, ARL_1) and (λ^-, H_D, ARL_1) of FSI EWMA charts (second column) for $\gamma_X = \gamma_Y = 0.2, n = 15, ASI_0 = 1$ and $ATS_0 = 200$

		1	0.1				1	0 5	
	Dat	/	$i_S = 0.1$	B 0.0	D 0 F	D 0.1	$h_S =$	= 0.0	D
τ	FSI	R = 0.1	R = 0.2	R = 0.3	R = 0.5	R = 0.1	R = 0.2	R = 0.3	R = 0.5
					$\rho =$	-0.8			
0.90	(0.212, 0.921, 6.9)	(0.324, 0.897, 2.057, 3.7)	(0.267, 0.909, 1.700, 3.6)	(0.252, 0.912, 1.455, 3.7)	(0.232, 0.916, 1.161, 4.3)	(0.247, 0.913, 1.647, 5.2)	(0.232, 0.916, 1.403, 5.1)	(0.230, 0.917, 1.257, 5.1)	(0.222, 0.919, 1.090, 5.5)
0.95	(0.068, 0.962, 18.6)	(0.086, 0.955, 2.678, 9.8)	(0.067, 0.962, 1.967, 10.1)	(0.067, 0.962, 1.552, 10.8)	(0.064, 0.963, 1.192, 12.8)	(0.074, 0.959, 1.907, 13.7)	(0.067, 0.962, 1.537, 13.9)	(0.067, 0.962, 1.307, 14.3)	(0.066, 0.962, 1.106, 15.4)
0.98	(0.050, 0.969, 55.2)	(0.050, 0.969, 2.896, 36.4)	(0.050, 0.969, 2.006, 38.4)	(0.050, 0.969, 1.571, 40.8)	(0.050, 0.969, 1.199, 46.0)	(0.050, 0.969, 2.053, 44.8)	(0.050, 0.969, 1.559, 45.9)	(0.050, 0.969, 1.317, 47.2)	(0.050, 0.969, 1.110, 50.1)
0.99	(0.050, 0.969, 98.1)	(0.050, 0.969, 2.896, 78.3)	(0.050, 0.969, 2.006, 81.1)	(0.050, 0.969, 1.571, 84.1)	(0.050, 0.969, 1.199, 89.8)	(0.050, 0.969, 2.053, 87.1)	(0.050, 0.969, 1.559, 88.6)	(0.050, 0.969, 1.317, 90.3)	(0.050, 0.969, 1.110, 93.5)
1.01	(0.050, 1.037, 97.1)	(0.050, 1.037, 3.514, 74.6)	(0.050, 1.037, 2.277, 77.4)	(0.050, 1.037, 1.715, 80.7)	(0.050, 1.037, 1.229, 87.5)	(0.050, 1.037, 2.396, 84.6)	(0.050, 1.037, 1.709, 86.2)	(0.050, 1.037, 1.397, 87.9)	(0.050, 1.037, 1.127, 91.8)
1.02	(0.050, 1.037, 55.6)	(0.050, 1.037, 3.514, 35.5)	(0.050, 1.037, 2.277, 37, 2)	$(0.050 \pm 0.037 \pm 715 \pm 39.5)$	(0.050, 1.037, 1.229, 45.3)	(0.050, 1.037, 2.396, 44.4)	(0.050, 1.037, 1.709, 45.4)	$(0.050 \pm 0.037 \pm 3.097 \pm 46.6)$	(0.050, 1.037, 1.127, 49.9)
1.02	(0.073, 1.001, 30.0)	(0.000, 1.001, 0.014, 00.0)	(0.003, 1.056, 2.061, 10.0)	(0.084, 1.057, 1.116, 05.5)	(0.030, 1.001, 1.225, 43.0) (0.070, 1.047, 1.205, 13.8)	(0.080, 1.051, 2.053, 14.0)	(0.084, 1.052, 1.003, 45.4)	(0.080, 1.051, 1.337, 40.0)	$(0.072 \pm 0.077 \pm 1.113 \pm 16.6)$
1.00	(0.075, 1.040, 20.1) (0.170, 1.082, 8.1)	(0.103, 1.002, 2.103, 10.0)	(0.033, 1.030, 2.001, 10.3) (0.942, 1.102, 1.752, 4.1)	(0.004, 1.002, 1.010, 11.0)	(0.070, 1.047, 1.205, 15.0)	(0.003, 1.004, 2.003, 14.3)	(0.004, 1.002, 1.000, 10.0)	(0.102, 1.001, 1.041, 10.4)	(0.072, 1.047, 1.113, 10.0)
1.10	(0.170, 1.082, 8.1)	(0.300, 1.118, 2.124, 4.2)	(0.245, 1.105, 1.752, 4.1)	(0.222, 1.097, 1.405, 4.5)	(0.182, 1.080, 1.151, 5.1)	0.4	(0.201, 1.091, 1.425, 5.9)	(0.193, 1.089, 1.204, 0.0)	(0.170, 1.084, 1.085, 0.4)
0.00	(0.050.0.001.5.0)	(0.000.0.000.1.055.0.0)	(0.005.0.000.1.001.0.1)	(0.004.0.010.1.407.0.1)	$\rho =$		(0.000.0.010.1.000.4.0)	(0.052.0.015.1.040.4.0)	(0.005 0.010 1.000 1.0)
0.90	(0.252, 0.921, 5.8)	(0.398, 0.896, 1.975, 3.2)	(0.327, 0.908, 1.661, 3.1)	(0.304, 0.912, 1.437, 3.1)	(0.283, 0.916, 1.148, 3.6)	(0.300, 0.912, 1.605, 4.4)	(0.280, 0.916, 1.383, 4.3)	(0.276, 0.917, 1.248, 4.3)	(0.267, 0.919, 1.082, 4.6)
0.95	(0.083, 0.961, 15.8)	(0.111, 0.953, 2.496, 8.2)	(0.099, 0.956, 1.916, 8.4)	(0.094, 0.958, 1.534, 8.9)	(0.081, 0.962, 1.177, 10.7)	(0.094, 0.958, 1.868, 11.6)	(0.091, 0.959, 1.517, 11.7)	(0.089, 0.959, 1.298, 12.0)	(0.082, 0.961, 1.098, 13.0)
0.98	(0.050, 0.972, 48.4)	(0.050, 0.972, 2.922, 30.6)	(0.050, 0.972, 2.018, 32.3)	(0.050, 0.972, 1.578, 34.5)	(0.050, 0.972, 1.190, 39.6)	(0.050, 0.972, 2.068, 38.5)	(0.050, 0.972, 1.565, 39.5)	(0.050, 0.972, 1.321, 40.7)	(0.050, 0.972, 1.105, 43.5)
0.99	(0.050, 0.972, 90.1)	(0.050, 0.972, 2.922, 69.7)	(0.050, 0.972, 2.018, 72.4)	(0.050, 0.972, 1.578, 75.5)	(0.050, 0.972, 1.190, 81.6)	(0.050, 0.972, 2.068, 78.8)	(0.050, 0.972, 1.565, 80.3)	(0.050, 0.972, 1.321, 81.9)	(0.050, 0.972, 1.105, 85.3)
1.01	(0.050, 1.032, 89.3)	(0.050, 1.032, 3.466, 66.7)	(0.050, 1.032, 2.256, 69.5)	(0.050, 1.032, 1.704, 72.6)	(0.050, 1.032, 1.239, 79.2)	(0.050, 1.032, 2.370, 76.8)	(0.050, 1.032, 1.698, 78.3)	(0.050, 1.032, 1.391, 80.0)	(0.050, 1.032, 1.132, 83.7)
1.02	(0.050, 1.032, 49.0)	(0.051, 1.033, 3.447, 30.3)	(0.050, 1.032, 2.256, 31.7)	(0.050, 1.032, 1.704, 33.8)	(0.050, 1.032, 1.239, 38.8)	(0.050, 1.032, 2.370, 38.6)	(0.050, 1.032, 1.698, 39.4)	(0.050, 1.032, 1.391, 40.5)	(0.050, 1.032, 1.132, 43.3)
1.05	(0.084, 1.045, 17.1)	(0.128, 1.060, 2.631, 8.9)	(0.115, 1.056, 1.982, 9.1)	(0.101, 1.051, 1.580, 9.6)	(0.083, 1.045, 1.194, 11.5)	(0.105, 1.053, 1.978, 12.6)	(0.098, 1.050, 1.573, 12.7)	(0.093, 1.048, 1.330, 12.9)	(0.083, 1.045, 1.107, 14.0)
1.10	(0.200, 1.079, 6.8)	(0.345, 1.113, 2.049, 3.6)	(0.292, 1.101, 1.663, 3.5)	(0.262, 1.094, 1.428, 3.6)	(0.220, 1.084, 1.142, 4.2)	(0.257, 1.093, 1.670, 5.1)	(0.239, 1.089, 1.398, 5.0)	(0.228, 1.086, 1.249, 5.0)	(0.210, 1.082, 1.080, 5.3)
				· · ·	$\rho =$	0.0		· · · ·	· · ·
0.90	(0.319, 0.922, 4.5)	(0.503, 0.896, 1.882, 2.7)	(0.429, 0.906, 1.604, 2.5)	(0.389, 0.912, 1.409, 2.5)	(0.361, 0.916, 1.142, 2.8)	(0.385, 0.912, 1.549, 3.6)	(0.366, 0.915, 1.353, 3.4)	(0.349, 0.918, 1.233, 3.4)	(0.339, 0.919, 1.079, 3.6)
0.95	(0.109, 0.960, 12.6)	(0.150, 0.951, 2.383, 6.5)	(0.131, 0.955, 1.873, 6.5)	(0.141, 0.953, 1.504, 6.9)	(0.109, 0.960, 1.170, 8.3)	(0.121, 0.957, 1.820, 9.2)	(0.122, 0.957, 1.492, 9.2)	(0.116, 0.958, 1.289, 9.5)	(0.109, 0.960, 1.094, 10.2)
. 0.98	(0.050, 0.976, 40.2)	(0.050, 0.976, 2.953, 24.0)	(0.050, 0.976, 2.030, 25.4)	(0.051, 0.976, 1.584, 27, 3)	(0.050, 0.976, 1.192, 31.7)	(0.050, 0.976, 2.085, 31.2)	(0.050, 0.976, 1.572, 32, 0)	(0.051, 0.976, 1.324, 33, 0)	(0.050, 0.976, 1.107, 35, 5)
0.00	(0.050, 0.076, 79.3)	(0.050, 0.076, 2.053, 2.10)	(0.050, 0.976, 2.030, 61.4)	(0.050, 0.976, 1.586, 64.2)	(0.050, 0.976, 1.192, 0.11)	(0.050, 0.976, 2.085, 67.9)	(0.050, 0.976, 1.572, 69.4)	(0.050, 0.976, 1.325, 70.9)	(0.050, 0.976, 1.107, 74.3)
1.01	(0.058, 1.030, 80.1)	(0.058, 1.030, 3.202, 57.0)	(0.058, 1.030, 2.183, 60.6)	(0.060, 1.030, 1.662, 63.0)	(0.058, 1.030, 1.225, 70.1)	(0.058, 1.030, 2.003, 0110)	(0.058, 1.030, 1.657, 69.3)	(0.060, 0.010, 1.020, 1010) (0.060, 1.030, 1.367, 71.2)	(0.058, 1.030, 1.125, 74.5)
1.01	(0.058, 1.030, 30.1)	(0.050, 1.050, 3.232, 51.3) (0.062, 1.021, 2.232, 24.6)	(0.058, 1.030, 2.183, 00.0)	(0.060, 1.030, 1.002, 03.3)	(0.058, 1.030, 1.225, 10.1)	(0.058, 1.030, 2.273, 01.8)	(0.058, 1.030, 1.037, 03.3)	(0.000, 1.030, 1.307, 71.2)	(0.058, 1.030, 1.125, 74.5)
1.02	(0.056, 1.050, 41.4) (0.102, 1.042, 12.6)	(0.005, 1.051, 5.252, 24.0)	(0.038, 1.030, 2.183, 23.7)	(0.002, 1.051, 1.050, 27.0)	(0.058, 1.051, 1.225, 51.9)	(0.058, 1.050, 2.275, 32.0)	(0.038, 1.030, 1.037, 32.0)	(0.000, 1.050, 1.507, 55.7)	(0.056, 1.050, 1.125, 50.1)
1.05	(0.105, 1.045, 15.0)	(0.102, 1.058, 2.409, 7.0)	(0.150, 1.055, 1.895, 7.1)	(0.128, 1.050, 1.558, 7.5)	(0.105, 1.044, 1.179, 9.0)	(0.129, 1.050, 1.895, 10.0)	(0.119, 1.047, 1.555, 10.0)	(0.119, 1.047, 1.303, 10.2)	(0.104, 1.045, 1.100, 11.1)
1.10	(0.255, 1.077, 5.3)	(0.480, 1.118, 1.886, 3.0)	(0.382, 1.101, 1.595, 2.8)	(0.317, 1.089, 1.402, 2.8)	(0.285, 1.083, 1.132, 3.3)	(0.326, 1.091, 1.597, 4.1)	(0.299, 1.085, 1.366, 3.9)	(0.276, 1.081, 1.234, 3.9)	(0.267, 1.080, 1.075, 4.2)
		/	/>	/	$\rho =$	0.4	/	/	(
0.90	(0.456, 0.923, 3.1)	(0.733, 0.893, 1.733, 2.1)	(0.630, 0.904, 1.517, 2.0)	(0.557, 0.912, 1.347, 1.9)	(0.504, 0.918, 1.131, 1.9)	(0.577, 0.910, 1.459, 2.6)	(0.506, 0.917, 1.313, 2.5)	(0.491, 0.919, 1.200, 2.4)	(0.477, 0.921, 1.073, 2.5)
0.95	(0.160, 0.960, 8.9)	(0.237, 0.949, 2.196, 4.6)	(0.209, 0.953, 1.785, 4.5)	(0.193, 0.955, 1.477, 4.7)	(0.170, 0.958, 1.158, 5.7)	(0.191, 0.955, 1.717, 6.5)	(0.179, 0.957, 1.453, 6.5)	(0.181, 0.957, 1.268, 6.6)	(0.165, 0.959, 1.088, 7.1)
0.98	(0.050, 0.981, 29.8)	(0.050, 0.981, 2.997, 16.7)	(0.050, 0.981, 2.051, 17.5)	(0.055, 0.980, 1.588, 18.8)	(0.050, 0.981, 1.195, 22.2)	(0.058, 0.981, 2.109, 22.5)	(0.050, 0.981, 1.584, 23.0)	(0.050, 0.981, 1.331, 23.7)	(0.050, 0.981, 1.108, 25.6)
0.99	(0.050, 0.981, 63.5)	(0.050, 0.981, 2.998, 43.4)	(0.050, 0.981, 2.051, 45.7)	(0.050, 0.981, 1.595, 48.4)	(0.050, 0.981, 1.195, 54.2)	(0.050, 0.981, 2.110, 52.4)	(0.050, 0.981, 1.584, 53.6)	(0.050, 0.981, 1.331, 55.1)	(0.050, 0.981, 1.108, 58.4)
1.01	(0.050, 1.020, 63.5)	(0.050, 1.020, 3.342, 42.5)	(0.050, 1.020, 2.205, 44.6)	(0.050, 1.020, 1.678, 47.2)	(0.050, 1.020, 1.219, 53.4)	(0.050, 1.020, 2.305, 51.8)	(0.050, 1.020, 1.669, 53.0)	(0.050, 1.020, 1.377, 54.5)	(0.050, 1.020, 1.121, 57.9)
1.02	(0.050, 1.020, 30.6)	(0.064, 1.024, 3.171, 17.3)	(0.056, 1.022, 2.172, 17.9)	(0.057, 1.022, 1.656, 19.2)	(0.050, 1.020, 1.219, 22.5)	(0.057, 1.022, 2.250, 23.3)	(0.051, 1.021, 1.665, 23.6)	(0.050, 1.020, 1.377, 24.2)	(0.050, 1.020, 1.121, 26.1)
1.05	(0.146, 1.041, 9.6)	(0.238, 1.056, 2.239, 4.9)	(0.206, 1.051, 1.799, 4.9)	(0.179, 1.047, 1.486, 5.1)	(0.153, 1.042, 1.160, 6.1)	(0.183, 1.047, 1.769, 7.1)	(0.173, 1.046, 1.471, 7.0)	(0.165, 1.044, 1.276, 7.1)	(0.149, 1.042, 1.089, 7.7)
1.10	(0.362, 1.074, 3.6)	(0.633, 1.109, 1.766, 2.3)	(0.534, 1.096, 1.517, 2.1)	(0.470, 1.088, 1.333, 2.1)	(0.412, 1.081, 1.120, 2.2)	(0.449, 1.085, 1.510, 3.0)	(0.428, 1.083, 1.317, 2.8)	(0.402, 1.079, 1.196, 2.8)	(0.384, 1.077, 1.068, 2.9)
		<u> </u>			0=	0.8			
0.90	(0.925, 0.923, 1.4)	(0.998, 0.918, 1.615, 1.7)	(0.973, 0.920, 1.413, 1.5)	(0.998, 0.918, 1.265, 1.3)	(0.999, 0.918, 1.102, 1.2)	(0.998, 0.918, 1.342, 1.5)	(0.973, 0.920, 1.229, 1.4)	(0.998, 0.918, 1.147, 1.3)	(0.950, 0.922, 1.057, 1.3)
0.05	(0.340, 0.061, 4.0)	(0.574, 0.046, 1.894, 2.5)	(0.403, 0.052, 1.410, 1.0)	(0.438, 0.055, 1.267, 2.2)	(0.305, 0.010, 1.102, 1.2)	(0.431, 0.056, 1.523, 3.2)	(0.307, 0.058, 1.320, 1.4)	(0.380, 0.050, 1.212, 3.0)	(0.374, 0.060, 1.075, 3.2)
0.90	(0.043, 0.301, 4.0)	(0.014, 0.040, 1.024, 2.0)	(0.104, 0.082, 1.003, 2.3)	(0.105, 0.000, 1.501, 2.2)	(0.000, 0.000, 1.104, 2.0)	(0.106 0.000 1.020, 0.2)	(0.001, 0.000, 1.000, 0.1)	(0.102, 0.000, 1.212, 0.0)	(0.0014, 0.000, 1.010, 0.2)
0.98	(0.091, 0.965, 15.0)	(0.120, 0.979, 2.498, 7.7)	(0.104, 0.902, 1.930, 7.9)	(0.105, 0.962, 1.558, 8.4)	(0.003, 0.303, 1.178, 10.1)	(0.100, 0.962, 1.878, 11.0)	(0.104, 0.962, 1.320, 11.1)	(0.105, 0.962, 1.300, 11.3)	(0.050, 0.903, 1.099, 12.3)
1.01	(0.050, 0.969, 35.5)	(0.050, 0.969, 5.005, 20.5)	(0.050, 0.969, 2.060, 21.0)	(0.050, 0.969, 1.011, 23.1)	(0.050, 0.969, 1.200, 27.2)	(0.050, 0.969, 2.140, 27.2)	(0.050, 0.969, 1.000, 27.8)	(0.050, 0.969, 1.339, 28.0)	(0.050, 0.969, 1.111, 30.9)
1.01	(0.050, 1.011, 35.9)	(0.050, 1.011, 3.203, 20.8)	(0.053, 1.012, 2.150, 21.8)	(0.053, 1.012, 1.049, 23.3)	(0.050, 1.011, 1.225, 27.0)	(0.050, 1.011, 2.259, 27.5)	(0.050, 1.011, 1.049, 28.0)	(0.050, 1.011, 1.300, 28.8)	(0.050, 1.011, 1.125, 31.0)
1.02	(0.090, 1.017, 15.5)	(0.134, 1.022, 2.537, 8.0)	(0.118, 1.020, 1.944, 8.1)	(0.108, 1.019, 1.553, 8.6)	(0.090, 1.017, 1.194, 10.3)	(0.110, 1.019, 1.918, 11.4)	(0.103, 1.018, 1.544, 11.4)	(0.099, 1.018, 1.314, 11.7)	(0.090, 1.017, 1.108, 12.6)
1.05	(0.310, 1.037, 4.3)	(0.533, 1.054, 1.844, 2.6)	(0.459, 1.049, 1.561, 2.4)	(0.416, 1.045, 1.374, 2.4)	(0.356, 1.041, 1.136, 2.6)	(0.393, 1.044, 1.545, 3.4)	(0.386, 1.043, 1.334, 3.3)	(0.346, 1.040, 1.221, 3.3)	(0.332, 1.039, 1.077, 3.4)
1.10	(0.805, 1.074, 1.6)	(0.988, 1.087, 1.601, 1.7)	(0.999, 1.088, 1.385, 1.5)	(0.999, 1.088, 1.245, 1.3)	(0.863, 1.078, 1.102, 1.2)	(0.988, 1.087, 1.334, 1.6)	(0.941, 1.084, 1.220, 1.5)	(0.812, 1.074, 1.150, 1.4)	(0.823, 1.075, 1.057, 1.4)

Table 5: The parameters $(\lambda^+, H_U, h_L, ATS_1)$ and $(\lambda^-, H_D, h_L, ATS_1)$ of the VSI EWMA-RZ control charts compared to those (λ^+, H_U, ARL_1) and (λ^-, H_D, ARL_1) of FSI EWMA charts (second column) for $\gamma_X = 0.01, \gamma_Y = 0.2, n = 1, ASI_0 = 1$ and $ATS_0 = 200$

r Fs1 $R = 0.1$ $R = 0.3$ $R = 0.5$ $R = 0.5$ $R = 0.5$ 0.00 (0135, 0097, 154) (0002, 0977, 254) (0002, 0977, 254) (0005, 0977, 1744, 133) (0005, 0977, 1744, 133) (0005, 0977, 1744, 133) (0005, 0977, 1744, 133) (0005, 0977, 1744, 133) (0005, 0971, 1747, 175) (0005, 0971, 1747, 173) (0005, 0971, 1747, 173) (0005, 0971, 1747, 173) (0005, 0971, 1747, 173) (0005, 0971, 1747, 173) (0005, 0971, 1747, 173) (0005, 0971, 1747, 173) (0005, 0971, 1747, 173) (0005, 0971, 1747, 173) (0005, 0971, 1747, 173) (0005, 0971, 1747, 173) (0005, 1972, 175) (0005, 1972, 175) (0005, 1972, 175) (0005, 1972, 175) (0005, 1972, 175) (0005, 1972, 175) (0005, 1972, 175) (0005, 1972, 175) (0005, 1972, 175) (0005, 1972, 175) (0005, 1972, 175) (1113, 1972, 112) (1114, 1972, 112) (1114, 1972, 112) (1114, 1972, 112) (1115, 1972, 112) (1115, 1972, 112) (1115, 1972, 112) (1114, 1972, 112) (1115, 1972, 112) (1114, 112) (1114, 112) (1114, 112) (1114, 112) (1114, 112) (1114, 112) (1114, 112) (1114, 112) (1114, 112) (1114, 112) (1114, 112) <th></th> <th></th> <th>h</th> <th>$a_{a} = 0.1$</th> <th></th> <th></th> <th></th> <th>ha –</th> <th>0.5</th> <th></th>			h	$a_{a} = 0.1$				ha –	0.5	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	~	ESI	P = 0.1	$\frac{P = 0.2}{P = 0.2}$	P = 0.2	P = 0.5	P = 0.1	P = 0.2	P = 0.2	P = 0.5
$ \begin{array}{c} 0.015 (0.000 (1.94) (0.002 (1.97) (1.91 (1.92) (0.051 (0.92) (1.92) (1.92) (0.051 (0.92) (1.92) (1.95) (0.05) (0.94) (1.92) (1.95) (0.05) (1.94) (1.95) (1.95) (0.05) (1.94) (1.95) (1.95) (0.05) (1.94) (1.95) (1.$	1	1.31	h = 0.1	h = 0.2	R = 0.3	n = 0.5	<u> </u>	R = 0.2	n = 0.3	n = 0.5
$ \begin{array}{c} 0.10 \\ 0.013 \\ 0.050 \\$		(0.110.0.000.10.1)	(0.080.0.048.0.004.40.0)		(0.004.0.008.4.480.44.0)	$\rho =$	-0.8	(0.000 0.000 1.0001 1.1.1)		
$ \begin{array}{c} 0.050, 0.4967, 4.51, 0.050, 0.497, 4.51, 0.100, 0.499, 1.71, 2.25, 0.050, 0.128, 1.60, 0.41, 0.050, 0.491, 1.125, 2.56, 0.050, 0.491, 1.75, 77, 0.000, 0.491, 1.124, 3.84, 0.000, 0.491, 1.224, 3.84, 0.000, 0.491, 1.224, 3.84, 0.000, 0.491, 1.224, 3.84, 0.000, 0.491, 1.224, 3.84, 0.000, 0.491, 1.224, 3.84, 0.000, 0.491, 1.224, 3.84, 0.000, 0.491, 1.224, 3.84, 0.000, 0.491, 1.224, 3.84, 0.000, 0.491, 1.224, 3.44, 0.000, 1.126, 1.284, 3.44, 0.000, 1.126, 1.126, 1.244, 1.126, 1.$	0.90	(0.113, 0.909, 18.4)	(0.052, 0.947, 2.334, 10.8)	(0.081, 0.928, 1.790, 11.1)	(0.081, 0.927, 1.459, 11.8)	(0.090, 0.922, 1.153, 13.8)	(0.081, 0.927, 1.714, 14.3)	(0.085, 0.925, 1.4391, 14.4)	(0.089, 0.923, 1.256, 14.8)	(0.101, 0.916, 1.085, 15.9)
$ \begin{array}{c} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 $	0.95	(0.050, 0.9497, 45.4)	(0.050, 0.949, 2.418, 31.6)	(0.050, 0.949, 1.791, 32.8)	(0.050, 0.949, 1.450, 34.6)	(0.050, 0.949, 1.152, 38.6)	(0.058, 0.949, 1.787, 37.7)	(0.050, 0.94911, 1.439, 38.4)	(0.050, 0.949, 1.250, 39.4)	(0.050, 0.949, 1.084, 41.6)
$ \begin{array}{c} 0.000, 0.0401, 1.0401, 1.021, 0.0401, 1.024, 1.812, 1.95 \\ 0.0000, 0.0401, 1.126, 1.648, 1.275 \\ 0.0000, 1.126, 0.484, 1.275 \\ 0.0000, 1.126, 0.484, 1.275 \\ 0.0000, 1.126, 0.484, 1.275 \\ 0.0000, 1.126, 0.484, 1.275 \\ 0.0000, 1.126, 0.484, 1.275 \\ 0.0000, 1.126, 0.484, 1.275 \\ 0.0000, 1.126, 0.484, 1.275 \\ 0.0000, 1.126, 0.484, 1.275 \\ 0.0000, 1.126, 0.484, 1.275 \\ 0.0000, 1.126, 0.484, 1.275 \\ 0.0000, 1.126, 0.484, 1.275 \\ 0.0000, 1.126, 0.484, 1.275 \\ 0.0000, 1.126, 0.484, 1.275 \\ 0.0000, 1.126, 0.484, 1.275 \\ 0.0000, 1.126, 0.484 \\ 0.0000, 1.126, 0.484 \\ 0.0000, 1.126, 0.484 \\ 0.0000, 1.126, 0.484 \\ 0.0000, 1.126, 0.484 \\ 0.0000, 1.126, 0.484 \\ 0.0000, 1.126, 0.484 \\ 0.0000, 1.126, 0.484 \\ 0.0000, 1.126, 0.484 \\ 0.0000, 1.126, 0.484 \\ 0.0000, 1.126, 0.484 \\ 0.0000, 1.126, 0.484 \\ 0.0000, 1.126, 0.484 \\ 0.0000, 1.126, 0.484 \\ 0.0000, 1.126, 0.484 \\ 0.0000, 0.994, 1.481 \\ 0.0000, 0.124, 1.481 \\ 0.0$	0.98	(0.050, 0.949, 101.1)	(0.050, 0.949, 2.418, 86.6)	(0.050, 0.949, 1.791, 88.4)	(0.050, 0.949, 1.450, 90.6)	(0.050, 0.949, 1.152, 95.0)	(0.050, 0.949, 1.787, 93.1)	(0.050, 0.949, 1.439, 94.0)	(0.050, 0.949, 1.250, 95.3)	(0.050, 0.949, 1.084, 97.7)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.99	(0.050, 0.949, 140.0)	(0.050, 0.949, 2.418, 129.5)	(0.050, 0.949, 1.791, 130.9)	(0.050, 0.949, 1.450, 132.6)	(0.050, 0.949, 1.152, 135.9)	(0.050, 0.949, 1.787, 134.2)	(0.050, 0.949, 1.439, 135.0)	(0.050, 0.949, 1.250, 135.9)	(0.050, 0.949, 1.084, 137.7)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.01	(0.050, 1.126, 150.4)	(0.050, 1.126, 5.493, 127.2)	(0.050, 1.126, 3.029, 130.3)	(0.050, 1.127, 2.052, 134.2)	(0.050, 1.126, 1.302, 141.8)	(0.050, 1.126, 3.496, 137.5)	(0.050, 1.126, 2.127, 139.3)	(0.050, 1.126, 1.589, 141.3)	(0.050, 1.126, 1.167, 145.6)
1.bs (0.005, 1.128, 4.05, 100, 005, 1.127, 1.544, 5.54, 5.6) (0.006, 1.127, 2.028, 4.55) (0.005, 1.122, 3.166, 7.55) (0.006, 1.127, 1.544, 4.84, 100, 005, 1.127, 1.544, 8.44) (0.006, 1.128, 1.524, 1.545, 2.43) 0.005 (1.123, 0.10, 01, 01, 016, 0.124, 1.241, 3.144, 0.00, 0.030, 1.230, 1.230, 0.53) (0.006, 1.124, 1.243, 1.131, 005, 0.0526, 1.711, 1.39) (0.006, 0.134, 1.252, 2.43) (0.006, 0.134, 1.252, 2.43) (0.006, 0.134, 1.252, 2.43) (0.006, 0.134, 1.252, 2.43) (0.006, 0.134, 1.252, 2.43) (0.006, 0.134, 1.253, 2.43) (0.006, 0.030, 1.230, 1.230, 3.44) (0.006, 0.030, 1.230, 1.230, 3.44) (0.006, 0.030, 1.230, 1.230, 3.44) (0.006, 0.030, 1.230, 1.230, 3.44) (0.006, 0.030, 1.230, 1.230, 3.44) (0.006, 0.030, 1.230, 1.230, 0.230, 1.230, 3.44) (0.006, 0.030, 1.230, 1.230, 0.230, 1.230, 0.230, 1.230, 0.230, 1.230, 0.230	1.02	(0.050, 1.126, 115.7)	(0.050, 1.126, 5.493, 85.2)	(0.050, 1.126, 3.029, 88.1)	(0.050, 1.127, 2.052, 92.5)	(0.050, 1.126, 1.302, 102.5)	(0.050, 1.126, 3.496, 98.8)	(0.050, 1.126, 2.127, 100.4)	(0.050, 1.126, 1.589, 102.7)	(0.050, 1.126, 1.167, 108.4)
$ \frac{110}{100000000000000000000000000000000$	1.05	(0.050, 1.126, 60.7)	(0.068, 1.151, 4.584, 35.6)	(0.056, 1.136, 2.859, 36.6)	(0.050, 1.127, 2.052, 38.5)	(0.050, 1.126, 1.302, 45.5)	(0.053, 1.132, 3.166, 47.5)	(0.050, 1.126, 2.127, 47.5)	(0.050, 1.127, 1.584, 48.4)	(0.050, 1.126, 1.167, 52.2)
$ \begin{array}{ $	1.10	(0.052, 1.130, 30.1)	(0.116, 1.211, 3.411, 14.8)	(0.089, 1.179, 2.359, 15.3)	(0.084, 1.173, 1.735, 16.3)	(0.060, 1.140, 1.263, 19.6)	(0.082, 1.170, 2.587, 22.7)	(0.074, 1.160, 1.859, 22.5)	(0.068, 1.152, 1.475, 22.8)	(0.056, 1.136, 1.152, 24.3)
$ \begin{array}{c} 0.019, 0.085, 0.050, 0.950, 0.950, 0.950, 0.250, 0.250, 0.070, 0.050, 0.070, 0.050, 0.050, 0.153, 0.050, 0.950, 0.123, 0.050, 0.950, 0.123, 0.050, 0.950, 0.123, 0.050, 0.950, 0.123, 0.050, 0.950, 0.123, 0.250, 0.050, 0.950, 0.123, 0.250, 0.050, 0.950, 0.123, 0.250, 0.050, 0.950, 0.123, 0.250, 0.050, 0.950, 0.123, 0.250, 0.050, 0.950, 0.123, 0.250, 0.050, 0.950, 0.123, 0.250, 0.050, 0.950, 0.123, 0.250, 0.050, 0.950, 0.123, 0.250, 0.050, 0.950, 0.123, 0.250, 0.050, 0.950, 0.123, 0.250, 0.050, 0.950, 0.123, 0.050, 0.950, 0.123, 0.050, 0.950, 0.123, 0.050, 0.950, 0.123, 0.123, 0.050, 0.950, 0.123, 0.123, 0.050, 0.950, 0.123, 0.123, 0.050, 0.950, 0.123, 0.123, 0.050, 0.950, 0.123, 0.123, 0.050, 0.950, 0.123, 0.123, 0.050, 0.950, 0.123, 0.123, 0.050, 0.950, 0.123, 0.123, 0.050, 0.124, 1.450, 0.050, 0.124, 0.125, 0$						$\rho =$	-0.4			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.90	(0.119, 0.908, 17.9)	(0.059, 0.943, 2.323, 10.5)	(0.079, 0.930, 1.791, 10.8)	(0.089, 0.924, 1.461, 11.4)	(0.097, 0.920, 1.162, 13.3)	(0.086, 0.926, 1.711, 13.9)	(0.089, 0.924, 1.438, 14.0)	(0.099, 0.918, 1.257, 14.3)	(0.108, 0.913, 1.090, 15.3)
$ \begin{array}{c} 0.95 \\ 0.050, 0.950, 0.98, 0.050, 0.920, 2.20, 8.2 \\ 0.050, 0.950, 1.28, 0.050, 0.950, 1.28, 0.950, 0.950, 1.28, 0.950, 0.950, 1.28, 0.950, 0.950, 1.28, 0.950, 0.950, 1.28, 0.950, 0.950, 1.28, 0.950, 0.950, 1.28, 0.950, 0.950, 1.290, 0.950, 0.950, 1.290, 0.950, 0.950, 1.290, 0.950, 0.950, 0.950, 0.950, 1.290, 0.950$	0.95	(0.050, 0.950, 44.3)	(0.050, 0.950, 2.420, 30.7)	(0.050, 0.950, 1.791, 31.9)	(0.050, 0.950, 1.450, 33.6)	(0.050, 0.950, 1.160, 37.4)	(0.050, 0.950, 1.789, 36.8)	(0.050, 0.950, 1.439, 37.4)	(0.050, 0.950, 1.250, 38.4)	(0.050, 0.950, 1.089, 40.5)
$ \begin{array}{c} 0.060, 0.950, 1234, 1437 \\ (0.050, 0.950, 1242, 1458, 160, 0.050, 1242, 1548, 1623, 000, 0.950, 1240, 1353) \\ (0.050, 1124, 1447) \\ (0.050, 1124, 1447) \\ (0.050, 1124, 1458, 165, 1653) \\ (0.050, 1124, 1453, 160, 1124, 1548, 1137, 1243, 100, 1153, 2017, 291, 100, 100, 1124, 1242, 1243, 124, 100, 100, 1124, 1248, 1243, 100, 110, 1124, 1589, 1153, 1124, 1589, 1100 \\ (0.051, 1124, 1124, 1242, 1124, 1244, 1243, 100, 11141, 1244, 1253, 1124, 1244, 12$	0.98	(0.050, 0.950, 99.8)	(0.050, 0.950, 2.420, 85.2)	(0.050, 0.950, 1.791, 86.9)	(0.050, 0.950, 1.450, 89.2)	(0.050, 0.950, 1.160, 93.5)	(0.050, 0.950, 1.789, 91.7)	(0.050, 0.950, 1.439, 92.7)	(0.050, 0.950, 1.250, 93.9)	(0.050, 0.950, 1.089, 96.3)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.99	(0.050, 0.950, 139.0)	(0.050, 0.950, 2.42, 128.3)	(0.050, 0.950, 1.791, 129.8)	(0.050, 0.950, 1.450, 131.5)	(0.050, 0.950, 1.160, 134.7)	(0.050, 0.950, 1.789, 133.0)	(0.050, 0.950, 1.439, 133.8)	(0.050, 0.950, 1.250, 134.8)	(0.050, 0.950, 1.089, 136.6)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.01	(0.050, 1.124, 149.7)	(0.050, 1.124, 5.465, 126.3)	(0.050, 1.125, 3.017, 129.5)	(0.050, 1.124, 2.061, 133.0)	(0.050, 1.124, 1.302, 141.0)	(0.050, 1.124, 3.480, 136.8)	(0.050, 1.124, 2.128, 138.4)	(0.050, 1.124, 1.589, 140.5)	(0.050, 1.124, 1.167, 144.9)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.02	(0.050, 1.124, 114.7)	(0.050, 1.124, 5.465, 84.1)	(0.050, 1.125, 3.017, 87.1)	(0.050, 1.124, 2.061, 91.1)	(0.050, 1.124, 1.302, 101.4)	(0.050, 1.124, 3.480, 97.8)	(0.050, 1.124, 2.128, 99.3)	(0.050, 1.124, 1.589, 101.6)	(0.050, 1.124, 1.167, 107.3)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.05	(0.050, 1.124, 59.8)	(0.068, 1.150, 4.553, 34.9)	(0.059, 1.137, 2.800, 35, 9)	(0.050, 1.124, 2.061, 37.7)	(0.050, 1.124, 1.302, 44, 5)	$(0.054 \ 1.130 \ 3.144 \ 46.7)$	(0.050, 1.125, 2.120, 46.7)	(0.050, 1.124, 1.589, 47.5)	(0.050, 1.124, 1.167, 51.3)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 10	(0.052, 1.128, 29.6)	(0.115, 1.207, 3.222, 14.4)	(0.098, 1.186, 2.268, 14.8)	$(0.084 \ 1.170 \ 1.734 \ 15.8)$	(0.060, 1.121, 1.002, 11.0) (0.060, 1.139, 1.278, 19, 0)	(0.087, 1.173, 2.518, 22.3)	(0.076, 1.159, 1.841, 22.1)	(0.067, 1.121, 1.000, 11.0)	(0.057, 1.134, 1.161, 23, 7)
$ \begin{array}{c} 0.90 & (0.127, 0.966, 17.4) & (0.057, 0.946, 2.326, 10.2) & (0.066, 0.940, 1.792, 10.4) & (0.095, 0.922, 1.462, 11.1) & (0.104, 0.917, 1.162, 12.9) \\ (0.050, 0.951, 1.430, 1.430, 1.430, 1.430, 1.430, 1.430, 0.451, 1.430, 3.44) & (0.050, 0.951, 1.430, 1.430, 3.44) \\ (0.050, 0.951, 1.430, 1.430, 0.451, 1.430, 3.44) & (0.050, 0.951, 1.430, 1.430, 3.54) \\ (0.050, 0.951, 1.241, 9.120, 0.050, 0.951, 1.2419, 1.25) & (0.050, 0.951, 1.250, 1.37) & (0.050, 0.951, 1.430, 1.32) \\ (0.050, 1.121, 1.340, 0.050, 1.121, 1.240, 1.32) & (0.050, 1.121, 1.240, 1.32) & (0.050, 1.121, 1.240, 1.33) & (0.050, 0.951, 1.1230, 1.123, 1.100, 1.12) \\ (0.050, 1.121, 1.340, 0.050, 1.122, 1.441, 2.54) & (0.050, 1.121, 2.120, 1.32) & (0.050, 1.121, 1.430, 1.35) & (0.050, 0.951, 1.1430, 1.32) & (0.050, 0.951, 1.1430, 1.32) & (0.050, 0.951, 1.1230, 1.121, 1.58) & (0.050, 1.121, 1.137) & (0.050, 1.121, 1.58) & ($		(0.002, 1.120, 2010)	(0.110, 1.201, 0.222, 11.1)	(0.000;11100;21200;1110)	(0.001;1.110;1.101;1010)	(0.000, 1.100, 1.210, 10.0)	- 0.0	(01010; 11100; 11011; 2211)	(01001, 11110, 11110, 2210)	(0.001, 1.101, 1.101, 2011)
$ \begin{array}{c} 0.95 & (0.050, 0.951, 1.43) & (0.050, 0.951, 1.22) & (0.000, 0.950, 1.421, 0.22) & (0.050, 0.951, 1.250, 1.25) & (0.050, 0.951, 1.250, 1.25) & (0.050, 0.951, 1.250, 1.25) & (0.050, 0.951, 1.250, 1.25) & (0.050, 0.951, 1.250, 1.25) & (0.050, 0.951, 1.250, 1.25) & (0.050, 0.951, 1.450, 0.25) & (0.050, 0.951, 1.250, 1.25) & (0.050, 0.951, 1.250, 1.25) & (0.050, 0.951, 1.250, 1.25) & (0.050, 0.951, 1.250, 1.25) & (0.050, 0.951, 1.250, 1.25) & (0.050, 0.951, 1.250, 1.25) & (0.050, 0.951, 1.250, 1.25) & (0.050, 0.951, 1.250, 1.25) & (0.050, 0.951, 1.250, 1.25) & (0.050, 0.951, 1.250, 1.25) & (0.050, 0.951, 1.250, 1.25) & (0.050, 0.951, 1.250, 1.25) & (0.050, 0.951, 1.250, 1.25) & (0.050, 0.951, 1.250, 1.25) & (0.050, 0.951, 1.250, 1.25) & (0.050, 0.121, 1.258, 1.250, 1.25) & (0.050, 1.121, 1.588, 1.26) & (0.050, 1.121, 1.588, 1.26) & (0.050, 1.121, 1.588, 1.26) & (0.050, 1.121, 1.588, 1.26) & (0.050, 1.121, 1.588, 1.26) & (0.050, 1.121, 1.288, 1.25) & (0.050, 1.121, 1.588, 1.26) & (0.050, 1.121, 1.288, 1.25) & (0.050, 1.121, 1.588, 1.26) & (0.050, 1.121, 1.288, 1.28) & (0.050, 1.121, 1.288, 1.28) & (0.050, 1.121, 1.288, 1.28) & (0.050, 1.121, 1.288, 1.28) & (0.050, 1.121, 1.288, 1.28) & (0.050, 0.121, 1.288, 1.28) $	0.90	(0.127_0.006_17_4)	(0.057, 0.946, 2.326, 10.2)	(0.066, 0.940, 1.792, 10.4)	(0.005, 0.022, 1.462, 11, 1)	(0.104, 0.017, 1.162, 12, 0)	(0.005, 0.022, 1.703, 13.5)	(0.096, 0.021, 1.438, 13.6)	$(0\ 105\ 0\ 017\ 1\ 257\ 13\ 0)$	(0.116.0.011.1.000.14.0)
$ \begin{array}{c} 0.98 \\ (0.060, 0.951, 9.43) \\ (0.060, 0.951, 2.419, 2.33) \\ (0.060, 0.951, 1.210, 2.419, 2.33) \\ (0.060, 0.951, 1.210, 2.419, 2.33) \\ (0.060, 0.951, 1.210, 2.419, 2.33) \\ (0.060, 0.951, 1.210, 2.419, 2.33) \\ (0.060, 0.951, 1.210, 2.419, 2.33) \\ (0.060, 0.951, 1.210, 2.419, 2.33) \\ (0.060, 0.951, 1.221, 2.419, 2.33) \\ (0.050, 0.951, 1.221, 2.419, 2.33) \\ (0.050, 0.951, 1.220, 2.52) \\ (0.050, 0.951, 1.220, 2.52) \\ (0.050, 0.951, 1.220, 1.23) \\ (0.050, 0.951, 1.220, 1.23) \\ (0.050, 0.951, 1.220, 1.23) \\ (0.050, 0.121, 1.210, 1.210, 1.23) \\ (0.050, 1.121, 1.211, 1.231, 1.240, 1.23) \\ (0.050, 1.121, 1.249, 1.35) \\ (0.050, 1.121, 1.249, 1.35) \\ (0.050, 1.121, 1.249, 1.35) \\ (0.050, 1.121, 1.249, 1.35) \\ (0.050, 1.121, 1.249, 1.35) \\ (0.050, 1.121, 1.249, 1.35) \\ (0.050, 1.121, 1.249, 1.35) \\ (0.050, 1.121, 1.249, 1.35) \\ (0.050, 1.121, 1.249, 1.35) \\ (0.050, 1.121, 1.249, 1.35) \\ (0.050, 1.121, 1.249, 1.35) \\ (0.050, 1.121, 1.249, 1.35) \\ (0.050, 1.121, 1.249, 1.35) \\ (0.050, 1.121, 1.249, 1.35) \\ (0.050, 1.121, 1.249, 1.35) \\ (0.050, 1.121, 1.249, 1.35) \\ (0.050, 1.121, 1.249, 1.35) \\ (0.050, 1.121, 1.249, 1.35) \\ (0.051, 1.121, 2.19, 1.35) \\ (0.051, 1.121, 2.19, 1.35) \\ (0.051, 1.121, 2.19, 1.35) \\ (0.051, 1.121, 2.19, 1.35) \\ (0.051, 1.121, 1.249, 1.35) \\ (0.051, 1.121, 1.249, 1.35) \\ (0.051, 1.121, 1.249, 1.35) \\ (0.051, 1.121, 1.249, 1.35) \\ (0.051, 1.121, 1.249, 1.35) \\ (0.051, 1.121, 1.249, 1.35) \\ (0.051, 1.121, 1.249, 1.35) \\ (0.051, 1.121, 1.249, 1.35) \\ (0.051, 1.121, 1.249, 1.35) \\ (0.051, 1.121, 1.249, 1.35) \\ (0.051, 1.121, 1.249, 1.35) \\ (0.051, 1.121, 1.249, 1.35) \\ (0.051, 1.121, 1.249, 1.35) \\ (0.051, 1.121, 1.249, 1.35) \\ (0.051, 1.121, 1.249, 1.35) \\ (0.051, 1.121, 1.249, 1.35) \\ (0.051, 1.121, 1.249, 1.35) \\ (0.051, 1.123, 1.148, 1.35) \\ (0.051, 0.152, 1.152, 1.35) \\ (0.050, 0.552, 1.439, 1.35) \\ (0.050, 0.552, 1.439, 1.35) \\ (0.050, 0.552, 1.439, 1.35) \\ (0.050, 0.552, 1.439, 1.35) \\ (0.050, 0.152, 1.439, 1.35) \\ (0.050, 0.152, 1.439, 1.35) \\ (0.050, 0.152, 1.439, 1.35) \\ (0.050, 0.152, $	0.90	(0.127, 0.300, 11.4) (0.050, 0.051, 42.2)	(0.051, 0.050, 2.417, 20.0)	(0.000, 0.940, 1.792, 10.4)	(0.050, 0.051, 1.450, 22.7)	(0.104, 0.517, 1.102, 12.5)	(0.050, 0.051, 1.703, 15.5)	(0.050, 0.051, 1.430, 10.0)	(0.105, 0.911, 1.251, 15.9)	(0.050, 0.051, 1.090, 14.9)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.95	(0.050, 0.951, 43.3)	(0.051, 0.950, 2.417, 29.9)	(0.050, 0.951, 1.791, 51.0)	(0.050, 0.951, 1.450, 32.7)	(0.050, 0.951, 1.100, 30.4)	(0.050, 0.951, 1.788, 55.8)	(0.050, 0.951, 1.459, 50.4)	(0.050, 0.951, 1.250, 37.4)	(0.050, 0.951, 1.089, 59.5)
$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	• 0.98	(0.050, 0.951, 98.5) (0.050, 0.051, 127, 0)	(0.050, 0.951, 2.419, 85.8)	(0.050, 0.951, 1.791, 85.5)	(0.050, 0.951, 1.450, 87.8)	(0.050, 0.951, 1.100, 92.1)	(0.050, 0.951, 1.788, 90.5)	(0.050, 0.951, 1.459, 91.5)	(0.050, 0.951, 1.250, 92.5)	(0.050, 0.951, 1.089, 94.9)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.01	(0.050, 0.951, 137.9)	(0.050, 0.951, 2.419, 127.2)	(0.050, 0.951, 1.791, 128.0)	(0.050, 0.951, 1.450, 150.4)	(0.050, 0.951, 1.100, 135.0)	(0.050, 0.951, 1.788, 132.0)	(0.050, 0.951, 1.459, 152.7)	(0.050, 0.951, 1.250, 135.7)	(0.050, 0.951, 1.089, 155.5)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.01	(0.050, 1.121, 149.0)	(0.050, 1.122, 5.444, 125.4)	(0.050, 1.121, 3.052, 128.3)	(0.050, 1.121, 2.001, 152.1)	(0.050, 1.125, 1.510, 140.1)	(0.050, 1.121, 3.491, 155.8)	(0.050, 1.121, 2.129, 137.5)	(0.050, 1.121, 1.589, 159.0)	(0.050, 1.121, 1.178, 143.9)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.02	(0.050, 1.121, 113.7)	(0.050, 1.122, 5.444, 83.0)	(0.050, 1.121, 3.032, 85.7)	(0.050, 1.121, 2.061, 89.9)	(0.050, 1.123, 1.316, 100.2)	(0.050, 1.121, 3.491, 96.6)	(0.050, 1.121, 2.129, 98.2)	(0.050, 1.121, 1.589, 100.5)	(0.050, 1.121, 1.178, 106.0)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.05	(0.050, 1.121, 58.8)	(0.068, 1.146, 4.578, 34.1)	(0.061, 1.137, 2.764, 35.1)	(0.050, 1.121, 2.060, 36.9)	(0.050, 1.123, 1.316, 43.4)	(0.054, 1.127, 3.153, 45.9)	(0.051, 1.123, 2.110, 45.9)	(0.050, 1.121, 1.589, 46.6)	(0.050, 1.123, 1.175, 50.3)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.10	(0.053, 1.126, 29.0)	(0.117, 1.205, 3.198, 14.0)	(0.100, 1.185, 2.252, 14.4)	(0.088, 1.171, 1.711, 15.5)	(0.063, 1.140, 1.268, 18.5)	(0.083, 1.165, 2.567, 21.8)	(0.077, 1.157, 1.835, 21.6)	(0.072, 1.152, 1.453, 21.8)	(0.058, 1.133, 1.158, 23.2)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		(0.405.0.004.40.0)				ρ=				
$ \begin{array}{c} 0.95 & (0.050, 0.952, 42.2) & (0.050, 0.952, 1.420, 82.9) & (0.050, 0.952, 1.791, 84.0) & (0.050, 0.952, 1.450, 81.7) & (0.050, 0.952, 1.152, 35.6) & (0.050, 0.952, 1.439, 34.8) & (0.050, 0.952, 1.439, 35.5) & (0.050, 0.952, 1.250, 36.4) & (0.050, 0.952, 1.250, 91.1) & (0.050, 0.119, 1.20, 20.2) & (0.050, 1.119, 1.20, 20.2) & (0.050, 1.119, 1.250, 20.1) & $	0.90	(0.135, 0.904, 16.8)	(0.065, 0.941, 2.313, 9.9)	(0.070, 0.938, 1.791, 10.1)	(0.101, 0.921, 1.463, 10.7)	(0.113, 0.914, 1.154, 12.5)	(0.101, 0.920, 1.698, 13.0)	(0.111, 0.915, 1.436, 13.1)	(0.114, 0.914, 1.258, 13.4)	(0.125, 0.908, 1.086, 14.4)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.95	(0.050, 0.952, 42.2)	(0.050, 0.952, 2.420, 28.9)	(0.050, 0.952, 1.791, 30.0)	(0.050, 0.952, 1.450, 31.7)	(0.050, 0.952, 1.152, 35.6)	(0.050, 0.952, 1.789, 34.8)	(0.050, 0.952, 1.439, 35.5)	(0.050, 0.952, 1.250, 36.4)	(0.050, 0.952, 1.084, 38.5)
$ \begin{array}{c} 0.99 & (0.050, 0.952, 136.8) & (0.050, 0.952, 1.226, 122.6) & (0.050, 0.952, 1.791, 127.4) & (0.050, 0.952, 1.152, 132.6) & (0.050, 0.952, 1.152, 132.6) & (0.050, 0.952, 1.243, 131.6) & (0.050, 0.952, 1.243, 131.6) & (0.050, 0.952, 1.243, 131.6) & (0.050, 0.952, 1.243, 131.6) & (0.050, 0.119, 1.249, 126.1) & (0.050, 1.119, 1.241, 1) & (0.050, 1.119, 2.061, 131.1) & (0.050, 1.119, 1.320, 382.6) & (0.050, 1.119, 3.495, 534.4) & (0.050, 1.120, 2.122, 97.1) & (0.050, 1.119, 1.589, 138.7) & (0.050, 1.119, 1.589, 138.7) & (0.050, 1.119, 1.589, 138.7) & (0.050, 1.119, 1.589, 138.7) & (0.050, 1.119, 1.589, 138.7) & (0.050, 1.119, 1.589, 98.6) & (0.050, 1.119, 1.320, 382.6) & (0.050, 1.119, 1.320, 382.6) & (0.050, 1.119, 1.320, 382.6) & (0.050, 1.119, 1.258, 38.1) & (0.050, 1.119, 1.320, 382.6) & (0.050, 1.119, 1.258, 38.1) & (0.050, 1.119, 1.320, 382.6) & (0.050, 1.119, 1.258, 38.1) & (0.050, 1.119, 1.320, 482.2) & (0.050, 1.120, 2.122, 45.0) & (0.050, 1.119, 1.589, 45.7) & (0.050, 1.119, 1.158, 45.2) & (0.050, 1.119, 1.589, 45.7) & (0.050, 1.119, 1.158, 45.2) & (0.050, 1.119, 1.158, 12.1) & (0.051, 1.119, 1.258, 12.1) & (0.071, 1.147, 1.458, 21.3) & (0.059, 1.119, 1.157, 122.7) & P = 0.8 & P = 0.$	0.98	(0.050, 0.952, 97.1)	(0.050, 0.952, 2.420, 82.3)	(0.050, 0.952, 1.791, 84.1)	(0.050, 0.952, 1.450, 86.3)	(0.050, 0.952, 1.152, 90.9)	(0.050, 0.952, 1.789, 88.9)	(0.050, 0.952, 1.439, 89.8)	(0.050, 0.952, 1.250, 91.1)	(0.050, 0.952, 1.084, 93.6)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.99	(0.050, 0.952, 136.8)	(0.050, 0.952, 2.420, 125.9)	(0.050, 0.952, 1.791, 127.4)	(0.050, 0.952, 1.450, 129.2)	(0.050, 0.952, 1.152, 132.5)	(0.050, 0.952, 1.788, 130.8)	(0.050, 0.952, 1.439, 131.6)	(0.050, 0.952, 1.250, 132.6)	(0.050, 0.952, 1.084, 134.4)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.01	(0.050, 1.119, 148.2)	(0.050, 1.119, 5.491, 124.1)	(0.050, 1.120, 3.020, 127.4)	(0.050, 1.119, 2.061, 131.1)	(0.050, 1.119, 1.320, 138.9)	(0.050, 1.119, 3.495, 134.9)	(0.050, 1.120, 2.122, 136.7)	(0.050, 1.119, 1.589, 138.7)	(0.050, 1.119, 1.178, 143.0)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.02	(0.050, 1.119, 112.6)	(0.050, 1.119, 5.491, 81.7)	(0.050, 1.120, 3.020, 84.6)	(0.050, 1.119, 2.061, 88.7)	(0.050, 1.119, 1.320, 98.6)	(0.050, 1.119, 3.495, 95.4)	(0.050, 1.120, 2.122, 97.1)	(0.050, 1.119, 1.589, 99.3)	(0.050, 1.119, 1.178, 104.8)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.05	(0.050, 1.119, 57.8)	(0.070, 1.146, 4.495, 33.3)	(0.057, 1.129, 2.851, 34.3)	(0.050, 1.119, 2.058, 36.1)	(0.050, 1.119, 1.320, 42.2)	(0.054, 1.126, 3.128, 45.0)	(0.050, 1.120, 2.122, 45.0)	(0.050, 1.119, 1.589, 45.7)	(0.050, 1.119, 1.178, 49.2)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.10	(0.054, 1.125, 28.4)	(0.122, 1.206, 3.318, 13.6)	(0.101, 1.183, 2.237, 14.0)	(0.083, 1.161, 1.743, 15.0)	(0.062, 1.136, 1.271, 18.1)	(0.082, 1.161, 2.581, 21.3)	(0.076, 1.153, 1.840, 21.1)	(0.071, 1.147, 1.458, 21.3)	(0.059, 1.131, 1.157, 22.7)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						ρ =	= 0.8			
$ \begin{array}{c} 0.95 & (0.050, 0.953, 41.1) & (0.050, 0.953, 2.420, 28.0) & (0.050, 0.953, 1.791, 29.1) & (0.050, 0.953, 1.450, 30.7) & (0.050, 0.953, 1.152, 34.5) \\ 0.98 & (0.050, 0.953, 95.6) & (0.050, 0.953, 2.420, 80.8) & (0.050, 0.953, 1.791, 82.6) & (0.050, 0.953, 1.450, 84.8) & (0.050, 0.953, 1.152, 89.3) \\ 0.99 & (0.050, 0.953, 135.7) & (0.050, 0.953, 2.420, 18.8) & (0.050, 0.953, 1.791, 82.6) & (0.050, 0.953, 1.450, 18.4) & (0.050, 0.953, 1.152, 89.3) \\ 1.01 & (0.050, 1.116, 5.493, 123.0) & (0.050, 1.116, 5.493, 80.4) & (0.050, 1.116, 5.493, 80.4) & (0.050, 1.116, 5.493, 80.4) & (0.050, 1.116, 5.493, 80.4) & (0.050, 1.116, 5.493, 80.4) & (0.050, 1.117, 2.058, 87.4) & (0.050, 1.118, 1.316, 41.4) \\ 1.05 & (0.050, 1.116, 5.493, 80.4) & (0.051, 1.118, 2.763, 33.5) & (0.051, 1.118, 2.044, 35.2) & (0.050, 1.118, 1.316, 41.4) \\ 1.05 & (0.050, 1.116, 5.493, 80.4) & (0.051, 1.118, 2.763, 33.5) & (0.051, 1.118, 2.044, 35.2) & (0.050, 1.116, 1.139, 1.16, 2.130, 91.4) \\ 1.05 & (0.050, 1.116, 5.493, 80.4) & (0.050, 1.116, 2.733, 35.6) & (0.051, 1.118, 2.044, 35.2) & (0.050, 1.118, 1.316, 41.4) \\ 1.05 & (0.050, 1.116, 5.493, 124.0) & (0.050, 1.116, 5.493, 84.4) & (0.050, 1.117, 1.588, 98.2) & (0.050, 1.117, 1.588, 98.2) & (0.050, 1.116, 2.130, 91.4) \\ 1.05 & (0.050, 1.116, 5.493, 80.4) & (0.050, 1.116, 2.733, 35.6) & (0.051, 1.118, 2.044, 35.2) & (0.050, 1.118, 1.316, 41.4) \\ 1.05 & (0.050, 1.116, 5.493, 80.4) & (0.050, 1.116, 1.213, 95.6) & (0.050, 1.116, 2.130, 95.8) & (0.050, 1.116, 1.138, 95.6) & (0.050, 1.116, 1.138, 95.6) & (0.050, 1.116, 1.138, 95.6) & (0.050, 1.116, 1.138, 95.6) & (0.050, 1.116, 1.138, 95.6) & (0.050, 1.116, 1.138, 95.6) & (0.050, 1.116, 1.138, 95.6) & (0.050, 1.116, 1.138, 95.6) & (0.050, 1.116, 1.138, 95.6) & (0.050, 1.116, 1.138, 95.6) & (0.050, 1.116, 1.138, 95.6) & (0.050, 1.116, 1.138, 95.6) & (0.050, 1.116, 1.138, 95.6) & (0.050, 1.116, 1.138, 95.6) & (0.050, 1.116, 1.138, 95.6) & (0.050, 1.116, 1.138, 95.6) & (0.050, 1.116, 1.138, 95.6) & (0.050, 1.116, 1.138, 95.6) & (0.050, 1.116, 1.138, 9$	0.90	(0.145, 0.901, 16.3)	(0.074, 0.937, 2.297, 9.6)	(0.095, 0.925, 1.788, 9.8)	(0.116, 0.914, 1.466, 10.3)	(0.123, 0.911, 1.155, 12.1)	(0.113, 0.916, 1.688, 12.6)	(0.105, 0.920, 1.437, 12.7)	(0.120, 0.912, 1.259, 13.0)	(0.133, 0.906, 1.086, 13.9)
$ \begin{array}{c} 0.98 & (0.050, 0.953, 95.6) & (0.050, 0.953, 2.420, 80.8) & (0.050, 0.953, 1.791, 82.6) & (0.050, 0.953, 1.450, 84.8) & (0.050, 0.953, 1.152, 89.3) \\ 0.99 & (0.050, 0.953, 135.7) & (0.050, 0.953, 1.220, 80.6) & (0.050, 0.953, 1.450, 84.8) & (0.050, 0.953, 1.152, 89.3) \\ 1.01 & (0.050, 0.953, 135.7) & (0.050, 1116, 5.433, 83.1) & (0.050, 1116, 3.034, 83.1) & (0.050, 1117, 2.058, 130.1) & (0.050, 0.953, 1.152, 181.3) \\ 1.02 & (0.050, 1.116, 5.433, 80.4) & (0.050, 1.116, 3.034, 83.1) & (0.050, 1.117, 2.058, 87.4) & (0.050, 1.118, 1.316, 47.7) \\ 1.05 & (0.050, 1.116, 5.68) & (0.071, 1.144, 4.460, 32.5) & (0.061, 1.131, 2.763, 33.5) & (0.051, 1.118, 2.044, 35.2) & (0.050, 1.118, 1.316, 41.4) \\ 1.05 & (0.050, 1.116, 5.03, 0.071, 1.144, 4.460, 32.5) & (0.061, 1.131, 2.763, 33.5) & (0.051, 1.118, 2.044, 35.2) & (0.050, 1.118, 1.316, 41.4) \\ 1.05 & (0.050, 1.116, 5.03, 0.071, 1.144, 4.460, 32.5) & (0.050, 1.117, 1.588, 44.8) & (0.050, 1.118, 1.175, 48.3) & (0.050, 1.116, 1.103, 1.116, 1.115, 1.116, 1.115, 1.116,$	0.95	(0.050, 0.953, 41.1)	(0.050, 0.953, 2.420, 28.0)	(0.050, 0.953, 1.791, 29.1)	(0.050, 0.953, 1.450, 30.7)	(0.050, 0.953, 1.152, 34.5)	(0.050, 0.953, 1.788, 33.9)	(0.050, 0.953, 1.439, 34.4)	(0.050, 0.953, 1.250, 35.4)	(0.050, 0.953, 1.084, 37.4)
$ \begin{array}{c} 0.99 & (0.050, 0.953, 135.7) & (0.050, 0.953, 2420, 124.6) & (0.050, 0.953, 1.791, 126.1) & (0.050, 0.953, 1.450, 127.9) & (0.050, 0.953, 1.152, 131.3) & (0.050, 0.953, 1.439, 130.3) & (0.050, 0.953, 1.439, 130.3) & (0.050, 0.953, 1.439, 130.3) & (0.050, 0.953, 1.450, 1250, 131.3) & (0.050, 0.953, 1.450, 1250, 131.3) & (0.050, 0.953, 1.450, 1250, 131.3) & (0.050, 0.953, 1.450, 1250, 131.3) & (0.050, 0.953, 1.450, 1250, 131.3) & (0.050, 0.953, 1.450, 1250, 131.3) & (0.050, 0.953, 1.450, 1250, 131.3) & (0.050, 0.953, 1.450, 1250, 131.3) & (0.050, 0.953, 1.450, 1250, 131.3) & (0.050, 0.953, 1.450, 1250, 131.3) & (0.050, 0.953, 1.450, 1250, 131.3) & (0.050, 0.953, 1.450, 132.3) & (0.050, 1.116, 147.5) & (0.050, 1$	0.98	(0.050, 0.953, 95.6)	(0.050, 0.953, 2.420, 80.8)	(0.050, 0.953, 1.791, 82.6)	(0.050, 0.953, 1.450, 84.8)	(0.050, 0.953, 1.152, 89.3)	(0.050, 0.953, 1.788, 87.4)	(0.050, 0.953, 1.439, 88.3)	(0.050, 0.953, 1.250, 89.6)	(0.050, 0.953, 1.084, 92.1)
$ \begin{array}{c} 1.01 & (0.050, 1.116, 147.5) \\ (0.050, 1.116, 5.493, 123.0) & (0.050, 1.116, 3.034, 126.2) \\ 1.02 & (0.050, 1.116, 5.493, 80.4) \\ (0.050, 1.116, 5.493, 80.4) & (0.050, 1.116, 3.034, 126.2) \\ (0.050, 1.116, 5.493, 80.4) & (0.050, 1.116, 5.493, 80.4) \\ (0.050, 1.116, 5.493, 80.4) & (0.050, 1.116, 5.$	0.99	(0.050, 0.953, 135.7)	(0.050, 0.953, 2.420, 124.6)	(0.050, 0.953, 1.791, 126.1)	(0.050, 0.953, 1.450, 127.9)	(0.050, 0.953, 1.152, 131.3)	(0.050, 0.953, 1.788, 129.5)	(0.050, 0.953, 1.439, 130.3)	(0.050, 0.953, 1.250, 131.3)	(0.050, 0.953, 1.084, 133.2)
$ \begin{array}{c} 1.02 \\ 0.050, 1.116, 111.5 \\ 0.050, 1.116, 5.493, 80.4 \\ 1.05 \\ 0.050, 1.116, 5.493, 80.4 \\ 1.05 \\ 0.050, 1.116, 5.493, 80.4 \\ 1.05 \\ 0.050, 1.116, 1.05 \\ 0.050, 1.116, 5.493, 80.4 \\ 1.05 \\ 0.050, 1.116, 1.05 \\ 1.05 \\ 1.05 \\ 1.05 \\ 1.116, 1.05 \\ 1.05 \\ 1.116, 1.05 \\ 1.05 \\ 1.116, 1.05 \\ 1.116, 1.05 \\ 1.05 \\ 1.05 \\ 1.116, 1.05 \\ $	1.01	(0.050, 1.116, 147.5)	(0.050, 1.116, 5.493, 123.0)	(0.050, 1.116, 3.034, 126.2)	(0.050, 1.117, 2.058, 130.1)	(0.050, 1.118, 1.316, 138.3)	(0.050, 1.116, 3.496, 133.9)	(0.050, 1.116, 2.130, 135.6)	(0.050, 1.117, 1.588, 137.8)	(0.050, 1.116, 1.178, 142.2)
$1.05 \ (0.050, 1.116, 56.8) \ (0.071, 1.144, 4.460, 32.5) \ (0.061, 1.131, 2.763, 33.5) \ (0.051, 1.118, 2.044, 35.2) \ (0.050, 1.118, 1.316, 41.4) \ (0.056, 1.125, 3.097, 44.2) \ (0.050, 1.116, 2.130, 44.1) \ (0.050, 1.117, 1.588, 44.8) \ (0.050, 1.118, 1.175, 48.3) \ (0.051, 1.118, 1.175, 48.3) \ (0.0$	1.02	(0.050, 1.116, 111.5)	(0.050, 1.116, 5.493, 80.4)	(0.050, 1.116, 3.034, 83.1)	(0.050, 1.117, 2.058, 87.4)	(0.050, 1.118, 1.316, 97.7)	(0.050, 1.116, 3.496, 94.2)	(0.050, 1.116, 2.130, 95.8)	(0.050, 1.117, 1.588, 98.2)	(0.050, 1.116, 1.167, 103.9)
	1.05	(0.050, 1.116, 56.8)	(0.071, 1.144, 4.460, 32.5)	(0.061, 1.131, 2.763, 33.5)	(0.051, 1.118, 2.044, 35.2)	(0.050, 1.118, 1.316, 41.4)	(0.056, 1.125, 3.097, 44.2)	(0.050, 1.116, 2.130, 44.1)	(0.050, 1.117, 1.588, 44.8)	(0.050, 1.118, 1.175, 48.3)
1.10 (0.055, 1.123, 27.8) (0.121, 1.200, 3.152, 13.3) (0.102, 1.180, 2.232, 13.7) (0.086, 1.162, 1.721, 14.6) (0.064, 1.135, 1.266, 17.6) (0.086, 1.161, 2.535, 20.8) (0.079, 1.154, 1.816, 20.6) (0.072, 1.145, 1.455, 20.8) (0.060, 1.130, 1.155, 22.2) (0.072, 1.145, 1.455, 20.8) (0.072, 1.145, 1.455, 20.8) (0.060, 1.130, 1.155, 22.2) (0.061, 1.130, 1.155, 22.2) (0.0	1.10	(0.055, 1.123, 27.8)	(0.121, 1.200, 3.152, 13.3)	(0.102, 1.180, 2.232, 13.7)	(0.086, 1.162, 1.721, 14.6)	(0.064, 1.135, 1.266, 17.6)	(0.086, 1.161, 2.535, 20.8)	(0.079, 1.154, 1.816, 20.6)	(0.072, 1.145, 1.455, 20.8)	(0.060, 1.130, 1.155, 22.2)

Table 6: The parameters $(\lambda^+, H_U, h_L, ATS_1)$ and $(\lambda^-, H_D, h_L, ATS_1)$ of the VSI EWMA-RZ control charts compared to those (λ^+, H_U, ARL_1) and (λ^-, H_D, ARL_1) of FSI EWMA charts (second column) for $\gamma_X = 0.01, \gamma_Y = 0.2, n = 15, ASI_0 = 1$ and $ATS_0 = 200$

							· · ·		
		h	$n_S = 0.1$				$h_S =$	= 0.5	
τ	FSI	R = 0.1	R = 0.2	R = 0.3	R = 0.5	R = 0.1	R = 0.2	R = 0.3	R = 0.5
					$\rho =$	-0.8			
0.90	(0.588, 0.918, 2.7)	(0.810, 0.896, 1.707, 2.0)	(0.731, 0.904, 1.501, 1.9)	(0.657, 0.911, 1.343, 1.8)	(0.588, 0.918, 1.143, 1.7)	(0.703, 0.907, 1.421, 2.3)	(0.641, 0.913, 1.294, 2.2)	(0.601, 0.916, 1.196, 2.2)	(0.588, 0.918, 1.079, 2.2)
0.95	(0.201, 0.958, 7.9)	(0.254, 0.951, 2.152, 4.3)	(0.236, 0.954, 1.759, 4.2)	(0.235, 0.954, 1.462, 4.3)	(0.207, 0.957, 1.163, 5.0)	(0.233, 0.954, 1.659, 5.9)	(0.213, 0.956, 1.432, 5.8)	(0.208, 0.957, 1.262, 5.9)	(0.201, 0.958, 1.091, 6.3)
0.98	(0.050, 0.983, 27.4)	(0.050, 0.983, 2.882, 15.5)	(0.050, 0.983, 2.000, 16.1)	(0.050, 0.983, 1.568, 17.3)	(0.050, 0.983, 1.198, 20.2)	(0.050, 0.983, 2.046, 20.8)	(0.050, 0.983, 1.556, 21.1)	(0.050, 0.983, 1.316, 21.8)	(0.050, 0.983, 1.110, 23.4)
0.99	(0.050, 0.983, 59.6)	(0.050, 0.983, 2.884, 40.8)	(0.050, 0.983, 2.000, 42.8)	(0.050, 0.983, 1.568, 45.3)	(0.050, 0.983, 1.198, 50.5)	(0.050, 0.983, 2.046, 49.2)	(0.050, 0.983, 1.556, 50.3)	(0.050, 0.983, 1.316, 51.7)	(0.050, 0.983, 1.110, 54.5)
1.01	(0.050, 1.020, 61.7)	(0.050, 1.020, 3.535, 39.9)	(0.050, 1.020, 2.286, 42.0)	(0.050, 1.020, 1.717, 44.7)	(0.050, 1.020, 1.230, 51.0)	(0.050, 1.020, 2.402, 49.6)	(0.050, 1.020, 1.714, 50.7)	(0.050, 1.020, 1.398, 52.3)	(0.050, 1.020, 1.128, 55.7)
1.02	(0.050, 1.020, 29.6)	(0.072, 1.026, 3.220, 16.3)	(0.062, 1.024, 2.205, 16.9)	(0.057, 1.022, 1.692, 18.0)	(0.050, 1.020, 1.230, 21.3)	(0.061, 1.023, 2.313, 22.4)	(0.056, 1.022, 1.691, 22.6)	(0.057, 1.022, 1.384, 23.2)	(0.050, 1.020, 1.128, 25.0)
1.05	(0.141, 1.040, 9.3)	(0.253, 1.058, 2.223, 4.7)	(0.218, 1.053, 1.786, 4.6)	(0.194, 1.049, 1.474, 4.8)	(0.157, 1.043, 1.158, 5.8)	(0.185, 1.048, 1.783, 6.9)	(0.175, 1.046, 1.475, 6.8)	(0.163, 1.044, 1.279, 6.9)	(0.150, 1.041, 1.089, 7.4)
1.10	(0.339, 1.070, 3.6)	(0.634, 1.110, 1.755, 2.2)	(0.549, 1.099, 1.495, 2.0)	(0.484, 1.090, 1.316, 2.0)	(0.414, 1.081, 1.114, 2.2)	(0.448, 1.085, 1.509, 2.9)	(0.408, 1.080, 1.317, 2.8)	(0.391, 1.078, 1.192, 2.7)	(0.374, 1.075, 1.065, 2.8)
					$\rho =$	-0.4			
0.90	(0.601, 0.918, 2.6)	(0.915, 0.888, 1.664, 2.0)	(0.797, 0.900, 1.482, 1.8)	(0.678, 0.911, 1.339, 1.7)	(0.601, 0.918, 1.135, 1.7)	(0.673, 0.911, 1.431, 2.3)	(0.662, 0.912, 1.290, 2.2)	(0.625, 0.916, 1.194, 2.1)	(0.601, 0.918, 1.075, 2.1)
0.95	(0.206, 0.958, 7.6)	(0.288, 0.948, 2.102, 4.2)	(0.240, 0.954, 1.756, 4.1)	(0.217, 0.957, 1.468, 4.2)	(0.213, 0.957, 1.154, 4.9)	(0.236, 0.954, 1.656, 5.7)	(0.221, 0.956, 1.407, 5.7)	(0.213, 0.957, 1.261, 5.7)	(0.209, 0.958, 1.086, 6.1)
0.98	(0.050, 0.983, 26.8)	(0.050, 0.983, 2.884, 15.1)	(0.050, 0.983, 2.001, 15.7)	(0.050, 0.983, 1.568, 16.8)	(0.050, 0.983, 1.187, 19.9)	(0.050, 0.983, 2.047, 20.3)	(0.050, 0.983, 1.556, 20.6)	(0.050, 0.983, 1.316, 21.2)	(0.050, 0.983, 1.104, 22.9)
0.99	(0.050, 0.983, 58.5)	(0.050, 0.983, 2.884, 39.8)	(0.050, 0.983, 2.001, 41.8)	(0.050, 0.983, 1.568, 44.3)	(0.050, 0.983, 1.187, 49.7)	(0.050, 0.983, 2.047, 48.1)	(0.050, 0.983, 1.556, 49.2)	(0.050, 0.983, 1.316, 50.6)	(0.050, 0.983, 1.104, 53.6)
1.01	(0.050, 1.020, 60.6)	(0.050, 1.020, 3.535, 39.0)	(0.050, 1.020, 2.285, 41.0)	(0.050, 1.020, 1.719, 43.6)	(0.050, 1.020, 1.243, 49.6)	(0.050, 1.020, 2.408, 48.6)	(0.050, 1.020, 1.714, 49.7)	(0.050, 1.020, 1.399, 51.2)	(0.050, 1.020, 1.135, 54.5)
1.02	(0.050, 1.020, 29.0)	(0.074, 1.026, 3.192, 15.9)	(0.069, 1.025, 2.167, 16.5)	(0.057, 1.022, 1.693, 17.6)	(0.050, 1.020, 1.243, 20.6)	(0.062, 1.023, 2.300, 21.9)	(0.057, 1.022, 1.688, 22.1)	(0.053, 1.021, 1.391, 22.7)	(0.050, 1.020, 1.135, 24.3)
1.05	(0.146, 1.040, 9.1)	(0.259, 1.058, 2.209, 4.6)	(0.222, 1.052, 1.780, 4.5)	(0.200, 1.049, 1.469, 4.7)	(0.162, 1.043, 1.166, 5.6)	(0.190, 1.047, 1.775, 6.7)	(0.178, 1.045, 1.472, 6.6)	(0.163, 1.043, 1.279, 6.7)	(0.154, 1.041, 1.093, 7.2)
1.10	(0.347, 1.070, 3.5)	(0.673, 1.113, 1.730, 2.2)	(0.563, 1.099, 1.489, 2.0)	(0.494, 1.090, 1.313, 1.9)	(0.425, 1.081, 1.119, 2.1)	(0.485, 1.089, 1.487, 2.9)	(0.397, 1.077, 1.321, 2.7)	(0.397, 1.077, 1.191, 2.6)	(0.383, 1.075, 1.069, 2.7)
					$\rho =$	0.0			
0.90	(0.620, 0.918, 2.5)	(0.900, 0.892, 1.669, 2.0)	(0.791, 0.902, 1.483, 1.8)	(0.696, 0.911, 1.335, 1.7)	(0.617, 0.918, 1.134, 1.7)	(0.746, 0.906, 1.409, 2.2)	(0.672, 0.913, 1.288, 2.1)	(0.637, 0.916, 1.192, 2.1)	(0.617, 0.918, 1.074, 2.0)
0.95	(0.213, 0.958, 7.4)	(0.286, 0.950, 2.105, 4.1)	(0.243, 0.955, 1.717, 4.0)	(0.231, 0.956, 1.463, 4.1)	(0.220, 0.957, 1.153, 4.8)	(0.245, 0.954, 1.648, 5.6)	(0.225, 0.957, 1.405, 5.5)	(0.227, 0.956, 1.258, 5.6)	(0.216, 0.958, 1.085, 5.9)
0.98	(0.050, 0.984, 26.1)	(0.051, 0.983, 2.874, 14.7)	(0.052, 0.983, 1.994, 15.3)	(0.050, 0.984, 1.568, 16.3)	(0.050, 0.983, 1.197, 19.2)	(0.050, 0.983, 2.043, 19.8)	(0.052, 0.983, 1.552, 20.1)	(0.050, 0.984, 1.316, 20.7)	(0.050, 0.983, 1.109, 22.3)
0.99	(0.050, 0.984, 57.3)	(0.050, 0.983, 2.882, 38.9)	(0.050, 0.984, 2.000, 40.8)	(0.050, 0.984, 1.569, 43.2)	(0.050, 0.983, 1.197, 48.4)	(0.050, 0.983, 2.045, 47.1)	(0.050, 0.984, 1.555, 48.2)	(0.050, 0.984, 1.316, 49.5)	(0.050, 0.983, 1.109, 52.4)
1.01	(0.050, 1.019, 59.5)	(0.050, 1.019, 3.535, 38.1)	(0.050, 1.019, 2.286, 40.0)	(0.050, 1.020, 1.716, 42.7)	(0.050, 1.019, 1.230, 48.8)	(0.050, 1.019, 2.408, 47.6)	(0.050, 1.019, 1.714, 48.7)	(0.050, 1.020, 1.398, 50.2)	(0.050, 1.019, 1.128, 53.6)
1.02	(0.050, 1.020, 28.4)	(0.075, 1.026, 3.180, 15.5)	(0.066, 1.023, 2.185, 16.0)	(0.059, 1.022, 1.687, 17.1)	(0.050, 1.019, 1.230, 20.2)	(0.063, 1.023, 2.206, 21.3)	(0.057, 1.021, 1.685, 21.6)	(0.054, 1.021, 1.389, 22.1)	(0.050, 1.019, 1.127, 23.8)
1.05	(0.147, 1.039, 8.9)	(0.242, 1.054, 2.249, 4.5)	(0.230, 1.052, 1.770, 4.4)	(0.206, 1.049, 1.464, 4.6)	(0.165, 1.042, 1.156, 5.5)	(0.188, 1.046, 1.778, 6.5)	(0.181, 1.045, 1.469, 6.4)	(0.178, 1.045, 1.271, 6.5)	(0.158, 1.041, 1.088, 7.0)
1.10	(0.356, 1.070, 3.4)	(0.658, 1.109, 1.739, 2.2)	(0.579, 1.099, 1.482, 2.0)	(0.509, 1.090, 1.309, 1.9)	(0.435, 1.080, 1.112, 2.1)	(0.507, 1.090, 1.476, 2.8)	(0.429, 1.080, 1.310, 2.6)	(0.411, 1.077, 1.188, 2.6)	(0.391, 1.075, 1.064, 2.7)
	<pre> / / / /</pre>				$\rho =$	= 0.4			
0.90	(0.637, 0.918, 2.4)	(0.928, 0.891, 1.659, 2.0)	(0.891, 0.895, 1.457, 1.8)	(0.721, 0.910, 1.331, 1.7)	(0.633, 0.918, 1.133, 1.6)	(0.735, 0.909, 1.412, 2.2)	(0.692, 0.913, 1.285, 2.1)	(0.664, 0.915, 1.189, 2.0)	(0.633, 0.918, 1.074, 2.0)
0.95	(0.220, 0.958, 7.2)	(0.297, 0.950, 2.091, 4.0)	(0.257, 0.954, 1.707, 3.9)	(0.239, 0.956, 1.460, 3.9)	(0.228, 0.957, 1.153, 4.6)	(0.248, 0.955, 1.645, 5.4)	(0.245, 0.955, 1.397, 5.3)	(0.233, 0.957, 1.257, 5.4)	(0.225, 0.957, 1.085, 5.8)
0.98	(0.050, 0.984, 25.5)	(0.054, 0.983, 2.856, 14.2)	(0.050, 0.984, 2.000, 14.8)	(0.056, 0.982, 1.561, 15.9)	(0.050, 0.984, 1.198, 18.6)	(0.051, 0.984, 2.042, 19.2)	(0.050, 0.984, 1.556, 19.5)	(0.056, 0.982, 1.311, 20.2)	(0.050, 0.984, 1.110, 21.6)
0.99	(0.050, 0.984, 56.2)	(0.050, 0.984, 2.884, 37.8)	(0.050, 0.984, 2.001, 39.7)	(0.050, 0.984, 1.568, 42.1)	(0.050, 0.984, 1.198, 47.2)	(0.050, 0.984, 2.047, 46.0)	(0.050, 0.984, 1.556, 47.0)	(0.050, 0.984, 1.316, 48.4)	(0.050, 0.984, 1.110, 51.2)
1.01	(0.050, 1.019, 58.4)	(0.050, 1.019, 3.535, 37.2)	(0.050, 1.019, 2.285, 39.1)	(0.050, 1.019, 1.719, 41.6)	(0.050, 1.019, 1.243, 47.4)	(0.050, 1.019, 2.408, 46.6)	(0.050, 1.019, 1.714, 47.7)	(0.050, 1.019, 1.399, 49.1)	(0.050, 1.019, 1.135, 52.3)
1.02	(0.050, 1.019, 27.7)	(0.079, 1.026, 3.145, 15.1)	(0.065, 1.023, 2.188, 15.6)	(0.061, 1.022, 1.679, 16.6)	(0.050, 1.019, 1.243, 19.5)	(0.063, 1.022, 2.203, 20.8)	(0.059, 1.021, 1.679, 21.0)	(0.057, 1.021, 1.384, 21.6)	(0.050, 1.019, 1.135, 23.2)
1.05	(0.153, 1.040, 8.6)	(0.273, 1.058, 2.178, 4.3)	(0.237, 1.052, 1.760, 4.3)	(0.213, 1.049, 1.459, 4.4)	(0.172, 1.043, 1.163, 5.3)	(0.178, 1.044, 1.797, 6.4)	(0.186, 1.045, 1.464, 6.3)	(0.180, 1.044, 1.270, 6.3)	(0.161, 1.041, 1.092, 6.8)
1.10	(0.366, 1.070, 3.3)	(0.684, 1.110, 1.723, 2.1)	(0.565, 1.095, 1.488, 1.9)	(0.520, 1.089, 1.306, 1.9)	(0.449, 1.081, 1.117, 2.0)	(0.481, 1.085, 1.489, 2.7)	(0.440, 1.079, 1.306, 2.6)	(0.408, 1.075, 1.188, 2.5)	(0.402, 1.075, 1.067, 2.6)
	()	((,,, .,	(,,,,	0 =	0.8	((****	(
0.90	(0.653, 0.918, 2.3)	(0.940, 0.892, 1.654, 1.9)	(0.842, 0.901, 1.469, 1.8)	(0.758, 0.909, 1.325, 1.6)	(0.652, 0.918, 1.140, 1.6)	(0.757, 0.909, 1.407, 2.1)	(0.710, 0.913, 1.281, 2.0)	(0.681, 0.916, 1.188, 2.0)	(0.652, 0.918, 1.077, 1.9)
0.95	(0.229, 0.958, 7.0)	(0.346, 0.946, 2.031, 3.9)	(0.265, 0.954, 1.702, 3.7)	(0.249, 0.956, 1.457, 3.8)	(0.237, 0.957, 1.161, 4.4)	(0.279, 0.953, 1.620, 5.3)	(0.244, 0.956, 1.398, 5.2)	(0.238, 0.957, 1.256, 5.2)	(0.231, 0.958, 1.089, 5.5)
0.98	(0.063, 0.982, 24.9)	(0.065, 0.981, 2.782, 13.9)	(0.063, 0.981, 1.971, 14.4)	(0.063, 0.981, 1.554, 15.4)	(0.063, 0.982, 1.192, 18.2)	(0.063, 0.982, 1.999, 18.7)	(0.063, 0.981, 1.539, 19.1)	(0.063, 0.981, 1.308, 19.6)	(0.063, 0.982, 1.106, 21.1)
0.99	(0.063, 0.982, 56.0)	(0.063, 0.982, 2.798, 37.9)	(0.063, 0.981, 1.972, 39.9)	(0.063, 0.981, 1.554, 42.2)	(0.063, 0.982, 1.192, 47.3)	(0.063, 0.982, 1.999, 46.0)	(0.063, 0.981, 1.540, 47.0)	(0.063, 0.981, 1.308, 48.3)	(0.063, 0.982, 1.106, 51.1)
1.01	(0.050, 1.019, 57.3)	(0.051, 1.019, 3.503, 36.3)	(0.051, 1.019, 2.273, 38.2)	(0.050, 1.019, 1.720, 40.5)	(0.050, 1.019, 1.230, 46.6)	(0.050, 1.019, 2.406, 45.6)	(0.050, 1.019, 1.714, 46.6)	(0.050, 1.019, 1.400, 48.0)	(0.050, 1.019, 1.128, 51.3)
1.02	(0.052, 1.019, 27.1)	(0.079, 1.025, 3.139, 14.6)	(0.070, 1.024, 2.161, 15.1)	(0.063, 1.022, 1.674, 16.1)	(0.050, 1.019, 1.229, 19.1)	(0.065, 1.022, 2.189, 20.3)	(0.063, 1.022, 1.666, 20.5)	(0.058, 1.021, 1.383, 21.0)	(0.051, 1.019, 1.126, 22.7)
1.05	(0.155, 1.039, 8.4)	(0.274, 1.056, 2.177, 4.2)	(0.245, 1.052, 1.750, 4.1)	(0.214, 1.048, 1.458, 4.3)	(0.175, 1.042, 1.153, 5.2)	(0.204, 1.047, 1.751, 6, 2)	(0.191, 1.045, 1.434, 6.1)	(0.190, 1.045, 1.265, 6.1)	(0.166, 1.041, 1.086, 6.6)
1.10	(0.374, 1.070, 3.2)	(0.721, 1.112, 1.700, 2.1)	(0.637, 1.102, 1.459, 1.9)	(0.546, 1.091, 1.292, 1.8)	(0.459, 1.080, 1.109, 1.9)	(0.425, 1.076, 1.523, 2.7)	(0.432, 1.077, 1.309, 2.5)	(0.431, 1.077, 1.184, 2.4)	(0.412, 1.074, 1.063, 2.5)
	(·····································	(· · · · · · · · · · · · · · · · · · ·		,				(· · · · · · · · · · · · · · · · · · ·	

Table 7: The parameters $(\lambda^+, H_U, h_L, ATS_1)$ and $(\lambda^-, H_D, h_L, ATS_1)$ of the VSI EWMA-RZ control charts compared to those (λ^+, H_U, ARL_1) and (λ^-, H_D, ARL_1) of FSI EWMA charts (second column) for $\gamma_X = 0.2, \gamma_Y = 0.01, n = 1, ASI_0 = 1$ and $ATS_0 = 200$

		h	$n_S = 0.1$				$h_S =$	= 0.5	
τ	FSI	R = 0.1	R = 0.2	R = 0.3	R = 0.5	R = 0.1	R = 0.2	R = 0.3	R = 0.5
					$\rho =$	-0.8			
0.90	(0.050, 0.929, 21.4)	(0.081, 0.902, 2.851, 10.4)	(0.073, 0.908, 2.023, 10.9)	(0.068, 0.913, 1.591, 11.8)	(0.054, 0.925, 1.200, 14.3)	(0.064, 0.916, 2.099, 15.4)	(0.058, 0.922, 1.595, 15.7)	(0.059, 0.921, 1.336, 16.1)	(0.052, 0.927, 1.112, 17.5)
0.95	(0.050, 0.929, 49.4)	(0.050, 0.929, 3.112, 28.8)	(0.051, 0.928, 2.096, 31.0)	(0.051, 0.928, 1.620, 33.5)	(0.050, 0.929, 1.203, 39.1)	(0.050, 0.929, 2.173, 38.0)	(0.050, 0.929, 1.611, 39.1)	(0.050, 0.929, 1.346, 40.5)	(0.050, 0.929, 1.113, 43.7)
0.98	(0.050, 0.929, 106.5)	(0.050, 0.929, 3.112, 83.7)	(0.050, 0.929, 2.100, 87.3)	(0.050, 0.929, 1.623, 90.8)	(0.050, 0.929, 1.203, 97.6)	(0.050, 0.929, 2.173, 93.9)	(0.050, 0.929, 1.611, 95.9)	(0.050, 0.929, 1.346, 97.8)	(0.050, 0.929, 1.113, 101.6)
0.99	(0.050, 0.929, 144.4)	(0.050, 0.929, 3.112, 128.1)	(0.050, 0.929, 2.100, 131.0)	(0.050, 0.929, 1.623, 133.6)	(0.050, 0.929, 1.203, 138.6)	(0.050, 0.929, 2.173, 135.3)	(0.050, 0.929, 1.611, 137.0)	(0.050, 0.929, 1.346, 138.4)	(0.050, 0.929, 1.113, 141.2)
1.01	(0.050, 1.072, 135.1)	(0.050, 1.073, 3.208, 120.2)	(0.050, 1.072, 2.145, 122.3)	(0.050, 1.072, 1.647, 124.5)	(0.050, 1.072, 1.210, 129.2)	(0.050, 1.073, 2.227, 126.9)	(0.050, 1.072, 1.636, 128.0)	(0.050, 1.072, 1.359, 129.2)	(0.050, 1.072, 1.116, 131.8)
1.02	(0.050, 1.072, 95.9)	(0.050, 1.073, 3.208, 76.8)	(0.050, 1.072, 2.145, 79.1)	(0.050, 1.072, 1.647, 81.8)	(0.050, 1.072, 1.210, 87.6)	(0.050, 1.073, 2.227, 85.3)	(0.050, 1.072, 1.636, 86.6)	(0.050, 1.072, 1.359, 88.0)	(0.050, 1.072, 1.116, 91.3)
1.05	(0.050, 1.072, 43.9)	(0.050, 1.073, 3.208, 28.4)	(0.051, 1.074, 2.138, 29.5)	(0.050, 1.072, 1.647, 31.1)	(0.050, 1.072, 1.210, 35.5)	(0.050, 1.073, 2.227, 35.3)	(0.051, 1.074, 1.632, 35.9)	(0.050, 1.072, 1.359, 36.8)	(0.050, 1.072, 1.116, 39.3)
1.10	(0.092, 1.109, 19.7)	(0.099, 1.114, 2.683, 11.5)	(0.101, 1.115, 1.977, 11.7)	(0.093, 1.110, 1.568, 12.3)	(0.076, 1.096, 1.190, 14.4)	(0.097, 1.113, 1.942, 15.2)	(0.092, 1.109, 1.554, 15.2)	(0.093, 1.110, 1.315, 15.6)	(0.083, 1.101, 1.109, 16.7)
					$\rho =$	-0.4			
0.90	(0.051, 0.929, 21.0)	(0.086, 0.900, 2.835, 10.1)	(0.077, 0.906, 2.018, 10.6)	(0.072, 0.911, 1.589, 11.5)	(0.055, 0.925, 1.200, 14.0)	(0.066, 0.915, 2.098, 15.1)	(0.062, 0.919, 1.592, 15.3)	(0.059, 0.921, 1.338, 15.8)	(0.053, 0.926, 1.112, 17.1)
0.95	(0.050, 0.930, 48.5)	(0.050, 0.930, 3.130, 28.0)	(0.051, 0.929, 2.106, 30.1)	(0.050, 0.930, 1.628, 32.4)	(0.050, 0.930, 1.205, 38.1)	(0.050, 0.930, 2.183, 37.2)	(0.050, 0.930, 1.617, 38.3)	(0.050, 0.930, 1.349, 39.6)	(0.050, 0.930, 1.114, 42.7)
0.98	(0.050, 0.930, 105.4)	(0.050, 0.930, 3.130, 82.4)	(0.050, 0.930, 2.110, 86.0)	(0.050, 0.930, 1.628, 89.4)	(0.050, 0.930, 1.205, 96.4)	(0.050, 0.930, 2.183, 92.7)	(0.050, 0.930, 1.616, 94.6)	(0.050, 0.930, 1.349, 96.5)	(0.050, 0.930, 1.114, 100.4)
0.99	(0.050, 0.930, 143.6)	(0.050, 0.930, 3.130, 127.0)	(0.050, 0.930, 2.110, 129.9)	(0.050, 0.930, 1.628, 132.5)	(0.050, 0.930, 1.205, 137.6)	(0.050, 0.930, 2.183, 134.4)	(0.050, 0.930, 1.616, 136.0)	(0.050, 0.930, 1.349, 137.5)	(0.050, 0.930, 1.114, 140.3)
1.01	(0.050, 1.070, 134.1)	(0.050, 1.070, 3.189, 119.2)	(0.050, 1.070, 2.136, 121.2)	(0.050, 1.070, 1.641, 123.5)	(0.050, 1.070, 1.208, 128.2)	(0.050, 1.070, 2.216, 125.8)	(0.050, 1.070, 1.631, 126.9)	(0.050, 1.070, 1.356, 128.2)	(0.050, 1.070, 1.116, 130.8)
1.02	(0.050, 1.070, 94.7)	(0.050, 1.070, 3.189, 75.6)	(0.050, 1.070, 2.136, 77.9)	(0.050, 1.070, 1.641, 80.6)	(0.050, 1.070, 1.208, 86.4)	(0.050, 1.070, 2.216, 84.1)	(0.050, 1.070, 1.631, 85.4)	(0.050, 1.070, 1.356, 86.9)	(0.050, 1.070, 1.116, 90.1)
1.05	(0.050, 1.070, 43.0)	(0.050, 1.070, 3.189, 27.7)	(0.050, 1.070, 2.136, 28.7)	(0.050, 1.070, 1.641, 30.4)	(0.050, 1.070, 1.208, 34.7)	(0.050, 1.070, 2.216, 34.5)	(0.050, 1.070, 1.631, 35.1)	(0.050, 1.070, 1.356, 36.0)	(0.050, 1.070, 1.116, 38.4)
1.10	(0.097, 1.109, 19.2)	(0.104, 1.115, 2.647, 11.2)	(0.100, 1.112, 1.973, 11.3)	(0.089, 1.103, 1.572, 11.9)	(0.079, 1.096, 1.188, 14.0)	(0.100, 1.112, 1.926, 14.7)	(0.100, 1.112, 1.540, 14.8)	(0.092, 1.106, 1.315, 15.1)	(0.087, 1.102, 1.108, 16.2)
					$\rho =$	0.0			
0.90	(0.053, 0.928, 20.5)	(0.092, 0.896, 2.811, 9.9)	(0.081, 0.904, 2.015, 10.4)	(0.073, 0.910, 1.590, 11.2)	(0.058, 0.923, 1.200, 13.6)	(0.069, 0.914, 2.097, 14.8)	(0.065, 0.917, 1.590, 15.0)	(0.062, 0.919, 1.338, 15.4)	(0.056, 0.925, 1.112, 16.7)
0.95	(0.050, 0.931, 47.5)	(0.050, 0.931, 3.158, 27.2)	(0.050, 0.931, 2.122, 29.1)	(0.050, 0.931, 1.634, 31.5)	(0.050, 0.931, 1.206, 37.2)	(0.050, 0.931, 2.199, 36.3)	(0.050, 0.931, 1.623, 37.3)	(0.050, 0.931, 1.352, 38.6)	(0.050, 0.931, 1.114, 41.8)
 0.98 	(0.050, 0.931, 104.2)	(0.050, 0.931, 3.158, 80.9)	(0.050, 0.931, 2.122, 84.4)	(0.050, 0.931, 1.634, 88.0)	(0.050, 0.931, 1.206, 95.0)	(0.050, 0.931, 2.199, 91.2)	(0.050, 0.931, 1.623, 93.2)	(0.050, 0.931, 1.352, 95.2)	(0.050, 0.931, 1.114, 99.1)
0.99	(0.050, 0.931, 142.7)	(0.050, 0.931, 3.158, 125.7)	(0.050, 0.931, 2.122, 128.6)	(0.050, 0.931, 1.634, 131.4)	(0.050, 0.931, 1.206, 136.6)	(0.050, 0.931, 2.199, 133.2)	(0.050, 0.931, 1.623, 134.9)	(0.050, 0.931, 1.352, 136.4)	(0.050, 0.931, 1.114, 139.3)
1.01	(0.050, 1.068, 133.1)	(0.050, 1.068, 3.164, 118.1)	(0.050, 1.068, 2.125, 120.2)	(0.050, 1.069, 1.634, 122.6)	(0.050, 1.068, 1.207, 127.1)	(0.050, 1.068, 2.202, 124.8)	(0.050, 1.068, 1.625, 125.9)	(0.050, 1.069, 1.352, 127.3)	(0.050, 1.068, 1.115, 129.8)
1.02	(0.050, 1.068, 93.4)	(0.050, 1.068, 3.164, 74.5)	(0.050, 1.068, 2.125, 76.7)	(0.050, 1.069, 1.634, 79.5)	(0.050, 1.068, 1.207, 85.2)	(0.050, 1.068, 2.202, 82.9)	(0.050, 1.068, 1.625, 84.1)	(0.050, 1.069, 1.352, 85.7)	(0.050, 1.068, 1.115, 88.8)
1.05	(0.050, 1.068, 42.0)	(0.050, 1.068, 3.164, 27.0)	(0.052, 1.071, 2.114, 28.1)	(0.050, 1.069, 1.634, 29.7)	(0.050, 1.068, 1.207, 33.9)	(0.050, 1.068, 2.202, 33.7)	(0.050, 1.068, 1.625, 34.2)	(0.050, 1.069, 1.352, 35.2)	(0.050, 1.068, 1.115, 37.5)
1.10	(0.100, 1.109, 18.6)	(0.105, 1.112, 2.630, 10.9)	(0.097, 1.107, 1.974, 11.0)	(0.085, 1.098, 1.573, 11.6)	(0.085, 1.097, 1.194, 13.4)	(0.104, 1.111, 1.911, 14.3)	(0.097, 1.107, 1.541, 14.4)	(0.095, 1.105, 1.311, 14.7)	(0.085, 1.098, 1.108, 15.8)
0.00	(0.055.0.005.00.1)				$\rho = $	0.4	(0.000.0.015.1.500.14.0)	(0.005.0.010.1.005.15.0)	(0.055.0.005.1.110.10.0)
0.90	(0.055, 0.927, 20.1)	(0.096, 0.894, 2.797, 9.6)	(0.086, 0.902, 2.009, 10.1)	(0.075, 0.910, 1.591, 10.9)	(0.060, 0.922, 1.199, 13.3)	(0.072, 0.913, 2.093, 14.4)	(0.066, 0.917, 1.593, 14.6)	(0.067, 0.916, 1.335, 15.0)	(0.057, 0.925, 1.112, 16.3)
0.95	(0.050, 0.932, 40.0)	(0.050, 0.932, 3.181, 20.4)	(0.050, 0.931, 2.132, 28.3)	(0.050, 0.932, 1.640, 30.6)	(0.050, 0.932, 1.208, 36.2)	(0.050, 0.932, 2.212, 35.4)	(0.050, 0.931, 1.628, 36.4)	(0.050, 0.932, 1.355, 37.7)	(0.050, 0.932, 1.115, 40.8)
0.98	(0.050, 0.932, 103.0)	(0.050, 0.932, 3.181, 79.4)	(0.050, 0.931, 2.132, 83.0)	(0.050, 0.932, 1.640, 86.5)	(0.050, 0.932, 1.208, 93.7)	(0.050, 0.932, 2.212, 89.9)	(0.050, 0.931, 1.628, 91.9)	(0.050, 0.932, 1.355, 93.9)	(0.050, 0.932, 1.115, 97.8)
0.99	(0.050, 0.932, 141.8)	(0.050, 0.932, 3.181, 124.4)	(0.050, 0.931, 2.132, 127.5)	(0.050, 0.932, 1.640, 130.3)	(0.050, 0.932, 1.208, 135.6)	(0.050, 0.932, 2.212, 132.2)	(0.050, 0.931, 1.628, 133.9)	(0.050, 0.932, 1.355, 135.4)	(0.050, 0.932, 1.115, 138.3)
1.01	(0.050, 1.000, 132.0)	(0.050, 1.060, 3.139, 117.0)	(0.050, 1.067, 2.112, 119.1)	(0.050, 1.000, 1.030, 121.4)	(0.050, 1.066, 1.217, 125.8)	(0.050, 1.000, 2.188, 123.7)	(0.050, 1.067, 1.618, 124.9)	(0.050, 1.060, 1.350, 120.1)	(0.050, 1.060, 1.120, 128.6)
1.02	(0.050, 1.066, 92.1)	(0.050, 1.066, 3.139, 73.2)	(0.050, 1.067, 2.112, 75.5)	(0.050, 1.066, 1.630, 78.1)	(0.050, 1.066, 1.217, 83.6)	(0.050, 1.066, 2.188, 81.6)	(0.050, 1.067, 1.618, 82.9)	(0.050, 1.066, 1.350, 84.3)	(0.050, 1.066, 1.120, 87.4)
1.05	(0.050, 1.066, 41.1)	(0.050, 1.066, 3.139, 26.3)	(0.050, 1.067, 2.112, 27.3)	(0.050, 1.066, 1.630, 28.9)	(0.050, 1.066, 1.217, 32.8)	(0.050, 1.066, 2.188, 32.9)	(0.050, 1.067, 1.618, 33.4)	(0.050, 1.066, 1.350, 34.3)	(0.050, 1.066, 1.120, 36.5)
1.10	(0.105, 1.109, 18.1)	(0.110, 1.112, 2.398, 10.0)	(0.100, 1.100, 1.902, 10.7)	(0.081, 1.092, 1.370, 11.2)	(0.080, 1.090, 1.185, 15.1)	(0.108, 1.111, 1.892, 13.9)	(0.102, 1.107, 1.552, 14.0)	(0.094, 1.102, 1.310, 14.3)	(0.095, 1.101, 1.105, 15.5)
0.00	(0.056.0.096.10.7)	(0,100,0,902,9,788,0,4)	(0.088.0.003.3.010.0.8)	(0.070.0.000.1.500.10.6)	$\rho = (0.062, 0.021, 1.100, 12.0)$	0.8	(0.071.0.014.1.580.14.2)	(0.069 0.017 1.229 14.7)	(0.050, 0.024, 1.112, 15, 0)
0.90	(0.050, 0.920, 19.7)	(0.100, 0.893, 2.788, 9.4)	(0.088, 0.902, 2.010, 9.8)	(0.079, 0.908, 1.588, 10.6)	(0.062, 0.921, 1.199, 12.9)	(0.075, 0.912, 2.022, 14.1)	(0.071, 0.914, 1.589, 14.3)	(0.008, 0.917, 1.338, 14.7)	(0.059, 0.924, 1.112, 15.9)
0.95	(0.050, 0.955, 45.0)	(0.050, 0.932, 3.210, 25.0)	(0.050, 0.952, 2.145, 27.4)	(0.050, 0.932, 1.045, 29.7)	(0.050, 0.955, 1.210, 55.2)	(0.050, 0.932, 2.227, 34.5)	(0.050, 0.932, 1.030, 35.5)	(0.050, 0.952, 1.558, 50.8)	(0.050, 0.955, 1.110, 59.8)
0.98	(0.050, 0.933, 101.7)	(0.050, 0.932, 3.210, 77.8)	(0.050, 0.932, 2.145, 81.4)	(0.050, 0.932, 1.045, 85.1)	(0.050, 0.933, 1.210, 92.2)	(0.050, 0.932, 2.227, 88.4)	(0.050, 0.932, 1.636, 90.4)	(0.050, 0.933, 1.359, 92.4)	(0.050, 0.933, 1.116, 96.4)
1.01	(0.050, 0.955, 140.8)	(0.050, 0.952, 5.210, 123.1)	(0.050, 0.952, 2.145, 120.1)	(0.050, 0.952, 1.045, 129.1)	(0.050, 0.955, 1.210, 134.4)	(0.050, 0.952, 2.227, 131.0)	(0.050, 0.952, 1.050, 132.7)	(0.050, 0.952, 1.509, 134.3)	(0.050, 0.955, 1.110, 137.3)
1.01	(0.050, 1.004, 130.9)	(0.050, 1.005, 5.109, 115.9)	(0.050, 1.005, 2.099, 118.0) (0.050, 1.065, 2.000, 74.2)	(0.050, 1.004, 1.024, 120.2) (0.050, 1.064, 1.624, 76.9)	(0.050, 1.004, 1.215, 124.7)	(0.050, 1.005, 2.172, 122.0)	(0.050, 1.000, 1.010, 123.8) (0.050, 1.065, 1.610, 91.6)	(0.050, 1.004, 1.540, 124.9)	(0.050, 1.004, 1.119, 127.4)
1.02	(0.050, 1.004, 90.7)	(0.050, 1.005, 5.109, 72.0)	(0.050, 1.005, 2.099, 74.3)	(0.050, 1.004, 1.024, 70.8) (0.050, 1.064, 1.624, 29.1)	(0.050, 1.004, 1.210, 82.3)	(0.050, 1.005, 2.172, 80.4)	(0.050, 1.000, 1.010, 81.0) (0.050, 1.065, 1.610, 29.5)	(0.050, 1.004, 1.540, 83.0) (0.050, 1.064, 1.246, 22.4)	(0.050, 1.004, 1.119, 80.0)
1.05	(0.000, 1.004, 40.0)	(0.050, 1.005, 5.109, 25.0)	(0.050, 1.000, 2.099, 20.0)	(0.050, 1.004, 1.024, 28.1)	(0.050, 1.004, 1.215, 31.9)	(0.050, 1.005, 2.172, 32.0)	(0.050, 1.000, 1.010, 32.0)	(0.050, 1.004, 1.340, 33.4)	(0.050, 1.004, 1.119, 35.5)
1.10	(0.100, 1.100, 17.0)	(0.114, 1.111, 2.071, 10.2)	(0.101, 1.105, 1.950, 10.5)	(0.030, 1.100, 1.333, 10.8)	(0.009, 1.090, 1.100, 12.7)	[(0.112, 1.110, 1.070, 13.0)	(0.110, 1.110, 1.010, 10.0)	(0.098, 1.102, 1.800, 13.8)	(0.104, 1.100, 1.102, 14.8)

Table 8: The parameters $(\lambda^+, H_U, h_L, ATS_1)$ and $(\lambda^-, H_D, h_L, ATS_1)$ of the VSI EWMA-RZ control charts compared to those (λ^+, H_U, ARL_1) and (λ^-, H_D, ARL_1) of FSI EWMA charts (second column) for $\gamma_X = 0.2, \gamma_Y = 0.01, n = 15, ASI_0 = 1$ and $ATS_0 = 200$

		h	$u_S = 0.1$			$h_{S} = 0.5$				
τ	FSI	R = 0.1	R = 0.2	R = 0.3	R = 0.5	R = 0.1	R = 0.2	R = 0.3	R = 0.5	
					$\rho =$	-0.8				
0.90	(0.427, 0.926, 3.1)	(0.745, 0.891, 1.717, 2.1)	(0.643, 0.902, 1.497, 1.9)	(0.581, 0.909, 1.328, 1.8)	(0.504, 0.918, 1.124, 1.9)	(0.531, 0.915, 1.474, 2.6)	(0.492, 0.919, 1.310, 2.4)	(0.486, 0.920, 1.194, 2.4)	(0.461, 0.922, 1.070, 2.4)	
0.95	(0.156, 0.961, 8.6)	(0.258, 0.946, 2.176, 4.3)	(0.219, 0.952, 1.780, 4.3)	(0.219, 0.952, 1.463, 4.4)	(0.173, 0.958, 1.157, 5.3)	(0.196, 0.955, 1.728, 6.3)	(0.184, 0.957, 1.456, 6.2)	(0.176, 0.958, 1.271, 6.3)	(0.165, 0.959, 1.088, 6.8)	
0.98	(0.050, 0.981, 28.6)	(0.056, 0.979, 3.077, 15.6)	(0.061, 0.978, 2.074, 16.3)	(0.052, 0.981, 1.626, 17.5)	(0.050, 0.981, 1.206, 20.7)	(0.052, 0.981, 2.178, 21.4)	(0.050, 0.981, 1.620, 21.8)	(0.052, 0.981, 1.348, 22.4)	(0.050, 0.981, 1.114, 24.2)	
0.99	(0.050, 0.981, 61.2)	(0.050, 0.981, 3.141, 40.4)	(0.050, 0.981, 2.117, 42.6)	(0.050, 0.981, 1.632, 45.3)	(0.050, 0.981, 1.206, 51.3)	(0.050, 0.981, 2.193, 49.6)	(0.050, 0.981, 1.620, 50.9)	(0.050, 0.981, 1.351, 52.4)	(0.050, 0.981, 1.114, 55.7)	
1.01	(0.050, 1.018, 59.3)	(0.050, 1.018, 3.165, 39.8)	(0.050, 1.018, 2.130, 41.7)	(0.050, 1.018, 1.636, 44.2)	(0.050, 1.018, 1.207, 49.8)	(0.050, 1.018, 2.207, 48.4)	(0.050, 1.018, 1.627, 49.5)	(0.050, 1.018, 1.353, 51.0)	(0.050, 1.018, 1.115, 54.0)	
1.02	(0.050, 1.018, 28.0)	(0.063, 1.021, 3.036, 15.9)	(0.057, 1.020, 2.098, 16.4)	(0.051, 1.018, 1.634, 17.5)	(0.050, 1.018, 1.207, 20.6)	(0.057, 1.020, 2.161, 21.3)	(0.050, 1.018, 1.627, 21.6)	(0.051, 1.018, 1.352, 22.2)	(0.050, 1.018, 1.115, 23.9)	
1.0	(0.178, 1.042, 8.4)	(0.260, 1.053, 2.175, 4.6)	(0.222, 1.048, 1.778, 4.5)	(0.201, 1.045, 1.473, 4.6)	(0.181, 1.042, 1.155, 5.5)	(0.224, 1.048, 1.694, 6.3)	(0.203, 1.045, 1.444, 6.2)	(0.194, 1.044, 1.265, 6.3)	(0.180, 1.042, 1.086, 6.8)	
1.10	(0.469, 1.078, 3.1)	(0.736, 1.108, 1.719, 2.2)	(0.626, 1.096, 1.500, 2.0)	(0.547, 1.087, 1.332, 1.9)	(0.486, 1.080, 1.124, 2.0)	(0.575, 1.090, 1.455, 2.6)	(0.524, 1.084, 1.300, 2.5)	(0.497, 1.081, 1.191, 2.4)	(0.476, 1.079, 1.069, 2.5)	
	(****	((,, -, -,	(,,,,	$\rho =$	-0.4	(((,,,,,	
0.90	(0.436, 0.926, 3.0)	(0.727, 0.895, 1.726, 2.1)	(0.658, 0.902, 1.491, 1.9)	(0.599, 0.909, 1.323, 1.8)	(0.516, 0.918, 1.123, 1.8)	(0.492, 0.920, 1.491, 2.5)	(0.503, 0.919, 1.307, 2.4)	(0.518, 0.917, 1.189, 2.3)	(0.471, 0.923, 1.070, 2.4)	
0.9	(0.160, 0.961, 8.4)	(0.265, 0.947, 2.165, 4.2)	(0.232, 0.951, 1.766, 4.1)	(0.210, 0.954, 1.468, 4.3)	(0.179, 0.958, 1.155, 5.2)	(0.179, 0.958, 1.754, 6.1)	(0.190, 0.957, 1.452, 6.1)	(0.183, 0.958, 1.269, 6.1)	(0.170, 0.959, 1.087, 6.6)	
0.98	(0.050, 0.981, 27.9)	(0.057, 0.980, 3.072, 15.2)	(0.054, 0.980, 2.103, 15.9)	(0.050, 0.981, 1.633, 17.0)	(0.050, 0.981, 1.206, 20.2)	(0.053, 0.981, 2.173, 20.9)	(0.050, 0.981, 1.622, 21.2)	(0.050, 0.981, 1.352, 21.9)	(0.050, 0.981, 1.114, 23.6)	
0.99	(0.050, 0.981, 60.2)	(0.050, 0.981, 3.154, 39.3)	(0.050, 0.981, 2.119, 41.6)	(0.050, 0.981, 1.633, 44.2)	(0.050, 0.981, 1.206, 50.3)	(0.050, 0.981, 2.197, 48.6)	(0.050, 0.981, 1.622, 49.9)	(0.050, 0.981, 1.352, 51.3)	(0.050, 0.981, 1.114, 54.7)	
1.0	(0.050, 1.018, 58.2)	(0.050, 1.018, 3.167, 38.8)	(0.050, 1.018, 2.127, 40.7)	(0.050, 1.018, 1.634, 43.2)	(0.050, 1.018, 1.219, 48.5)	(0.050, 1.018, 2.204, 47.4)	(0.050, 1.018, 1.626, 48.5)	(0.050, 1.018, 1.352, 49.9)	(0.050, 1.018, 1.121, 52.8)	
1.05	(0.051, 1.018, 27.3)	(0.069, 1.022, 2.982, 15.5)	(0.057, 1.019, 2.096, 16.0)	(0.062, 1.020, 1.612, 17.1)	(0.050, 1.018, 1.219, 19.9)	(0.059, 1.020, 2.152, 20.8)	(0.056, 1.019, 1.611, 21.0)	(0.052, 1.018, 1.351, 21.6)	(0.050, 1.018, 1.121, 23.2)	
1.0	(0.186, 1.042, 8.2)	(0.269, 1.053, 2.160, 4.5)	(0.233, 1.049, 1.765, 4.4)	(0.235, 1.049, 1.454, 4.5)	(0.186, 1.042, 1.154, 5.3)	(0.216, 1.046, 1.703, 6.2)	(0.205, 1.045, 1.442, 6.1)	(0.190, 1.043, 1.266, 6.1)	(0.186, 1.042, 1.085, 6.6)	
1.10	(0.485, 1.078, 3.0)	(0.753, 1.108, 1.711, 2.2)	(0.661, 1.098, 1.489, 2.0)	(0.564, 1.087, 1.329, 1.9)	(0.501, 1.080, 1.123, 2.0)	(0.589, 1.090, 1.449, 2.6)	(0.537, 1.084, 1.298, 2.4)	(0.513, 1.081, 1.189, 2.4)	(0.490, 1.079, 1.069, 2.4)	
	(****	(,,,,,,,	(,,, .,	(,,,,	(1 1 1) 1) 1) 1) 1) 1) 1) 1) 1)	0.0	(,,)	(,,)	(****,****,***,*)	
0.90	(0.447, 0.927, 2.9)	(0.781, 0.891, 1.698, 2.0)	(0.646, 0.905, 1.495, 1.8)	(0.608, 0.909, 1.321, 1.7)	(0.527, 0.918, 1.122, 1.8)	(0.558, 0.915, 1.462, 2.5)	(0.515, 0.919, 1.303, 2.3)	(0.497, 0.921, 1.192, 2.3)	(0.481, 0.923, 1.069, 2.3)	
0.9	(0.164, 0.961, 8.2)	(0.281, 0.945, 2.134, 4.1)	(0.252, 0.949, 1.746, 4.0)	(0.218, 0.953, 1.464, 4.2)	(0.184, 0.958, 1.154, 5.0)	(0.207, 0.955, 1.714, 6.0)	(0.194, 0.957, 1.449, 5.9)	(0.188, 0.958, 1.267, 6.0)	(0.173, 0.960, 1.087, 6.4)	
. 0.98	(0.050, 0.982, 27.3)	(0.061, 0.979, 3.042, 14.8)	(0.056, 0.980, 2.096, 15.4)	(0.051, 0.981, 1.632, 16.5)	(0.050, 0.982, 1.207, 19.7)	(0.056, 0.980, 2.160, 20.4)	(0.056, 0.980, 1.610, 20.8)	(0.051, 0.982, 1.351, 21.3)	(0.050, 0.982, 1.115, 23.1)	
0.99	(0.050, 0.982, 59.0)	(0.050, 0.982, 3.161, 38.4)	(0.050, 0.982, 2.119, 40.6)	(0.050, 0.982, 1.633, 43.3)	(0.050, 0.982, 1.207, 49.1)	(0.050, 0.982, 2.200, 47.5)	(0.050, 0.982, 1.622, 48.9)	(0.050, 0.982, 1.351, 50.3)	(0.050, 0.982, 1.115, 53.5)	
1.0	(0.050, 1.017, 57.1)	(0.050, 1.017, 3.161, 37.9)	(0.050, 1.017, 2.124, 39.7)	(0.050, 1.017, 1.635, 42.2)	(0.050, 1.017, 1.207, 47.7)	(0.050, 1.017, 2.200, 46.4)	(0.050, 1.017, 1.624, 47.5)	(0.050, 1.017, 1.352, 48.8)	(0.050, 1.017, 1.115, 51.9)	
1.02	(0.052, 1.018, 26.7)	(0.067, 1.021, 2.992, 15.1)	(0.061, 1.020, 2.078, 15.6)	(0.062, 1.020, 1.609, 16.6)	(0.050, 1.017, 1.207, 19.5)	(0.059, 1.020, 2.145, 20.2)	(0.056, 1.019, 1.609, 20.5)	(0.062, 1.020, 1.338, 21.1)	(0.050, 1.017, 1.115, 22.7)	
1.0	(0.189, 1.042, 8.0)	(0.278, 1.053, 2.143, 4.3)	(0.237, 1.048, 1.761, 4.2)	(0.218, 1.046, 1.463, 4.4)	(0.194, 1.042, 1.153, 5.1)	(0.226, 1.047, 1.690, 6.0)	(0.211, 1.045, 1.416, 5.9)	(0.205, 1.044, 1.261, 6.0)	(0.191, 1.042, 1.085, 6.4)	
1.10	(0.499, 1.078, 2.9)	(0.779, 1.108, 1.698, 2.1)	(0.664, 1.096, 1.488, 1.9)	(0.562, 1.085, 1.330, 1.8)	(0.514, 1.080, 1.123, 1.9)	(0.587, 1.088, 1.450, 2.5)	(0.562, 1.085, 1.292, 2.4)	(0.531, 1.082, 1.187, 2.3)	(0.505, 1.079, 1.068, 2.4)	
	(,,,	(,,)	(,,, -,	(,,,,	$\rho =$	0.4	(,, -, -, -, -, -, -, -, -, -, -,	((,, , , , , , , , , , , , , , ,	
0.90	(0.459, 0.927, 2.8)	(0.801, 0.890, 1.687, 2.0)	(0.702, 0.901, 1.475, 1.8)	(0.613, 0.910, 1.319, 1.7)	(0.540, 0.918, 1.121, 1.7)	(0.553, 0.917, 1.464, 2.4)	(0.529, 0.919, 1.300, 2.3)	(0.515, 0.921, 1.189, 2.2)	(0.495, 0.923, 1.068, 2.2)	
0.95	(0.169, 0.961, 7.9)	(0.284, 0.946, 2.133, 4.0)	(0.253, 0.950, 1.746, 3.9)	(0.224, 0.954, 1.460, 4.1)	(0.191, 0.958, 1.153, 4.9)	(0.211, 0.955, 1.710, 5.8)	(0.199, 0.957, 1.446, 5.7)	(0.176, 0.960, 1.271, 5.8)	(0.179, 0.960, 1.086, 6.2)	
0.98	(0.050, 0.982, 26.7)	(0.069, 0.978, 2.982, 14.4)	(0.056, 0.981, 2.101, 15.0)	(0.051, 0.982, 1.633, 16.1)	(0.050, 0.982, 1.207, 19.1)	(0.055, 0.981, 2.171, 19.9)	(0.052, 0.981, 1.619, 20.2)	(0.050, 0.982, 1.353, 20.8)	(0.050, 0.982, 1.115, 22.5)	
0.99	(0.050, 0.982, 57.9)	(0.050, 0.982, 3.167, 37.3)	(0.050, 0.982, 2.125, 39.5)	(0.050, 0.982, 1.636, 42.1)	(0.050, 0.982, 1.207, 48.0)	(0.050, 0.982, 2.204, 46.5)	(0.050, 0.982, 1.625, 47.7)	(0.050, 0.982, 1.353, 49.1)	(0.050, 0.982, 1.115, 52.4)	
1.01	(0.050, 1.017, 56.0)	(0.050, 1.017, 3.156, 36.9)	(0.050, 1.017, 2.121, 38.7)	(0.050, 1.017, 1.633, 41.1)	(0.050, 1.017, 1.206, 46.6)	(0.050, 1.017, 2.197, 45.4)	(0.050, 1.017, 1.623, 46.4)	(0.050, 1.017, 1.352, 47.7)	(0.050, 1.017, 1.114, 50.8)	
1.02	(0.054, 1.018, 26.0)	(0.072, 1.022, 2.946, 14.6)	(0.050, 1.017, 2.121, 15.2)	(0.053, 1.018, 1.625, 16.1)	(0.050, 1.017, 1.206, 19.0)	(0.061, 1.020, 2.131, 19.7)	(0.050, 1.017, 1.623, 20.0)	(0.053, 1.018, 1.347, 20.5)	(0.050, 1.017, 1.114, 22.1)	
1.05	(0.198, 1.042, 7.7)	(0.327, 1.058, 2.067, 4.2)	(0.242, 1.048, 1.756, 4.1)	(0.226, 1.046, 1.459, 4.2)	(0.199, 1.042, 1.152, 5.0)	(0.237, 1.047, 1.677, 5.8)	(0.218, 1.045, 1.412, 5.7)	(0.194, 1.041, 1.265, 5.8)	(0.198, 1.042, 1.084, 6.2)	
1.10	(0.514, 1.078, 2.8)	(0.803, 1.108, 1.687, 2.1)	(0.714, 1.099, 1.473, 1.9)	(0.600, 1.087, 1.323, 1.8)	(0.528, 1.079, 1.122, 1.9)	(0.637, 1.091, 1.432, 2.4)	(0.574, 1.084, 1.290, 2.3)	(0.549, 1.082, 1.185, 2.3)	(0.520, 1.079, 1.068, 2.3)	
					$\rho =$	0.8		· · · · · /		
0.90	(0.472, 0.927, 2.8)	(0.824, 0.890, 1.676, 2.0)	(0.746, 0.898, 1.461, 1.8)	(0.639, 0.909, 1.313, 1.7)	(0.555, 0.918, 1.119, 1.7)	(0.586, 0.915, 1.450, 2.4)	(0.545, 0.919, 1.295, 2.2)	(0.521, 0.921, 1.188, 2.2)	(0.507, 0.923, 1.068, 2.2)	
0.95	(0.173, 0.961, 7.7)	(0.320, 0.943, 2.077, 3.9)	(0.247, 0.952, 1.751, 3.8)	(0.252, 0.951, 1.446, 4.0)	(0.196, 0.958, 1.152, 4.7)	(0.219, 0.955, 1.699, 5.7)	(0.202, 0.957, 1.421, 5.6)	(0.196, 0.958, 1.264, 5.6)	(0.185, 0.959, 1.085, 6.1)	
0.98	(0.050, 0.982, 26.0)	(0.069, 0.978, 2.986, 14.0)	(0.058, 0.981, 2.095, 14.6)	(0.055, 0.981, 1.627, 15.6)	(0.050, 0.982, 1.219, 18.4)	(0.058, 0.981, 2.160, 19.4)	(0.056, 0.981, 1.613, 19.7)	(0.052, 0.982, 1.351, 20.3)	(0.050, 0.982, 1.122, 21.8)	
0.99	(0.050, 0.982, 56.7)	(0.050, 0.982, 3.174, 36.3)	(0.050, 0.982, 2.126, 38.5)	(0.051, 0.982, 1.634, 41.1)	(0.050, 0.982, 1.219, 46.5)	(0.050, 0.982, 2.207, 45.4)	(0.050, 0.982, 1.625, 46.6)	(0.050, 0.982, 1.354, 48.0)	(0.050, 0.982, 1.122, 51.1)	
1.01	(0.050, 1.016, 54.8)	(0.050, 1.017, 3.139, 36.0)	(0.050, 1.016, 2.118, 37.7)	(0.050, 1.016, 1.632, 40.0)	(0.050, 1.017, 1.217, 45.3)	(0.050, 1.017, 2.188, 44.4)	(0.050, 1.016, 1.621, 45.3)	(0.050, 1.016, 1.351, 46.6)	(0.050, 1.017, 1.120, 49.5)	
1.02	(0.055, 1.018, 25.3)	(0.073, 1.021, 2.937, 14.2)	(0.070, 1.021, 2.044, 14.7)	(0.057, 1.018, 1.616, 15.6)	(0.050, 1.017, 1.217, 18.3)	(0.063, 1.019, 2.122, 19.2)	(0.054, 1.018, 1.610, 19.4)	(0.057, 1.018, 1.342, 19.9)	(0.052, 1.017, 1.113, 21.5)	
1.05	(0.203, 1.042, 7.5)	(0.296, 1.053, 2.113, 4.1)	(0.253, 1.048, 1.708, 4.0)	(0.231, 1.045, 1.457, 4.1)	(0.207, 1.042, 1.151, 4.8)	(0.243, 1.047, 1.670, 5.6)	(0.228, 1.045, 1.406, 5.6)	(0.229, 1.045, 1.254, 5.6)	(0.207, 1.042, 1.084, 6.0)	
1.10	(0.534, 1.078, 2.7)	(0.760, 1.101, 1.709, 2.1)	(0.711, 1.096, 1.475, 1.9)	(0.621, 1.087, 1.319, 1.8)	(0.544, 1.079, 1.121, 1.8)	(0.646, 1.090, 1.429, 2.4)	(0.580, 1.083, 1.289, 2.3)	(0.557, 1.081, 1.185, 2.2)	(0.538, 1.079, 1.067, 2.2)	

Table 9: The parameters $(\lambda^+, H_U, h_L, EATS_1)$ and $(\lambda^-, H_D, h_L, EATS_1)$ of the VSI EWMA-RZ control charts compared to those $(\lambda^+, H_U, EARL_1)$ and $(\lambda^-, H_D, EARL_1)$ of FSI EWMA-RZ charts (third column) for $\gamma_X = \gamma_Y = 0.01, ASI_0 =$ $1, ATS_0 = 200$ and uniformly distributed of τ ; [a, b] = [0.9, 1) for decreasing (D) case and [a, b] = (1, 1.1] for increasing (I) case

			hs	= 0.1				$h_S =$	= 0.5	
n	Case	FSI	R = 0.1	R = 0.2	R = 0.3	R = 0.5	R = 0.1	R = 0.2	R = 0.3	R = 0.5
						$\rho = -$	-0.8			
	(D)	(0.189, 0.984, 4.4)	(0.249, 0.981, 2.189, 3.4)	(0.166, 0.985, 1.798, 3.0)	(0.160, 0.986, 1.473, 2.9)	(0.152, 0.986, 1.171, 3.1)	(0.216, 0.983, 1.698, 3.9)	(0.197, 0.984, 1.423, 3.7)	(0.173, 0.985, 1.258, 3.6)	(0.188, 0.984, 1.090, 3.7)
	(I)	(0.185, 1.015, 4.5)	(0.247, 1.018, 2.206, 3.4)	(0.188, 1.015, 1.777, 3.1)	(0.159, 1.014, 1.476, 3.0)	(0.148, 1.013, 1.172, 3.2)	(0.222, 1.017, 1.700, 3.9)	(0.188, 1.015, 1.432, 3.7)	(0.172, 1.014, 1.259, 3.7)	(0.165, 1.014, 1.093, 3.8)
						$\rho = -$	-0.4			
	(D)	(0.209, 0.985, 3.7)	(0.294, 0.982, 2.112, 3.1)	(0.215, 0.985, 1.743, 2.7)	(0.187, 0.986, 1.457, 2.6)	(0.172, 0.987, 1.166, 2.7)	(0.247, 0.984, 1.663, 3.4)	(0.209, 0.985, 1.416, 3.2)	(0.196, 0.986, 1.251, 3.1)	(0.186, 0.986, 1.091, 3.1)
	(I)	(0.207, 1.014, 3.8)	(0.306, 1.018, 2.100, 3.1)	(0.215, 1.015, 1.745, 2.8)	(0.182, 1.013, 1.460, 2.6)	(0.174, 1.013, 1.165, 2.7)	(0.266, 1.017, 1.649, 3.4)	(0.209, 1.014, 1.417, 3.2)	(0.194, 1.014, 1.251, 3.2)	(0.180, 1.013, 1.091, 3.2)
1						$\rho =$	0.0			
1	(D)	(0.238, 0.986, 3.0)	(0.372, 0.982, 2.008, 2.7)	(0.275, 0.985, 1.690, 2.4)	(0.222, 0.987, 1.438, 2.2)	(0.200, 0.988, 1.152, 2.2)	(0.304, 0.984, 1.610, 2.9)	(0.257, 0.986, 1.392, 2.7)	(0.231, 0.987, 1.241, 2.6)	(0.218, 0.987, 1.088, 2.6)
	(I)	(0.233, 1.013, 3.1)	(0.365, 1.017, 2.017, 2.7)	(0.274, 1.014, 1.689, 2.4)	(0.216, 1.012, 1.440, 2.2)	(0.196, 1.011, 1.152, 2.3)	(0.303, 1.015, 1.614, 2.9)	(0.252, 1.013, 1.393, 2.7)	(0.216, 1.012, 1.244, 2.6)	(0.215, 1.012, 1.087, 2.6)
						$\rho =$	0.4			
	(D)	(0.290, 0.988, 2.2)	(0.448, 0.984, 1.926, 2.3)	(0.397, 0.985, 1.608, 2.0)	(0.350, 0.986, 1.389, 1.8)	(0.259, 0.989, 1.144, 1.7)	(0.403, 0.985, 1.540, 2.3)	(0.348, 0.987, 1.354, 2.1)	(0.296, 0.988, 1.226, 2.0)	(0.274, 0.988, 1.079, 2.0)
	(I)	(0.288, 1.011, 2.3)	(0.534, 1.017, 1.849, 2.3)	(0.401, 1.014, 1.601, 2.0)	(0.315, 1.012, 1.396, 1.8)	(0.256, 1.010, 1.143, 1.8)	(0.402, 1.014, 1.541, 2.3)	(0.337, 1.013, 1.356, 2.1)	(0.272, 1.011, 1.230, 2.0)	(0.269, 1.011, 1.078, 2.0)
						$\rho =$	0.8			
	(D)	(0.458, 0.990, 1.4)	(0.920, 0.984, 1.639, 1.8)	(0.867, 0.985, 1.431, 1.6)	(0.718, 0.987, 1.301, 1.4)	(0.495, 0.990, 1.125, 1.3)	(0.769, 0.986, 1.391, 1.6)	(0.659, 0.988, 1.273, 1.5)	(0.567, 0.989, 1.184, 1.4)	(0.477, 0.990, 1.070, 1.3)
	(I)	(0.450, 1.009, 1.4)	(0.872, 1.014, 1.654, 1.8)	(0.822, 1.013, 1.438, 1.6)	(0.702, 1.012, 1.300, 1.4)	(0.495, 1.009, 1.130, 1.3)	(0.797, 1.013, 1.382, 1.6)	(0.649, 1.011, 1.273, 1.5)	(0.613, 1.011, 1.176, 1.4)	(0.469, 1.009, 1.073, 1.3)
						$\rho = -$	-0.8			
	(D)	(0.56954, 0.99188, 1.2)	(0.986, 0.987, 1.614, 1.7)	(0.996, 0.987, 1.401, 1.5)	(0.894, 0.988, 1.273, 1.3)	(0.716, 0.990, 1.112, 1.2)	(0.985, 0.987, 1.341, 1.5)	(0.909, 0.988, 1.233, 1.4)	(0.786, 0.989, 1.160, 1.3)	(0.628, 0.991, 1.065, 1.2)
	(I)	(0.559, 1.008, 1.2)	(0.992, 1.012, 1.609, 1.7)	(0.982, 1.012, 1.401, 1.5)	(0.848, 1.011, 1.276, 1.3)	(0.704, 1.009, 1.111, 1.2)	(0.992, 1.012, 1.338, 1.5)	(0.897, 1.011, 1.233, 1.4)	(0.774, 1.010, 1.160, 1.3)	(0.620, 1.008, 1.064, 1.2)
						$\rho = -$	-0.4			
	(D)	(0.63594, 0.99225, 1.1)	(0.984, 0.989, 1.614, 1.6)	(0.987, 0.989, 1.403, 1.4)	(0.956, 0.989, 1.264, 1.3)	(0.862, 0.990, 1.104, 1.1)	(0.984, 0.989, 1.341, 1.4)	(0.986, 0.989, 1.224, 1.3)	(0.924, 0.989, 1.149, 1.2)	(0.735, 0.991, 1.061, 1.1)
	(I)	(0.635, 1.007, 1.1)	(0.997, 1.011, 1.608, 1.6)	(0.995, 1.011, 1.398, 1.4)	(0.895, 1.010, 1.269, 1.3)	(0.846, 1.009, 1.104, 1.1)	(0.997, 1.011, 1.337, 1.4)	(0.994, 1.011, 1.221, 1.3)	(0.895, 1.010, 1.149, 1.2)	(0.726, 1.008, 1.061, 1.1)
15						$\rho =$	0.0			
10	(D)	(0.776, 0.992, 1.1)	(0.999, 0.990, 1.609, 1.6)	(0.880, 0.991, 1.427, 1.4)	(0.999, 0.990, 1.258, 1.3)	(0.999, 0.990, 1.098, 1.1)	(0.999, 0.990, 1.338, 1.4)	(0.880, 0.991, 1.237, 1.3)	(0.999, 0.990, 1.143, 1.2)	(0.933, 0.991, 1.056, 1.1)
	(I)	(0.764, 1.007, 1.1)	(0.900, 1.008, 1.644, 1.7)	(0.883, 1.008, 1.424, 1.4)	(0.880, 1.008, 1.272, 1.3)	(0.999, 1.009, 1.097, 1.1)	(0.900, 1.008, 1.358, 1.4)	(0.883, 1.008, 1.235, 1.3)	(0.880, 1.008, 1.151, 1.2)	(0.91, 1.008, 1.056, 1.1)
						$\rho =$	0.4			
	(D)	(0.99924, 0.99275, 1.0)	(0.986, 0.992, 1.613, 1.6)	(0.985, 0.992, 1.403, 1.4)	(0.918, 0.993, 1.269, 1.3)	(0.999, 0.992, 1.098, 1.1)	(0.986, 0.992, 1.340, 1.4)	(0.985, 0.992, 1.224, 1.2)	(0.918, 0.993, 1.149, 1.2)	(0.999, 0.992, 1.054, 1.1)
	(I)	(0.995, 1.007, 1.0)	(0.999, 1.007, 1.607, 1.6)	(0.999, 1.007, 1.398, 1.4)	(0.999, 1.007, 1.256, 1.3)	(0.999, 1.007, 1.097, 1.1)	(0.999, 1.007, 1.337, 1.3)	(0.999, 1.007, 1.221, 1.2)	(0.999, 1.007, 1.142, 1.2)	(0.999, 1.007, 1.054, 1.1)
						$\rho =$	0.8			
	(D)	(0.999, 0.995, 1.0)	(0.944, 0.996, 1.628, 1.6)	(0.994, 0.995, 1.400, 1.4)	(0.960, 0.995, 1.263, 1.3)	(0.999, 0.995, 1.098, 1.1)	(0.944, 0.996, 1.349, 1.3)	(0.994, 0.995, 1.222, 1.2)	(0.960, 0.995, 1.146, 1.1)	(0.999, 0.995, 1.054, 1.1)
	(I)	(1.000, 1.004, 1.0)	(0.991, 1.004, 1.610, 1.6)	(0.999, 1.004, 1.398, 1.4)	(0.994, 1.004, 1.257, 1.3)	(0.998, 1.004, 1.098, 1.1)	(0.991, 1.004, 1.339, 1.3)	(0.999, 1.004, 1.221, 1.2)	(0.994, 1.004, 1.143, 1.1)	(0.998, 1.004, 1.054, 1.1)

•

Table 10: The parameters $(\lambda^+, H_U, h_L, EATS_1)$ and $(\lambda^-, H_D, h_L, EATS_1)$ of the VSI EWMA-RZ control charts compared to those $(\lambda^+, H_U, EARL_1)$ and $(\lambda^-, H_D, EARL_1)$ of FSI EWMA-RZ charts (third column) for $\gamma_X = \gamma_Y = 0.2, ASI_0 =$ $1, ATS_0 = 200$ and uniformly distributed of τ ; [a, b] = [0.9, 1) for decreasing (D) case and [a, b] = (1, 1.1] for increasing (I) case

			1	$a_S = 0.1$				h	s = 0.5	
n	Type	FSI	R = 0.1	R = 0.2	R = 0.3	R = 0.5	R = 0.1	R = 0.2	R = 0.3	R = 0.5
						ρ	= -0.8			
	(D)	(0.050, 0.906, 90.2)	(0.050, 0.906, 2.439, 75.0)	(0.051, 0.904, 1.799, 77.2)	(0.050, 0.906, 1.455, 79.3)	(0.050, 0.906, 1.153, 83.7)	(0.050, 0.906, 1.799, 81.8)	(0.050, 0.906, 1.444, 82.9)	(0.050, 0.906, 1.253, 84.2)	(0.050, 0.906, 1.085, 86.6)
	(I)	(0.050, 1.225, 94.7)	(0.050, 1.226, 5.271, 72.0)	(0.050, 1.225, 2.963, 73.0)	(0.050, 1.226, 2.023, 75.6)	(0.050, 1.225, 1.296, 82.7)	(0.050, 1.225, 3.389, 82.1)	(0.050, 1.225, 2.090, 82.7)	(0.050, 1.226, 1.568, 84.1)	(0.050, 1.225, 1.164, 88.0)
						ρ	= -0.4			
	(D)	(0.052, 0.912, 83.1)	(0.050, 0.914, 2.486, 67.7)	(0.050, 0.914, 1.819, 69.6)	(0.050, 0.914, 1.468, 71.9)	(0.050, 0.914, 1.157, 76.4)	(0.050, 0.914, 1.825, 74.5)	(0.050, 0.914, 1.455, 75.6)	(0.050, 0.914, 1.260, 76.9)	(0.050, 0.914, 1.087, 79.4)
	(I)	(0.050, 1.188, 87.6)	(0.050, 1.189, 4.882, 65.4)	(0.050, 1.188, 2.808, 66.6)	(0.050, 1.188, 1.966, 69.0)	(0.050, 1.188, 1.283, 75.9)	(0.050, 1.188, 3.168, 75.2)	(0.050, 1.188, 2.004, 75.9)	(0.050, 1.188, 1.536, 77.2)	(0.050, 1.188, 1.157, 81.1)
1						Γ.	= 0.0			
1	(D)	(0.050, 0.923, 74.0)	(0.050, 0.923, 2.547, 58.5)	(0.050, 0.923, 1.846, 60.4)	(0.050, 0.923, 1.484, 62.5)	(0.050, 0.923, 1.162, 67.0)	(0.050, 0.923, 1.859, 65.4)	(0.050, 0.923, 1.470, 66.4)	(0.050, 0.92391, 1.26890, 67.6)	(0.050, 0.923, 1.090, 70.1)
	(I)	(0.050, 1.148, 78.2)	(0.050, 1.148, 4.509, 57.1)	(0.051, 1.152, 2.630, 58.6)	(0.050, 1.148, 1.896, 60.7)	(0.050, 1.148, 1.268, 67.0)	(0.050, 1.148, 2.949, 66.5)	(0.050, 1.149, 1.918, 67.3)	(0.050, 1.148, 1.497, 68.5)	(0.050, 1.148, 1.149, 72.0)
						Ĥ	= 0.4			-
	(D)	(0.050, 0.937, 61.2)	(0.050, 0.937, 2.638, 46.1)	(0.050, 0.937, 1.885, 47.8)	(0.050, 0.936, 1.506, 49.8)	(0.050, 0.937, 1.169, 54.0)	(0.050, 0.937, 1.910, 52.8)	(0.050, 0.937, 1.492, 53.7)	(0.050, 0.936, 1.281, 54.9)	(0.050, 0.937, 1.094, 57.2)
	(I)	(0.050, 1.106, 64.9)	(0.050, 1.107, 4.062, 46.0)	(0.050, 1.106, 2.491, 47.2)	(0.050, 1.107, 1.811, 49.3)	(0.050, 1.106, 1.264, 54.4)	(0.050, 1.106, 2.715, 54.4)	(0.050, 1.106, 1.828, 55.1)	(0.050, 1.107, 1.451, 56.3)	(0.050, 1.106, 1.147, 59.1)
						Ĥ	= 0.8			
	(D)	(0.050, 0.959, 38.7)	(0.050, 0.959, 2.805, 26.5)	(0.050, 0.959, 1.956, 27.5)	(0.050, 0.959, 1.545, 28.9)	(0.050, 0.959, 1.181, 32.2)	(0.050, 0.959, 2.002, 31.9)	(0.050, 0.959, 1.531, 32.5)	(0.050, 0.959, 1.303, 33.3)	(0.050, 0.959, 1.100, 35.0)
	(I)	(0.050, 1.054, 41.1)	(0.051, 1.055, 3.573, 27.5)	(0.051, 1.055, 2.287, 28.2)	(0.050, 1.054, 1.721, 29.5)	(0.050, 1.054, 1.241, 32.9)	(0.050, 1.054, 2.441, 33.5)	(0.050, 1.054, 1.719, 33.9)	(0.050, 1.054, 1.401, 34.6)	(0.050, 1.054, 1.134, 36.5)
						ρ	= -0.8			
	(D)	(0.050, 0.969, 28.7)	(0.050, 0.969, 2.896, 19.0)	(0.050, 0.969, 2.006, 19.6)	(0.050, 0.969, 1.571, 20.6)	(0.050, 0.969, 1.199, 23.0)	(0.050, 0.969, 2.053, 23.3)	(0.050, 0.969, 1.559, 23.6)	(0.050, 0.969, 1.317, 24.2)	(0.050, 0.969, 1.110, 25.5)
	(I)	(0.050, 1.037, 29.8)	(0.055, 1.040, 3.255, 19.8)	(0.050, 1.037, 2.275, 20.1)	(0.050, 1.037, 1.715, 21.0)	(0.050, 1.037, 1.229, 23.5)	(0.053, 1.039, 2.266, 24.2)	(0.050, 1.037, 1.709, 24.4)	(0.050, 1.037, 1.397, 24.9)	(0.050, 1.037, 1.127, 26.3)
						ρ	= -0.4			
	(D)	(0.050, 0.972, 25.4)	(0.050, 0.972, 2.922, 16.6)	(0.050, 0.972, 2.018, 17.0)	(0.050, 0.972, 1.578, 17.9)	(0.050, 0.972, 1.190, 20.2)	(0.050, 0.972, 2.067, 20.5)	(0.050, 0.972, 1.561, 20.7)	(0.050, 0.972, 1.321, 21.2)	(0.050, 0.972, 1.105, 22.5)
	(I)	(0.050, 1.032, 26.4)	(0.060, 1.037, 3.153, 17.3)	(0.057, 1.035, 2.208, 17.6)	(0.050, 1.032, 1.704, 18.3)	(0.050, 1.032, 1.226, 20.6)	(0.055, 1.035, 2.228, 21.3)	(0.057, 1.035, 1.671, 21.5)	(0.050, 1.032, 1.391, 21.9)	(0.050, 1.032, 1.125, 23.2)
15						μ.	= 0.0			
10	(D)	(0.050, 0.976, 21.5)	(0.050, 0.976, 2.827, 13.8)	(0.050, 0.976, 2.030, 14.0)	(0.051, 0.976, 1.584, 14.8)	(0.050, 0.976, 1.192, 16.7)	(0.050, 0.976, 2.015, 17.2)	(0.050, 0.976, 1.572, 17.3)	(0.051, 0.976, 1.324, 17.7)	(0.050, 0.976, 1.107, 18.8)
	(I)	(0.058, 1.030, 22.3)	(0.064, 1.032, 3.067, 14.4)	(0.058, 1.030, 2.183, 14.6)	(0.062, 1.031, 1.656, 15.2)	(0.058, 1.030, 1.225, 17.1)	(0.061, 1.031, 2.170, 17.9)	(0.058, 1.030, 1.657, 18.0)	(0.062, 1.031, 1.364, 18.4)	(0.058, 1.030, 1.125, 19.4)
						Ĥ	= 0.4			
	(D)	(0.059, 0.979, 16.4)	(0.057, 0.979, 2.808, 10.4)	(0.052, 0.980, 2.042, 10.4)	(0.055, 0.980, 1.588, 10.9)	(0.050, 0.981, 1.195, 12.5)	(0.057, 0.979, 2.004, 13.1)	(0.054, 0.980, 1.576, 13.1)	(0.055, 0.980, 1.326, 13.4)	(0.054, 0.980, 1.107, 14.2)
	(I)	(0.066, 1.024, 17.0)	(0.074, 1.026, 2.930, 10.8)	(0.063, 1.024, 2.140, 10.8)	(0.063, 1.024, 1.642, 11.3)	(0.056, 1.022, 1.212, 12.8)	(0.070, 1.025, 2.095, 13.6)	(0.062, 1.024, 1.634, 13.6)	(0.064, 1.024, 1.355, 13.8)	(0.059, 1.023, 1.116, 14.7)
						Ĥ	= 0.8			
	(D)	(0.102, 0.982, 8.8)	(0.109, 0.981, 2.569, 5.7)	(0.090, 0.983, 1.913, 5.4)	(0.089, 0.983, 1.555, 5.5)	(0.089, 0.983, 1.178, 6.3)	(0.105, 0.982, 1.880, 7.1)	(0.096, 0.983, 1.500, 6.9)	(0.093, 0.985, 1.306, 7.0)	(0.096, 0.983, 1.097, 7.4)
	(I)	(0.101, 1.018, 9.1)	(0.119, 1.020, 2.606, 5.9)	(0.100, 1.018, 1.931, 5.6)	(0.092, 1.017, 1.574, 5.7)	(0.089, 1.017, 1.195, 6.5)	(0.110, 1.019, 1.918, 7.3)	(0.101, 1.018, 1.517, 7.1)	(0.097, 1.018, 1.315, 7.2)	(0.094, 1.017, 1.106, 7.6)

•

Table 11: The parameters $(\lambda^+, H_U, h_L, EATS_1)$ and $(\lambda^-, H_D, h_L, EATS_1)$ of the VSI EWMA-RZ control charts compared to those $(\lambda^+, H_U, EARL_1)$ and $(\lambda^-, H_D, EARL_1)$ of FSI EWMA-RZ charts (third column) for $\gamma_X = 0.01, \gamma_Y = 0.2, ASI_0 =$ $1, ATS_0 = 200$ and uniformly distributed of τ ; [a, b] = [0.9, 1) for decreasing (D) case and [a, b] = (1, 1.1] for increasing (I) case

ſ				h	$s_S = 0.1$				$h_S =$	- 0.5	
	n	Type	FSI	R = 0.1	R = 0.2	R = 0.3	R = 0.5	R = 0.1	R = 0.2	R = 0.3	R = 0.5
							$\rho =$	= -0.8			
	Γ	(D)	(0.050, 0.949, 55.2)	(0.050, 0.949, 2.418, 43.2)	(0.050, 0.949, 1.791, 44.3)	(0.050, 0.949, 1.450, 45.8)	(0.050, 0.949, 1.152, 49.3)	(0.050, 0.949, 1.787, 48.5)	(0.050, 0.949, 1.439, 49.1)	(0.050, 0.949, 1.250, 50.0)	(0.050, 0.949, 1.084, 51.9)
		(I)	(0.050, 1.126, 68.9)	(0.062, 1.144, 4.796, 47.5)	(0.052, 1.130, 2.959, 48.2)	(0.050, 1.127, 2.052, 49.9)	(0.050, 1.126, 1.302, 55.9)	(0.050, 1.127, 3.264, 57.3)	(0.050, 1.126, 2.127, 57.4)	(0.050, 1.127, 1.584, 58.4)	(0.050, 1.126, 1.167, 61.7)
							ρ =	= -0.4			
		(D)	(0.050, 0.950, 54.3)	(0.050, 0.950, 2.420, 42.4)	(0.050, 0.950, 1.791, 43.4)	(0.050, 0.950, 1.450, 45.0)	(0.050, 0.950, 1.160, 48.2)	(0.050, 0.950, 1.789, 47.7)	(0.050, 0.950, 1.439, 48.2)	(0.050, 0.950, 1.250, 49.1)	(0.050, 0.950, 1.089, 50.9)
		(I)	(0.050, 1.124, 68.0)	(0.063, 1.142, 4.791, 46.8)	(0.052, 1.128, 2.959, 47.5)	(0.050, 1.124, 2.061, 49.1)	(0.050, 1.124, 1.302, 55.1)	(0.050, 1.124, 3.265, 56.6)	(0.050, 1.125, 2.120, 56.7)	(0.050, 1.124, 1.589, 57.5)	(0.050, 1.124, 1.167, 60.9)
	1						ρ	= 0.0			
	1	(D)	(0.050, 0.951, 53.3)	(0.050, 0.951, 2.419, 41.6)	(0.050, 0.951, 1.791, 42.6)	(0.050, 0.951, 1.450, 44.1)	(0.050, 0.951, 1.160, 47.3)	(0.050, 0.951, 1.788, 46.8)	(0.050, 0.951, 1.439, 47.4)	(0.050, 0.951, 1.250, 48.2)	(0.050, 0.951, 1.089, 50.0)
		(I)	(0.050, 1.121, 67.2)	(0.065, 1.142, 4.698, 46.1)	(0.052, 1.125, 2.971, 46.8)	(0.050, 1.121, 2.061, 48.4)	(0.050, 1.123, 1.316, 54.1)	(0.051, 1.123, 3.243, 55.8)	(0.050, 1.121, 2.129, 55.9)	(0.050, 1.121, 1.589, 56.8)	(0.050, 1.123, 1.175, 60.0)
							ρ	= 0.4			
		(D)	(0.050, 0.952, 52.4)	(0.050, 0.952, 2.420, 40.8)	(0.050, 0.952, 1.791, 41.7)	(0.050, 0.952, 1.450, 43.2)	(0.050, 0.952, 1.152, 46.6)	(0.050, 0.952, 1.789, 45.9)	(0.050, 0.952, 1.439, 46.5)	(0.050, 0.952, 1.250, 47.3)	(0.050, 0.952, 1.084, 49.2)
		(I)	(0.050, 1.119, 66.3)	(0.063, 1.137, 4.772, 45.3)	(0.054, 1.125, 2.924, 46.1)	(0.050, 1.119, 2.061, 47.6)	(0.050, 1.119, 1.320, 53.1)	(0.052, 1.123, 3.185, 55.1)	(0.050, 1.120, 2.122, 55.1)	(0.050, 1.119, 1.589, 55.9)	(0.050, 1.119, 1.178, 59.0)
							ρ	= 0.8			
.		(D)	(0.050, 0.953, 51.4)	(0.050, 0.953, 2.420, 39.9)	(0.050, 0.953, 1.791, 40.8)	(0.050, 0.953, 1.450, 42.3)	(0.050, 0.953, 1.152, 45.6)	(0.050, 0.953, 1.788, 45.0)	(0.050, 0.953, 1.439, 45.5)	(0.050, 0.953, 1.250, 46.3)	(0.050, 0.953, 1.084, 48.2)
· [(I)	(0.050, 1.116, 65.4)	(0.064, 1.136, 4.720, 44.6)	(0.054, 1.122, 2.928, 45.3)	(0.050, 1.117, 2.058, 46.8)	(0.050, 1.118, 1.316, 52.4)	(0.051, 1.119, 3.218, 54.2)	(0.050, 1.116, 2.130, 54.3)	(0.050, 1.117, 1.588, 55.1)	(0.050, 1.118, 1.175, 58.3)
							$\rho =$	= -0.8			
		(D)	(0.069, 0.979, 15.1)	(0.053, 0.982, 2.737, 9.7)	(0.051, 0.983, 1.996, 9.7)	(0.057, 0.981, 1.560, 10.1)	(0.054, 0.982, 1.195, 11.5)	(0.067, 0.979, 1.924, 12.1)	(0.059, 0.981, 1.543, 12.1)	(0.063, 0.980, 1.308, 12.4)	(0.061, 0.98071.107, 13.1)
	L	(I)	(0.064, 1.024, 16.6)	(0.090, 1.030, 2.903, 10.4)	(0.072, 1.026, 2.154, 10.4)	(0.081, 1.028, 1.627, 10.9)	(0.057, 1.022, 1.220, 12.3)	(0.072, 1.026, 2.148, 13.2)	(0.067, 1.025, 1.653, 13.1)	(0.060, 1.023, 1.379, 13.4)	(0.061, 1.023, 1.120, 14.2)
	L						ρ=	= -0.4			
		(D)	(0.072, 0.978, 14.8)	(0.058, 0.981, 2.710, 9.5)	(0.050, 0.983, 2.000, 9.5)	(0.056, 0.982, 1.566, 9.9)	(0.054, 0.982, 1.185, 11.3)	(0.062, 0.980, 1.938, 11.9)	(0.061, 0.981, 1.541, 11.9)	(0.061, 0.981, 1.308, 12.1)	(0.061, 0.981, 1.101, 12.9)
	L	(I)	(0.066, 1.024, 16.2)	(0.088, 1.029, 2.918, 10.2)	(0.073, 1.026, 2.149, 10.2)	(0.069, 1.025, 1.655, 10.6)	(0.059, 1.022, 1.231, 12.0)	(0.073, 1.026, 2.143, 12.9)	(0.069, 1.025, 1.648, 12.9)	(0.069, 1.025, 1.364, 13.1)	(0.062, 1.023, 1.126, 13.9)
	15	(==)	((/	/	ρ	= 0.0	/		
		(D)	(0.075, 0.978, 14.5)	(0.057, 0.982, 2.715, 9.3)	(0.054, 0.983, 1.991, 9.3)	(0.057, 0.982, 1.560, 9.7)	(0.056, 0.982, 1.184, 11.0)	(0.064, 0.980, 1.931, 11.6)	(0.061, 0.981, 1.541, 11.6)	(0.063, 0.981, 1.307, 11.8)	(0.063, 0.981, 1.101, 12.6)
	L	(I)	(0.066, 1.024, 15.9)	(0.083, 1.027, 2.964, 10.0)	(0.066, 1.024, 2.184, 9.9)	(0.069, 1.024, 1.656, 10.3)	(0.059, 1.022, 1.218, 11.8)	(0.076, 1.026, 2.125, 12.6)	(0.066, 1.024, 1.658, 12.6)	(0.067, 1.024, 1.368, 12.8)	(0.061, 1.022, 1.119, 13.6)
	Ļ	((/	/	/	ρ	= 0.4	/·	· · · · · · · · · · · · · · · · · · ·	
		(D)	(0.075, 0.979, 14.2)	(0.059, 0.982, 2.708, 9.1)	(0.056, 0.983, 1.986, 9.0)	(0.059, 0.982, 1.559, 9.4)	(0.058, 0.982, 1.183, 10.8)	(0.066, 0.981, 1.927, 11.3)	(0.071, 0.979, 1.530, 11.3)	(0.065, 0.981, 1.306, 11.5)	(0.066, 0.981, 1.100, 12.3)
	-	(I)	(0.066, 1.023, 15.6)	(0.084, 1.027, 2.948, 9.7)	(0.075, 1.025, 2.141, 9.7)	(0.065, 1.023, 1.667, 10.1)	(0.059, 1.021, 1.230, 11.4)	(0.082, 1.027, 2.092, 12.4)	(0.072, 1.02493, 1.640, 12.3)	(0.065, 1.023, 1.370, 12.5)	(0.063, 1.022, 1.125, 13.3)
			(0.000 0.000 40.0)	(0.000.0.001.0.000.0.0)		(0.000.0.001.1.881.0.0)	ρ.	= 0.8		(0.000.0.001.1.000.11.0)	(0.000.0.000.1.10*.11.0)
		(D)	(0.075, 0.979, 13.8)	(0.063, 0.981, 2.682, 8.9)	(0.063, 0.981, 1.971, 8.8)	(0.063, 0.981, 1.554, 9.2)	(0.063, 0.981, 1.192, 10.4)	(0.065, 0.981, 1.930, 11.1)	(0.064, 0.981, 1.538, 11.0)	(0.066, 0.981, 1.306, 11.2)	(0.068, 0.980, 1.105, 11.9)
L		(I)	(0.067, 1.023, 15.2)	(0.086, 1.027, 2.934, 9.5)	(0.071, 1.024, 2.158, 9.5)	(0.071, 1.024, 1.650, 9.8)	(0.061, 1.021, 1.216, 11.2)	(0.077, 1.025, 2.118, 12.1)	(0.071, 1.024, 1.643, 12.0)	(0.060, 1.022, 1.370, 12.2)	(0.063, 1.022, 1.118, 13.0)

25

Table 12: The parameters $(\lambda^+, H_U, h_L, EATS_1)$ and $(\lambda^-, H_D, h_L, EATS_1)$ of the VSI EWMA-RZ control charts compared to those $(\lambda^+, H_U, EARL_1)$ and $(\lambda^-, H_D, EARL_1)$ of FSI EWMA-RZ charts (third column) for $\gamma_X = 0.2, \gamma_Y = 0.01, ASI_0 = 1, ATS_0 = 200$ and uniformly distributed of τ ; [a, b] = [0.9, 1) for decreasing (D) case and [a, b] = (1, 1.1] for increasing (I) case

			h_S	= 0.1				$h_S =$	= 0.5	
n	Type	FSI	R = 0.1	R = 0.2	R = 0.3	R = 0.5	R = 0.1	R = 0.2	R = 0.3	R = 0.5
					$\rho =$	-0.8				
	(D)	(0.05000, 0.92992, 59.1)	(0.050, 0.929, 3.112, 41.4)	(0.051, 0.928, 2.096, 43.4)	(0.051, 0.928, 1.620, 45.5)	(0.050, 0.929, 1.203, 50.3)	(0.050, 0.929, 2.173, 49.2)	(0.050, 0.929, 1.611, 50.3)	(0.050, 0.929, 1.346, 51.5)	(0.050, 0.929, 1.113, 54.2)
	(I)	(0.050, 1.072, 53.7)	(0.050, 1.073, 3.208, 39.8)	(0.051, 1.074, 2.138, 40.9)	(0.050, 1.072, 1.647, 42.4)	(0.050, 1.072, 1.210, 46.3)	(0.050, 1.073, 2.227, 46.0)	(0.051, 1.074, 1.632, 46.6)	(0.050, 1.072, 1.359, 47.4)	(0.050, 1.072, 1.116, 49.6)
						$\rho =$	-0.4			
	(D)	(0.050, 0.930, 58.3)	(0.050, 0.930, 3.130, 40.7)	(0.051, 0.929, 2.106, 42.6)	(0.050, 0.930, 1.628, 44.6)	(0.050, 0.930, 1.205, 49.5)	(0.050, 0.930, 2.183, 48.5)	(0.050, 0.930, 1.616, 49.5)	(0.050, 0.930, 1.349, 50.7)	(0.050, 0.930, 1.114, 53.4)
	(I)	(0.050, 1.070, 52.8)	(0.050, 1.070, 3.189, 39.1)	(0.050, 1.070, 2.136, 40.1)	(0.050, 1.070, 1.641, 41.6)	(0.050, 1.070, 1.208, 45.5)	(0.050, 1.070, 2.216, 45.2)	(0.050, 1.070, 1.631, 45.7)	(0.050, 1.070, 1.356, 46.6)	(0.050, 1.070, 1.116, 48.8)
1						$\rho =$	0.0			
1	(D)	(0.050, 0.931, 57.4)	(0.050, 0.931, 3.158, 39.9)	(0.050, 0.931, 2.122, 41.7)	(0.050, 0.931, 1.634, 43.8)	(0.050, 0.931, 1.206, 48.6)	(0.050, 0.931, 2.199, 47.7)	(0.050, 0.931, 1.623, 48.7)	(0.050, 0.931, 1.352, 49.8)	(0.050, 0.931, 1.114, 52.5)
	(I)	(0.050, 1.068, 51.9)	(0.050, 1.068, 3.164, 38.4)	(0.050, 1.068, 2.125, 39.4)	(0.050, 1.069, 1.634, 40.9)	(0.050, 1.068, 1.207, 44.7)	(0.050, 1.068, 2.202, 44.4)	(0.050, 1.068, 1.625, 45.0)	(0.050, 1.069, 1.352, 45.8)	(0.050, 1.068, 1.115, 47.9)
						$\rho =$	0.4			
	(D)	(0.050, 0.932, 56.6)	(0.050, 0.932, 3.181, 39.1)	(0.050, 0.931, 2.132, 40.9)	(0.050, 0.932, 1.640, 42.9)	(0.050, 0.932, 1.208, 47.7)	(0.050, 0.932, 2.212, 46.9)	(0.050, 0.931, 1.628, 47.9)	(0.050, 0.932, 1.355, 49.0)	(0.050, 0.932, 1.115, 51.7)
	(I)	(0.050, 1.066, 51.0)	(0.050, 1.066, 3.139, 37.7)	(0.050, 1.067, 2.112, 38.7)	(0.050, 1.066, 1.630, 40.1)	(0.050, 1.066, 1.217, 43.7)	(0.050, 1.066, 2.188, 43.6)	(0.050, 1.067, 1.618, 44.2)	(0.050, 1.066, 1.350, 45.0)	(0.050, 1.066, 1.120, 47.0)
						$\rho =$	0.8			
	(D)	(0.050, 0.933, 55.7)	(0.050, 0.932, 3.210, 38.3)	(0.050, 0.932, 2.145, 40.0)	(0.050, 0.932, 1.645, 42.1)	(0.050, 0.933, 1.210, 46.9)	(0.050, 0.932, 2.227, 46.1)	(0.050, 0.932, 1.636, 47.0)	(0.050, 0.932, 1.358, 48.2)	(0.050, 0.933, 1.116, 50.8)
	(I)	(0.050, 1.064, 50.1)	(0.050, 1.065, 3.109, 37.0)	(0.050, 1.065, 2.099, 37.9)	(0.050, 1.064, 1.624, 39.4)	(0.050, 1.064, 1.215, 42.9)	(0.050, 1.065, 2.172, 42.8)	(0.050, 1.065, 1.610, 43.3)	(0.050, 1.064, 1.346, 44.1)	(0.050, 1.064, 1.119, 46.1)
						$\rho =$	-0.8			
	(D)	(0.061, 0.978, 15.9)	(0.064, 0.978, 2.872, 9.9)	(0.061, 0.978, 2.074, 9.9)	(0.058, 0.979, 1.615, 10.4)	(0.051, 0.981, 1.204, 11.9)	(0.061, 0.978, 2.055, 12.6)	(0.061, 0.978, 1.596, 12.6)	(0.059, 0.979, 1.340, 12.8)	(0.055, 0.980, 1.112, 13.7)
	(I)	(0.073, 1.023, 15.6)	(0.077, 1.024, 2.802, 10.0)	(0.066, 1.022, 2.067, 10.0)	(0.068, 1.022, 1.602, 10.4)	(0.058, 1.020, 1.200, 11.8)	(0.077, 1.024, 2.001, 12.5)	(0.067, 1.022, 1.590, 12.5)	(0.068, 1.022, 1.334, 12.7)	(0.064, 1.022, 1.109, 13.5)
						$\rho =$	-0.4			
	(<i>D</i>)	(0.062, 0.979, 15.6)	(0.067, 0.977, 2.857, 9.7)	(0.059, 0.979, 2.083, 9.7)	(0.060, 0.979, 1.612, 10.2)	(0.052, 0.981, 1.204, 11.6)	(0.066, 0.978, 2.035, 12.3)	(0.059, 0.979, 1.601, 12.3)	(0.060, 0.979, 1.339, 12.6)	(0.056, 0.980, 1.111, 13.4)
	(I)	(0.074, 1.023, 15.2)	(0.074, 1.023, 2.818, 9.8)	(0.061, 1.020, 2.080, 9.8)	(0.065, 1.021, 1.605, 10.1)	(0.050, 1.018, 1.219, 11.5)	(0.072, 1.023, 2.016, 12.2)	(0.070, 1.022, 1.584, 12.2)	(0.068, 1.022, 1.334, 12.4)	(0.066, 1.021, 1.108, 13.2)
15						$\rho =$	0.0			
	(<i>D</i>)	(0.062, 0.979, 15.3)	(0.066, 0.978, 2.867, 9.5)	(0.060, 0.979, 2.083, 9.5)	(0.059, 0.980, 1.614, 9.9)	(0.053, 0.981, 1.203, 11.4)	(0.064, 0.979, 2.049, 12.1)	(0.065, 0.978, 1.591, 12.1)	(0.060, 0.979, 1.341, 12.3)	(0.058, 0.980, 1.111, 13.1)
	(I)	(0.076, 1.023, 14.9)	(0.076, 1.023, 2.797, 9.6)	(0.061, 1.020, 2.078, 9.5)	(0.065, 1.021, 1.604, 9.9)	(0.062, 1.020, 1.197, 11.3)	(0.076, 1.023, 1.998, 11.9)	(0.072, 1.022, 1.579, 11.9)	(0.069, 1.022, 1.331, 12.1)	(0.067, 1.021, 1.107, 12.9)
						$\rho =$	0.4			
	(D)	(0.063, 0.979, 14.9)	(0.068, 0.978, 2.858, 9.3)	(0.063, 0.979, 2.074, 9.3)	(0.061, 0.980, 1.613, 9.7)	(0.054, 0.981, 1.203, 11.1)	(0.066, 0.978, 2.041, 11.8)	(0.063, 0.979, 1.596, 11.8)	(0.061, 0.980, 1.340, 12.0)	(0.058, 0.980, 1.111, 12.8)
	(1)	(0.075, 1.022, 14.5)	(0.078, 1.023, 2.782, 9.4)	(0.069, 1.021, 2.049, 9.3)	(0.064, 1.0205, 1.605, 9.7)	(0.061, 1.020, 1.197, 11.0)	(0.076, 1.022, 1.998, 11.7)	(0.071, 1.022, 1.580, 11.6)	(0.071, 1.021, 1.329, 11.8)	(0.069, 1.021, 1.107, 12.6)
		($\rho =$	0.8		/	
	(<i>D</i>)	(0.065, 0.979, 14.6)	(0.070, 0.978, 2.848, 9.1)	(0.058, 0.981, 2.095, 9.1)	(0.067, 0.979, 1.603, 9.5)	(0.055, 0.981, 1.215, 10.8)	(0.067, 0.979, 2.041, 11.5)	(0.058, 0.981, 1.608, 11.5)	(0.067, 0.979, 1.335, 11.8)	(0.059, 0.980, 1.111, 12.5)
1	(I)	(0.078, 1.022, 14.2)	(0.083, 1.023, 2.745, 9.2)	(0.070, 1.021, 2.044, 9.1)	(0.067, 1.020, 1.599, 9.4)	(0.064, 1.020, 1.195, 10.7)	(0.072, 1.021, 2.008, 11.4)	(0.073, 1.021, 1.575, 11.3)	(0.068, 1.020, 1.331, 11.5)	(0.069, 1.021, 1.106, 12.3)

•

 $R_U = 0.3.$ The samling interval h_S || 0.1 and the warning control coefficient

chart. The control limit and warning limit are then $UCL^+ = 1.0088404$ and Given these values of parameters, we calculate $h_L = 1.35$, $\lambda^+ = 0.4796970$, $H_U = 1.0088404$ for optimal parameters of upward VSI EWMA-RZ control $UWL^+ = 1.0026521.$

signals the occurrence of the out-of-control condition in Figure 4 by plotting #14.in-control up to sample #10. The upward VSI EWMA-RZ control chart to the in-control condition, the process is enabled to continue after sample boldfaced in Table 13. After correction actions to restore the process back point #12 above the control limit $UCL^+ = 1.007754$. This result is also Y_i^+ are shown in Table 13. The obtained result shows that the process run The set of collected data, the sample ratio \hat{Z}_i and the control statistics

7 Concluding remarks

found that the new warning coefficient have significant impact on the procontrol chart for monitoring the ratio of two normal random variables. We posed chart. In general, reducing the value of this coefficient is an effective This study has presented the optimal statistical design of the VSI EWMA

1.00564	0.996	24.870 24.977	25.071 25.008	25.030 25.211	24.468 24.835	24.658 24.790	25.123 25.041	$250~{ m gr}$	12.75	0.1	15
1.01190	1.008	$50.101 \\ 49.712$	50.275 50.344	$48.574 \\48.865$	$\frac{48.713}{49.162}$	$50.447 \\ 50.124$	$52.498 \\ 50.064$	$500 \mathrm{~gr}$	12.65	0.1	14
1.01443	1.016	50.949 50.152	50.901 50.026	50.370 50.408	50.704 50.297	49.412 49.981	$52.360 \\ 50.047$	$500 \mathrm{~gr}$	12.55	0.1	13
1.01340	1.023	$51.138 \\ 49.966$	$\frac{48.771}{49.440}$	$51.342 \\ 49.575$	$51.374 \\ 49.697$	$53.182 \\ 50.369$	$52.020 \\ 50.749$	$500 \mathrm{~gr}$	12.45	0.1	12
1.00717	1.017	50.920 50.045	$\begin{array}{c} 49.641 \\ 49.845 \end{array}$	$50.886 \\ 50.061$	51.000 49.884	$51.700 \\ 50.272$	$51.372 \\ 50.164$	$500 \mathrm{~gr}$	12.35	1.35	11
1.00079	1.002	$50.192 \\ 50.102$	$50.344 \\ 50.071$	$50.651 \\ 50.324$	49.677 50.178	$51.566 \\ 50.215$	48.720 49.721	$500 \mathrm{~gr}$	11	1.35	10
1.00000	0.993	$49.454 \\ 49.781$	$\begin{array}{c} 48.591 \\ 49.595 \end{array}$	$50.594 \\ 49.890$	$\begin{array}{c} 48.510 \\ 49.844 \end{array}$	$\begin{array}{c} 48.303 \\ 49.210 \end{array}$	51.273 50.366	$500 \mathrm{~gr}$	9.65	1.35	9
1.00000	0.990	$49.205 \\ 49.720$	$\begin{array}{c} 49.064 \\ 49.612 \end{array}$	$47.807 \\ 48.969$	$\begin{array}{c} 49.149 \\ 49.640 \end{array}$	50.338 50.681	49.668 49.695	$500 \mathrm{~gr}$	8.3	1.35	×
1.00000	0.999	$49.562 \\ 49.588$	$49.374 \\ 49.422$	$\begin{array}{c} 49.910 \\ 49.566 \end{array}$	$\begin{array}{c} 49.994 \\ 49.830 \end{array}$	$\frac{48.685}{49.128}$	$\begin{array}{c} 49.848 \\ 49.993 \end{array}$	$500 \mathrm{~gr}$	6.95	1.35	7
1.00000	0.997	$24.864 \\24.932$	$24.732 \\ 24.818$	$25.418 \\ 25.419$	24.814 24.817	24.473 24.644	24.882 24.962	$250~{ m gr}$	5.6	1.35	6
1.00000	0.998	$25.111 \\ 25.163$	$25.531 \\ 25.148$	$24.482 \\ 24.937$	25.023 25.012	$24.959 \\25.402$	25.557 25.277	$250 \mathrm{~gr}$	4.25	1.35	73
1.00106	0.999	$24.950 \\ 24.974$	$25.681 \\ 25.251$	$25.184 \\ 25.115$	24.088 24.305	24.483 24.859	25.313 25.338	$250 \mathrm{~gr}$	2.9	0.1	4
1.00240	1.005	$25.044 \\ 24.929$	$24.811 \\24.734$	$25.107 \\ 24.879$	25.865 25.377	24.864 24.868	24.574 24.784	$250~{ m gr}$	2.8	1.35	ಲು
1.00072	1.003	$24.956 \\24.954$	$24.449 \\24.831$	$25.292 \\ 24.933$	$24.508 \\ 24.679$	25.172 25.115	$25.359 \\ 25.211$	$250 { m gr}$	1.45	1.35	2
1.00118	1.003	$25.122 \\ 25.046$	$24.960 \\ 25.107$	25.792 25.052	24.027 24.684	25.355 25.171	$25.479 \\ 25.218$	$250~{ m gr}$	0.1	0.1	1
Y_i^+	$\hat{Z}_i = rac{ar{W}_{p,i}}{W_{f,i}}$	$\bar{W}_{f,i}$ [gr]		.] .]	$W_{f,i,j}$ [g]		, <i>ı</i> ,j [ə+]	m_p Box Size	Total time	\mathbf{IS}	Sample
				$W_{-} : \sigma \mathbf{r} $			· · lorr	W.			

Table 13: The food industry example data

28

son, we prove that our proposed control charts are better than the standard derstanding of this new type of control chart. From the numerical compariof other process parameters on the chart are also investigated for better uncharts power is somewhat better with R_U or R_D around 0.3. The influence solution to enhance the performance of the VSI EWMA-RZ control chart, but in the case both two variables have small coefficient of variation, the EWMA-RZ control chart in detecting the ratio shifts.

References

- [1] P. Castagliola, G. Celano, S. Fichera, and F. Giuffrida. sampling interval s^2 -ewma control chart for monitoring the process 125-146, 2006 variance. International Journal of Technology Management, 37(1-2): A variable
- $\overline{\mathbf{N}}$ P. Castagliola, P. E. Maravelakis, and F. O. Figueiredo. The EWMA Median chart with estimated parameters. *IIE Transactions*, 48(1):66– 74, 2016.
- ω W.C. Yeong, M.B.C. Khoo, L.K. Teoh, and M.A. Rahim. Monitorchart. Journal of Quality Technology, 49(3):380–401, 2017. ing the coefficient of variation using a variable sampling interval ewma
- 4 P. Castagliola, A. Amdouni, H. Taleb, and G. Celano. Monitoring the coefficient of variation using ewma charts. Journal of Quality Technology, 43(3):249-265, 2011.
- **5** P. Castagliola, A. Achouri, H. Taleb, G. Celano, and S. Psarakis. Monitoring the coefficient of variation using a variable sampling interval control chart. Quality and Reliability Engineering International, 29(8): 1135–1149, 2013.
- 6 K.W. Linna and W.H. Woodall. Effect of measurement error on She-2001.whart control chart. Journal of Quality Technology, 33(2):213-222,
- 7 G. Tagaras. A survey of recent developments in the design of adaptive control charts. Journal of Quality Technology, 30(3):212–223, 1988.
- ∞ G. Celano, P. the Ratio of two Normal Variables. Quality and Reliability Engineering formance of a Control Chart for Individual Observations Monitoring International, 30(8):1361–1377, 2014. Castagliola, A. Faraz, and S. Fichera. Statistical Per-
- $\left[0 \right]$ G. Celano and P. Castagliola. A Synthetic Control Chart for Monitoring the Ratio of Two Normal Variables. Quality and Reliability Engineering International, 32(2):681–696, 2016.

- [10]K.P. Tran, P. Castagliola, and G. Celano. Monitoring the Ratio of Two Normal Variables Using Run Rules Type Control Charts. International Journal of Production Research, 54(6):1670–1688, 2016.
- [11]K.P. Tran, P. Castagliola, and G. Celano. Monitoring the Ratio of Pop-016-0769-4.ulation Means of a Bivariate Normal distribution using CUSUM Type Control Charts. Statistical Papers, 2016. In press, DOI: 10.1007/s00362-
- [12]D. Öksoy, E. Boulos, and L.D. Pye. Statistical Process Control by the (2):179-194, 1994.Quotient of two Correlated Normal Variables. Quality Engineering, 6
- $\begin{bmatrix} 13 \end{bmatrix}$ G. Celano and P. Castagliola. Design of a phase II Control Chart for Monitoring the Ratio of two Normal Variables. Engineering International, 32(1):291–308, 2016. Quality and Reliability
- [14]K.P. Tran, P. Castagliola, and G. Celano. Monitoring the Ratio of Two Reliability Engineering International, 32(2):1853–1869, 2016. Normal Variables Using EWMA Type Control Charts. Quality and
- $\begin{bmatrix} 15 \end{bmatrix}$ K.P. Tran and S. Knoth. Steady-state arl analysis of arl-unbiased ewma-Reliab Eng Int., pages 1–14, 2018. rz control chart monitoring the ratio of two normal variables. Qual
- [16]K.P. Tran, P. Castagliola, and G. Celano. The performance of the ternational Journal of Production Research, 54:7504–7522, 2016. Shewhart-RZ control chart in the presence of measurement error. ln-
- [17] K.P. Tran, P. Castagliola, G. Celano, and M.B.C. Khoo. Monitoring average scheme. Quality and Reliability Engineering International, 34 compositional data using multivariate exponentially weighted moving (3):391–402, 2018. doi: https://doi.org/10.1002/qre.2260.
- $\begin{bmatrix} 18 \end{bmatrix}$ R.C. Geary. The Frequency Distribution of the Quotient of Two Normal Variates. Journal of the Royal Statistical Society, 93(3):442–446, 1930.
- [19]J. Hayya, D. Armstrong, and N. Gressis. A note on the Ratio of Two Normally Distributed Variables. Management Science, 21(11):1338-1341, 1975.
- [20]A. Cedilnik, K. Kosmelj, and A. Blejec. The Distribution of the Ratio of Jointly Normal Variables. Metodoloski Zvezki, 1(1):99–108, 2004.
- [21]T. Pham-Gia, N. Turkkan, and E. Marchand. Density of the ratio of Statistics - Theory and Methods, 35(9):1569–1591, 2006 two normal random variables and applications. Communications in

- [22]D. Brook and D.A. Evans. An approach to the probability distribution of CUSUM run length. *Biometrika*, 59(3):539–549, 1972.
- $\begin{bmatrix} 23 \end{bmatrix}$ M.S. Saccucci, W.A. Raid, and J.M. Lucas. moving average control schemes with variable sampling intervals. *Commun. Statist-Simula*, 21(3):627–657, 1992. Exponentially weighted
- [24] M.R Reynolds and J.C. Arnold. 1989.with variable sampling interval. Sequential Analysis, 80(1):181–192, Optimal one-sided shewhart charts