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Abstract

Reducing the loss of biodiversity is key to ensure the future well being of the planet. Indicators to measure the state of
biodiversity should come from primary data that are collected using consistent field methods across several sites,
longitudinal, and derived using sound statistical methods that correct for observation/detection bias. In this paper we
analyze camera trap data collected between 2008 and 2012 at a site in Costa Rica (Volcan Barva transect) as part of an
ongoing tropical forest global monitoring network (Tropical Ecology Assessment and Monitoring Network). We estimated
occupancy dynamics for 13 species of mammals, using a hierarchical modeling approach. We calculated detection-corrected
species richness and the Wildlife Picture Index, a promising new indicator derived from camera trap data that measures
changes in biodiversity from the occupancy estimates of individual species. Our results show that 3 out of 13 species
showed significant declines in occupancy over 5 years (lowland paca, Central American agouti, nine-banded armadillo). We
hypothesize that hunting, competition and/or increased predation for paca and agouti might explain these patterns.
Species richness and the Wildlife Picture Index are relatively stable at the site, but small herbivores that are hunted showed
a decline in diversity of about 25%. We demonstrate the usefulness of longitudinal camera trap deployments coupled with
modern statistical methods and advocate for the use of this approach in monitoring and developing global and national
indicators for biodiversity change.
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Introduction

Reducing the loss of biodiversity is key to ensuring the future

well-being of our planet and humanity [1]. The parties to the

Convention on Biological Diversity (CBD) proposed a plan to

reduce the rate of biodiversity loss by 2020 (Decision X/2:

Strategic Plan for Biodiversity 2011–2020). This plan outlines 20

targets to evaluate progress (the Aichi Biodiversity Targets).

Measuring progress towards these targets requires data and

synthetic indicators (see [2] for an indicator analysis up to 2010).

For example, to prevent the extinction of threatened species

(Target 12) and ensure adequate protection of terrestrial, fresh

water and marine areas (Target 11), countries need indicators that

measure trends in abundance and distribution of species; protected

area management effectiveness; and extinction risk of species.

Currently, these and other indicators are assembled from a variety

of available data collected for different objectives and questions,

using different methodologies, at different spatial and temporal

scales, and often not derived from longitudinal studies and with

inadequate metadata. These constraints encumber the construc-

tion, interpretation and robustness of indicators, and therefore

their usefulness, in evaluating progress towards the Aichi

Biodiversity Targets [3]. Answering the relatively simple question

of whether a species is increasing, decreasing or stable in time at a

site or in a country, can be hindered by the quality and consistency

of the data that inform the indicators.

Ideally, species information for monitoring indicators should

come from primary data collected using consistent methodologies

that can be deployed at a wide range of spatial and temporal

scales, and made available in near-real time. Indicators using

primary data that meet these criteria would be less biased and

more precise than indicators derived from secondary and

summary data [4]. For example, the status of many forest

terrestrial vertebrate species is assessed using various methodolo-

gies ranging from expert opinion to systematic field assessments

such as line transects, point counts and capture/recapture studies.

Some of these field methodologies are well developed but hard to

replicate and standardize due to inadequate and inconsistent

training, observation bias, differences in sampling effort, and other

sampling factors.

Camera traps are a useful, efficient, cost/effective, easily

replicable tool to study and monitor ground-dwelling terrestrial

mammals and birds [5] [3,6–9]. In comparison with other field

sampling methods, they are well suited to standardization, since

human influence and error are reduced to placement and
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maintenance of the traps and identification of the photographs.

With the arrival of digital camera traps in the last decade, and

their increased affordability, many projects have started using

them as tools for assessing and inventorying terrestrial vertebrates,

especially in forests, where visibility is reduced and encounter rates

with medium and large terrestrial vertebrates are often low. If

camera trap deployments are designed correctly, they yield

extremely valuable information about the terrestrial vertebrate

community, including species diversity, species occupancy and

abundance, and community structure [5], as well as species

activity budgets, behavior and movements [10]. They are also a

valuable tool for monitoring since camera trap deployments can be

replicated seasonally or annually under the same field sampling

conditions [11]. Additionally, camera trap data offers the

opportunity to separately model the ecological state variable of

interest (e.g., abundance or probability of occurrence of a species)

while taking into account the detection process (e.g., the

probability of detecting a species given that it occurs at the site)

[12–14]. This allows for unbiased indicator estimation, making

camera trap surveys extremely useful for monitoring programs

aimed at measuring progress towards biodiversity conservation

targets (such as Aichi Target 12).

In this paper, we use camera trap data that is regularly collected

by the Tropical Ecology Assessment and Monitoring (TEAM)

Network along the Volcan Barva Transect, Costa Rica, to

demonstrate how these data can be used to calculate temporal

species indicators for various mammal species of interest in the

area and the larger community. We uncover declines in some

species, propose mechanisms to explain these, and suggest

management actions to reverse these patterns. We also use the

camera trap information to estimate detection-corrected indicators

of species richness for the community, as well as the Wildlife

Picture Index (WPI), an increasingly useful indicator for assessing

the status of communities of vertebrates monitored with camera

trap data [15]. We propose a novel approach to calculate the WPI

and show how it can be disaggregated for different groups of

species (hunted vs. not hunted; different functional groups) to

examine diversity trends for these groups and more effectively

manage them.

Methods

Study site
We collected data along a 30 km continuous strip of forest

spanning a 3000 m altitudinal gradient between ‘‘La Selva’’

Biological Station, a small private ecological reserve (16 km2), and

the larger Braulio Carrillo National Park (460 km2) in north-

eastern Costa Rica (Figure 1A). This area, referred to as the

Volcan Barva TEAM site, contains 280 km2 of lowland tropical

forest, montane tropical forest, and cloud forest surrounded by a

matrix of plantations and pastures.

The study did not involve any collection of animal specimens in

the field; only photographic images. To work in Braulio Carillo

National Park we obtained a ‘‘scientific passport’’ permit (#

04511) issued by the Costa Rican National System of Conserva-

tion Areas (Sistema Nacional de Areas de Conservación–SINAC)

in 2003. To work at La Selva Biological Station we received a

research permit approved by La Selva Academic Committee (also

#04511) in December 2003. Both permits are still in effect as of

May 1, 2013.

Camera trap data collection
We deployed camera traps in the field at the Volcan Barva

TEAM site from 2008 until 2012 using the standardized TEAM

Terrestrial Vertebrate Monitoring Protocol [11]. We deployed 60

camera trap sampling points (one camera per point) along the

altitudinal gradient at Volcan Barva TEAM site at a density of 1

camera/km2, away from main trails and with no bait. Each year,

camera traps were deployed in three sequential 20-point sampling

arrays, each camera active for at least 30 days during the drier

months of the year (January to May). The same sampling points

were used every year (and continue to be monitored). At the end of

each deployment, memory cards were recovered, and images were

processed and identified using specialized software – DeskTEAM

[16]. Animals were identified following International Union for

the Conservation of Nature (IUCN) taxonomic authority sources

for mammals [17] and following the mammal taxonomy of the

IUCN Red List. Further details are available on the equipment

used and camera trap settings for the TEAM Terrestrial

Vertebrate Monitoring Protocol [11]. All data were uploaded to

the TEAM portal and are publicly available at http://www.

teamnetwork.org. A total of 22437 images were recorded between

2008 and 2012, resulting from an effort of 8725 camera trap

sampling days (see Table S1 in File S1 for details).

Selection of species. Out of 26 mammal species detected at

Volcan Barva between 2008 and 2012, we focused our analysis on

13 target species: collared peccary, cougar, jaguarundi, jaguar,

margay, ocelot, Central American agouti, coati, lowland paca,

Baird’s tapir, tayra, Central American red brocket and nine-

banded armadillo. These species were selected based on three

non-mutually exclusive criteria: 1) species commonly detected in

the study area; 2) species with conservation interest or some level

of threat or vulnerability according to the IUCN Red list or known

to be hunted locally; and 3) species with key ecological functions in

the ecosystem as prey, seed dispersers or predators. The full list of

26 species can be found in the supporting information (Table S2 in

File S1).

Data preparation. The raw observation records (a camera

trap image detection with its associated metadata) were down-

loaded from the TEAM portal (data package id: TV-

20130322130624_4502). These data were condensed into pres-

ence/absence matrices, one for each species and each year, where

the rows correspond to sampling points and the columns are time

periods (days). The cells in these matrices are either 1 (the species

was photographed at the given sampling point and day), 0 (the

species was not photographed) or NA (the point was not actively

sampled during this day). To reduce model computation time and

increase efficiency, we grouped observations into 15 time periods

for each species and each year (each time period equivalent to

about 7–8 days of sampling). Observations remained as 0’s and 1’s

after grouping. This does not affect the model estimates and only

changes the units of the estimated detection probabilities for each

species (see below). All data processing was done using scripts

programmed in the language R [18].

Modeling approach. We used occupancy (estimated proba-

bility of occurrence of the species at the site) as our metric of

abundance for each species. From the binary matrices, we

estimated the occupancy of each species each year, by fitting

dynamic occupancy models [12]. These models are hierarchical;

the ecological process that influences occupancy is modeled

separately from the observation process. In the ecological process

model the presence/absence of a species i at a camera trap point j

in the first year of observation, is an unobserved latent variable Zij1

resulting from a Bernoulli process with expected probability yij1:

Zij1 , Bernoulli(yij1). For the first year of observations the

occupancy itself (yij1), can be modeled as a function of sampling

point covariates using a logistic link 2 logit(yij1) = bXij 2 where

Xij is the design matrix of covariates, and b is a vector of
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parameters to be estimated. For subsequent years (year .1), the

site remains occupied by the species with probability w, or goes

locally extinct from that site with probability (1-w), where w is the

apparent survival of the species from one year to the next and (1-w)
is the local extinction probability. If the species did not occupy site

j in year t (Zijt =0), it can colonize this site by the following year t

+1 with probability c. The dynamics of a species i can be described

recursively for any two contiguous years as:

y
i(tz1)~P(Zi(tz1)~1)~Zitwz½1{Zit�c

The survival probability and the colonization probability can also

be modeled as a function of covariates (sampling point covariates or

yearly covariates) using a logit link as described above.

The observation process of the model assumes the observations

for each species i at each sampling point j, year t, and observation

period k, yijtk, as realizations of a Bernoulli process with mean Zit

pitk where pitk is the detection probability of species i at year t: yijtk,

Bernoulli(Zit pitk). This takes into account imperfect detection at the

sampling point (false negatives) and provides an unbiased estimate

of occupancy. As with the other parameters, p can be modeled as a

function of sampling point covariates, yearly covariates, and

additionally, within-year temporal observation covariates (e.g.,

temperature or day length at each of the 15 observation periods

within a year). Under this model it is assumed that there is closure

within years, but not between years (colonization and extinction

only happen between years).

Model covariates. For this analysis we only used sampling

point covariates and yearly covariates. The following covariates

were calculated at each camera trap point: canopy height, aspect,

slope, elevation, forest type and distance to edge. Canopy height,

elevation, aspect and slope were derived from NASA’s Land

Vegetation and Ice Sensor (LVIS) laser altimetry [19] collected in

year 2005. The LVIS point cloud data was interpolated using

ArcGIS 10.1 (Environmental Systems Research Institute 2012)

natural neighbor algorithm. From this interpolation we ws was

obtained a 1-m resolution digital surface model (DSM) and a

digital height model (DHM) with the same spatial resolution (1 m).

Aspect and degree of slope were derived using the standard

ArcGIS algorithms from the DSM. Forest type was assessed by

identifying representative training areas of young forest through a

comparison between two multispectral images (Landsat TM and

Landsat ETM+) from February 1986 and January 2012. Areas of

young forest were selected using ENVI software (Exelis Visual

Information Solutions, Boulder, Colorado) to detect change and to

visualize those areas with more change. For identifying old forest

training sites, we use nine well-known 1 ha vegetation plots of

primary forest located across the elevational gradient at La Selva

Biological Station. These plots were stratified in the standard

Holdridge life zones [20], and then grouped into three categories:

Figure 1. Maps showing the sampling design and modeled occupancy for species where occupancy depended on covariates. A.
Distribution of camera trap sampling points along the Volcan Barva transect, Costa Rica. B,C,D,E: Modeled occupancy for Ocelot, Baird’s tapir, Central
American red brocket and Central American agouti at the baseline year (2008).
doi:10.1371/journal.pone.0073707.g001
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low, middle and high elevation. We also included a special forest

class –slope– in areas where the slope was higher than 60 percent.

We then performed a supervised classification of forest types using

training sites and independent and validated data to generate a

map of six classes of forest types according to forest age and

elevation: Slope, Primary-low elevation, Primary-intermediate

elevation, Primary-high elevation, Primary-intermediate/high

elevation, and Secondary. To obtain the distance from the camera

trap point to the nearest forest edge, we overlapped the points with

a map of 10 m buffer classes from the forest polygon boundary.

This distance map was then generated in ArcGIS using the

function buffer.

Model fitting. To find the best multi-seasonal occupancy

model for each species, we first did an exploratory analysis for

several species with enough data (.15 site detections per year), by

fitting logistic regression models on the observed occupancy (naı̈ve,

since it is not corrected for detection probability) with various

degrees of complexity adding covariates on occupancy, extinction,

survival and detection probability using a step-wise regression

approach. These initial analyses revealed that colonization,

survival and detection probability were fairly insensitive to

covariates resulting in models with little support. We then fitted

and tested a small set of candidate models using the hierarchical

approach described above for each species. These included: 1) a

‘null-type’ model with no covariates on occupancy and with or

without year-specific colonization, survival and detection proba-

bilities, and 2) year-1 occupancy covariates with additive terms

and no interaction terms. For species with low numbers of

observations (,15 site detections/year) we fitted null-type models,

while for other species we fitted both types of models. In addition

to the individual species model, we also fitted a model where we

grouped all cat species together (jaguar, cougar, ocelot, margay

and jaguarundi) in an attempt to overcome the low numbers of

detections obtained for each of these species individually [21]. We

selected the best model using AIC model selection criteria [22].

Models were fitted using package unmarked in R [23]. We then

refitted the most supported models using a Bayesian approach [24]

using software JAGS [25] running through package R2jags in R

[26]. This approach yields similar results to the likelihood-based

approach used in unmarked, but works better with species with

few observations (low detection probability, low occupancy or

both) and adds some other benefits (see Community Dynamics

below). JAGS models were based on existing code [24] and were

run with 5 chains of 30,000 iterations each, a thinning rate of 3

(every third iteration discarded) and a burn-in rate of 20,000

iterations (ignored for calculation of posterior density distribu-

tions). Models were checked for convergence by visually inspecting

parameter time series and by ensuring the Gelman-Rubin statistic

for each parameter was close to 1 [27]. Model parameters where

recovered using the median or the mode of the distribution as

many of the posterior distributions were highly skewed. Highest

posterior density intervals (HPDI) were extracted from the

posterior distributions at a 95% level for inference purposes.

Model fit was assessed by calculating two chi-square statistics and

computing a Bayesian posterior predictive check (BPPC) on these

statistics (M. Kéry, pers. comm.). The first chi-square (x2[obs])
calculates the discrepancy between annual, aggregated, observed

detection frequencies vs. model detection frequencies at each

model iteration. The second chi-square (x2[new]) was calculated
by generating a new realization using model parameters (‘perfect’

observation) at each model iteration, and then aggregating the

data to annual detection frequencies and computing the discrep-

ancy between this new prediction and the original model

prediction. The BPPC is then calculated as the expected value

of x2[new]. x2[obs] [27] (Bayesian p -value in Table 1). Values

very close to 0 or 1 indicate lack of model fit. JAGS code for all the

models (including calculation of BPPC) is available in the

supporting information (Text S1, Text S2, Text S3, Text S4

and Text S5 in File S1).

Changes in occupancy from year t to year t + n (n = 1 to 4) were

estimated by calculating the distribution of the ratio y(t + n)/y (t)

= ln as defined by MacKenzie et al. [12]. This resulted in a matrix

of l values describing the change between a given year t and any

future year t + n. We considered that a decline in occupancy had

occurred between year t and year t + n if the upper boundary of the

HPDI of ln ,1. We considered an increase in occupancy during

the same time period if the lower boundary of the HPDI of ln .1.

Otherwise (if 1 was included within the HPDI of ln), we

considered that no change had occurred between the two years.

Community dynamics. We calculated two metrics for

community dynamics: species richness and the WPI [3]. Changes

in species richness through time were calculated from the camera

trap data using an occupancy approach [28,29]. Occupancy

(probability of a set of species being present in a given year,

corrected by detection probability) is an estimate of relative species

richness yS, or the proportion of species present at a site from a

known regional pool of species. A regional pool of 40 species have

been detected historically at Volcan Barva, excluding arboreal and

flying mammals [30]. We constructed a species-by-sampling-point

detection matrix for each year and used the same analysis

rationale described above for dynamic models to estimate changes

in relative species richness through time (species that were not

detected at the site in a given year are coded in the matrix as

zeros). We fitted two covariates to relative species richness: body

size and trophic group. Body size was assigned from a global

database of body sizes for mammals [31]. Trophic group was

either herbivore, carnivore, omnivore or insectivore and was

assigned based on typical dietary and ecological habits of each

species. Models were fitted using package unmarked [32], and

95% confidence intervals for species richness were obtained by

running a non-parametric bootstrap of the data with 500

iterations. Final values for species richness were obtained by

multiplying relative species richness by the number of species in

the regional pool (40).

We also calculated the Wildlife Picture Index (WPI), defined as

the geometric mean of the occupancies of the 13 focal species

scaled by their occupancies in the first year of the survey [3].

Unlike species richness, the WPI is an ideal metric for evaluating

changes in biodiversity, because it is sensitive to changes in

richness, relative abundance (occupancy), dominance and other

measures of community diversity [33]. O’Brien et al.[3] calculated

the WPI by bootstrapping species to estimate uncertainty in the

occupancies and then fit Generalized Additive Models (GAMs) to

the estimated occupancies [33]. We used a different and more

direct approach since our Bayesian model fits gave us the posterior

distribution of occupancy for each species each year. This allowed

us to compute the WPI as a derived quantity from these

distributions (geometric mean of the relative occupancies at each

model iteration after model burn-in) resulting in a full posterior

distribution for the WPI distribution each year. From these

distributions we extracted the 95% HPDI and used the median or

mode (whichever was lowest) as the measure of central tendency of

the distribution. We contend this is a much more ‘‘natural’’ way of

computing the WPI, since it comes directly from the underlying

modeled occupancy distributions, which in turn come from fitting

a dynamic model of occupancy [34].

Changes in WPI from year t to year t + n were estimated by

calculating the distribution of the ratio WPI(t + n)/WPI(t) in a
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similar way defined for testing yearly differences between

occupancies (see above).

In addition to the community-wide WPI, we also calculated

the WPI for species grouped according to conservation status and

functional groups. Following the IUCN Red List, we separated

species of least concern from endangered, near threatened and

data deficient species and recalculated the WPI using the

approach above for each group. We also separated species into

‘hunted’ or ‘not hunted’ based on local information provided by

park managers and patrol officers at the site. In addition, we

separated species into four functional groups –carnivores, large

herbivores (.20 kg), small herbivores (,20 kg), omnivores– and

calculated the WPI for each. We calculated ln for each of these

as described above.

Results and Discussion

Species dynamics (spatial)
Table 1 summarizes the model fitting results for all 13 focal

species examined (parameter values and standard errors for all

parameters can be found in Table S3 in File S1). Six different

model types adequately described the dynamics of these species,

three of which had covariates on occupancy (elevation, eleva-

tion+canopy, elevation+edge). All models showed adequate fit as

evidenced by the absence of Bayesian p-values too close to 0 or 1

(Table 1). Only four species were adequately fit by models with

covariates in occupancy: one species responded to elevation alone

(ocelot–Figure 1B), one species responded to elevation and edge

(Baird’s tapir–Figure 1C), and two species responded to elevation

and canopy height (Central American agouti, Central American

red brocket–Figures 1D,1E). Ocelot and Central American agouti

occupancies decreased with elevation (agouti: b(elevation)
=25.33, sd = 1.8; ocelot: b(elevation) =24.56, sd = 1.9), while

Baird’s tapir and Central American red brocket occupancies

increased with elevation (tapir: b(elevation) = 5.72, sd = 1.7,

brocket: b(elevation) = 1.61, sd = 1.0). Central American red

brocket and Central American agouti occupancy increased with

canopy height, but the effect was much stronger for agouti

(brocket: b(canopy) = 0.66, sd = 0.6; agouti: b(canopy) = 1.12, sd

= 0.9). Distance from the edge had a positive effect on the

occupancy of Baird’s tapir (b(edge) = 1.37, sd = 0.86).

We do not have yet a full understanding of why the occupancy

of these species depends on spatial covariates, while the

occupancy of other species with high number of detections does

not (e.g., collared peccary, lowland paca). Two of the species

with spatial-dependent occupancy are large herbivores (C.

American red brocket, Baird’s tapir) that are more common at

middle and high elevations along Volcan Barva. The tapir seems

to prefer areas away from forest edges, which might be also areas

close to water, a habitat preference reported for the species [35].

Red brockets prefer habitats with closed high forest and high

fruit density [36], explaining some of the effects of canopy height.

Agoutis are known to prefer tall lowland forests with high palm

species diversity and high number of palm nuts, their preferred

food source [37], thus the elevation and canopy height effects on

occupancy. The spatial distribution of ocelot’s occupancy might

be reflecting the spatial distribution of their main prey at this site

– agoutis, pacas and armadillos [38]. The distribution of these

species might also be the result of the interaction between habitat

preferences and levels of hunting.

Species Dynamics (temporal)
All species, except for tayra, were described by models with

year-specific survival and colonization probabilities. Models for

five species (nine-banded armadillo, margay, jaguar, cougar and

jaguarundi) also included terms for year-specific detection

probabilities.

Three species showed significant declines in occupancy through

time (Table 1): lowland paca, Central American agouti and nine-

banded armadillo (henceforth paca, agouti and armadillo for

simplicity). Figures 2A and 2B show the temporal dynamics of

paca and armadillo with year-to-year assessments of change (l)
(agouti dynamics are similar to paca –not shown). Paca showed

some stability in occupancy during the first 2 years of monitoring

but then a significant decline through 2011 with an apparent

recovery in 2012. Armadillo showed a more sharp decline relative

to the initial year of monitoring, but again, some stability in the

last two years (2011–2012).

Five remaining species with enough detection data (.15

detections/year) showed no temporal changes in occupancy

through time (ocelot, Central American red brocket, collared

peccary, Baird’s tapir, white-nosed coati). Figure 2C and 2D show

the yearly dynamics of Baird’s tapir and collared peccary as

representative species of this group.

The remaining five species with ,15 detections per year (tayra,

margay, jaguar, cougar and jaguarundi) showed no consistent

changes in occupancy, but the modeled occupancies are not

precise enough to detect change in a short 5-year time span.

Figure 2E shows the temporal dynamics of a typical species in this

group (jaguar) with very low, modeled occupancies and wide,

posterior density intervals. However, the temporal dynamics of all

cat species combined suggests that this group has remained

relatively stable during the five years of monitoring (Figure 2F).

From a conservation point of view, it is encouraging that most of

the species analyzed at Volcan Barva showed apparent stability in

occupancy during the first few years of monitoring. For the three

species that show evidence of declines, we put forward several

hypotheses to explain this pattern. Paca and agouti, but not

armadillo, are coveted targets for hunters living around La Selva

and Braulio Carillo National Park (O. Vargas, pers. comm.). We

hypothesize that the patterns observed in paca and agouti can be

the result of three different –and not necessarily mutually

exclusive– mechanisms: 1) increased hunting pressure on these

species; 2) competition for seeds between these species and other

ubiquitous seed predators; and 3) increases in predator densities in

the area.

Anecdotal hunting observations from park rangers at La Selva

suggest that declines in these two species may be the result of

increased hunting pressure at La Selva and Braulio Carrillo NP

[39] (A. Ezeta, pers. comm.). Both species, as well as peccaries, are

coveted by hunters, and park rangers often find traps, tracks and

other evidence of hunting. However, hunting pressure might

decrease when a species reaches some lower threshold, inducing a

predator-prey-like cycle where the species recovers until its

abundance is high enough to be easily hunted again. With the

high rate of decline in occupancy in these species (50% decline on

a span of 3–4 years), we predict that occupancy might continue to

decline if hunting is the main driver and it is not controlled. We

need 3–4 years of additional monitoring data to test this

hypothesis.

Agoutis are seed predators that might be competing with

collared peccaries for limited food resources. There is some

evidence of seed competition between peccaries and agoutis at La

Selva [40], with agoutis being less efficient at removing seeds than

peccaries. Pacas feed on soft fruits rather than seeds, so they are

unlikely to compete with agoutis, but likely competing with

peccaries who are also fruit eaters. The remaining question is why

is this pattern operating now? This might be related to increases in
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peccary populations in the last 10–15 years, but unfortunately no

data are available for this region.

Another process that might be at work behind the declines of

these two species is an increase in predators (wild cats) within the

protected area resulting from deforestation and fragmentation

after the expansion of Braulio Carrillo NP in 1986 [41]. However,

our data suggests that cat species occurrence has not increased

within the protected area over the last five years (Figure 2F).

Nevertheless, data is sparse with wide confidence intervals, limiting

what we can infer.

Currently, we are unable to explain the declining occupancies of

armadillos at Volcan Barva (Figure 2B). Armadillos are not

Figure 2. Temporal dynamics in occupancy for selected species. Occupancy dynamics for Lowland paca (A), Nine-banded armadillo (B),
Baird’s tapir (C), Collared peccary (D), Jaguar (E) and all cat species combined –Ocelot, Margay, Jaguar, Puma and Jaguarundi– (F). Observed
occupancies (naive) are shown as points, and modeled occupancy is shown as a solid line (median or mode of the posterior distribution). The shaded
gray region spans the highest posterior density intervals for occupancy. The small inset graphs in A and B symbolize the statistical signal of l
between any two particular years. Values of l significantly smaller than 1 are symbolized in red; values not significantly different from 1 are
symbolized by grey. These are not shown for panels C,D,E and F because l was not significantly different from 1 between years for any of these
species.
doi:10.1371/journal.pone.0073707.g002
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coveted by hunters in this area (O. Vargas, A. Ezeta pers. comm.),

nor is there evidence for predator increases in the area (Figure 2F).

Armadillos are habitat generalists found not only in forests, but

also in open areas such as savannas and agricultural and rural

areas [42] [43] (J. Hurtado, pers. comm.). Perhaps recent

disturbances around the protected area, in conjunction with

maturation of the forest in La Selva, have induced armadillos to

move outside of the old-growth forest and into a more disturbed

habitat matrix. However, visual comparison of LANDSAT images

covering the Volcan Barva transect in 2008 and 2012 suggests no

major changes in the forest matrix around the park (M. Rosa,

pers.comm.).

Community dynamics
The yearly dynamics of species richness was best described by a

model with covariates on species detection probability. Body size,

functional guild, and year were significant covariates of detection,

resulting in a model with the lowest AIC value (see supporting

information –Table S4 in File S1– for full model parameters and

standard errors). Detection probability covaried positively with

body size and differed between guilds (herbivores the highest and

omnivores the lowest), with remaining variation in detection

probability explained by the year term (detection estimate was

about the same every year). Estimated species richness did not

show significant trends between 2008–2012 (Figure 3A). Richness

varied between 16 and 18 species +/25 species (standard error).

The WPI combining all 13 species for the same period also

showed only small deviations from the baseline and no significant

changes in diversity between years (Figure 3B). However, the WPI

of species known to be hunted at Volcan Barva (paca, peccary,

agouti) showed a significant decrease in diversity compared to the

WPI for species that are not hunted (Figure 3C, 3D). This pattern

is mostly driven by declines in agoutis and pacas, since peccaries

showed no significant trend (Figure 2D).

The declines in agoutis and pacas suggest that existing manage-

ment practices to control hunting along the Volcan Barva transect

might not be adequate to maintain these two species. However, as

discussed above, agoutis and pacas may be competing with each

other and with peccaries [40]. If competition with peccaries alone is

driving these declines, we expect that occupancy of pacas and

agoutis will remain low, while peccary occupancy will remain high

or increase. If, on the other hand, hunting is the main mechanism

driving these patterns, both species might show recoveries if hunting

control becomes more effective, or, in the absence of hunting

control, oscillations over the long run as hunting pressure decreases

when they become rare and increases when the populations recover.

Whichever mechanism is in place, minimizing hunting of these

species is a good management practice since regular hunting

increases mortality in addition to other mechanisms that might be

keeping these populations at low levels.

We also calculated the WPI for different functional guilds of

species, allowing us to examine dynamic changes in diversity

separately for these groups. Although not relevant here, this

analysis is particularly useful when comparing sites with different

species assemblages, e.g., from different continents. Not surpris-

ingly, the small herbivores (agoutis, pacas), were the only group to

show significant declines in diversity, while the other groups

showed no trend (Figure 3E). Separating the WPI for species with

different conservation status, did not show any clear pattern. Some

species of Least Concern (agoutis, pacas and armadillos) drove the

WPI below 1, but other species in the same status pushed it back

over 1, with no significant trend. The only endangered species in

the community (Baird’s tapir) showed no significant trend, an

encouraging sign for this species.

We have demonstrated how camera trap data using a combina-

tion of consistent field methodology and appropriate statistical

models that account and correct for possible detection bias and that

explicitly incorporate ecological factors [12,24] can yield useful and

transparent indicators for species and community trends. Temporal

Table 1. Species names, functional guilds, conservation status and summary model results for each species.

Binomial Name Common Name

Functional

group

IUCN Red

List Status1
Best

Model2
Model

Dynamics

Bayesian

p-value

Cuniculus paca Lowland paca small herbivore LC y(.)c(year)w(year)p(.) Decreasing 0.364

Dasyprocta punctata Central American
agouti

small herbivore LC y(Ele+Can)c(year)w(year)p(.) Decreasing 0.301

Dasypus

novemcinctus

Nine-banded
armadillo

omnivore LC y(.)c(year)w(year)p(year) Decreasing 0.154

Eira barbara Tayra omnivore LC y(.)c(.)w(.)p(.) Stable 0.215

Leopardus pardalis Ocelot carnivore LC y(Ele)c(year)w(year)p(.) Stable 0.451

Leopardus wiedii Margay carnivore NT y(.)c(year)w(year)p(year) Stable 0.531

Mazama temama Central American
red brocket

large herbivore DD y(Ele+Can)c(year) w(year)p(.) Stable 0.255

Nasua Narica White-nosed coati omnivore LC y(.)c(year)w(year)p(.) Stable 0.360

Panthera Onca Jaguar carnivore NT y(.)c(year)w(year)p(year) Stable 0.531

Pecari tajacu Collared peccary large herbivore LC y(.)c(year)w(year)p(.) Stable 0.054

Puma concolor Cougar carnivore LC y(.)c(year)w(year)p(year) Stable 0.516

Puma yaguaroundi Jaguarundi carnivore LC y(.)c(year)w(year)p(year) Stable 0.511

Tapirus bardii Baird’s tapir large herbivore EN y(Ele+Edg)c(year) w(year)p(.) Stable 0.484

1LC = least concern; NT = near threatened; EN = endangered; DD = data deficient.
2Model with the lowest Deviance Information Criterion (DIC). Model parameters: y = occupancy year 1; c = apparent survival; w= colonization probability; p =
detection probability. Model Covariates: Ele = elevation (m); Can = canopy height (m); Edg = distance to edge (m); year = year of measurement. A dot (.) means no
covariates were added to this parameter.
doi:10.1371/journal.pone.0073707.t001
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changes in occupancy adequately capture the dynamics of species

accounting for ecological processes as well as observation error and

false negative detections. This approach allows for a better

understanding and assessment of both the temporal (Figure 2) and

spatial (Figure 1) dynamics of these species and is not limited to just

occupancy; point abundance can also be used as a state metric by

fitting N-mixture models [44]. Using these analytical methods, we

can derive unbiased estimates of occupancy or point abundance for

even the rare species, although the confidence around these

estimates is broad. Out of the 13 species detected, only three

showed significant declines in occupancy in our first assessment of

this vertebrate monitoring program at Volcan Barva. Future

monitoring data will allow us to further understand what mecha-

nisms underlie these declines, but we are also proactively using these

results to recommend conservation actions to park authorities at this

Figure 3. Comparison of different metrics of community dynamics. A. Modeled changes in mammal species richness at Volcan Barva
transect, Costa Rica. The solid line shows the estimated value of richness and the shaded grey region spans the 95% confidence limits of the
estimated distribution. B. Temporal changes in the Wildlife Picture Index (WPI) of 13 mammal species at Volcan Barva. The solid line is the mode of
the posterior distribution of the WPI for each year and the shaded area spans the highest posterior density intervals for the WPI. Temporal changes in
the WPI when it is disaggregated for species that are coveted by hunters (C) –Lowland paca, Central American agouti, Collared peccari– and species
that are not normally hunted in the area (D) –all other species. E. Temporal changes in the WPI when it is disaggregated by functional groups of
species; high posterior densities for each group are not shown for simplicity. The only group with a WPI significantly smaller than 1 in 2012 is the
small herbivore group.
doi:10.1371/journal.pone.0073707.g003
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site (placing a stronger emphasis on hunting control, in particular for

pacas and agoutis).

We also estimated community diversity indices from camera

trap data that take full advantage of the repeated observation

process inherent in camera trapping. This results in species

richness estimators that take into account detection probability

and covariates that affect detection, occupancy, apparent survival

and colonization [45,46]. We also implemented the WPI, a more

sensitive indicator of biodiversity that has many of the desired

properties of biodiversity indices designed to detect change and

measure progress towards local, regional and global biodiversity

targets [3,33]. Furthermore, the WPI can be disaggregated for

different groups of species in the community or aggregated up to

regional, continental and global scales. The WPI of this

community is relatively stable, but the WPI for species that are

hunted shows declines in biodiversity of 30–40% from the initial

baseline explained by the decline in the two main small herbivores

in the community (agoutis and pacas).

We contend that the WPI should be adopted as an indicator to

measure progress towards some of the Aichi Biodiversity Targets

(in particular Target 12, but also 4, 5, 7, 10, 11 and 15) ensuring

that the underlying data and analytical methods for its calculation

incorporate the best standards to overcome bias and increase

precision. In 2013, the TEAM network, in conjunction with

partners, will release the first global WPI assessment for tropical

ground-dwelling mammals and birds derived from the largest

global camera trap network in tropical forests (currently 16 sites),

using the methods outlined here. In addition, at the level of a

country, it is feasible and cost effective to set up similar camera

trap networks to monitor key species across different habitats with

the goal of producing a national-level WPI. Compared to more

traditional survey methods for ground vertebrates (line transects)

camera trap surveys are 15% and 30% cheaper to implement in

forests and savannas respectively [15] with the added benefits of

methodological standardization and ease of implementation.

Current technological advances in camera trap technology, will

continue to make camera traps cheaper in the future. The current

statistical methods to derive the WPI and the underlying

occupancies can all be implemented using open source software

packages (unmarked for R, Presence, WinBUGS, JAGS) but

semi-automated algorithms to estimate the WPI are under

development to facilitate its calculation at larger temporal and

spatial scales.

By monitoring the status and trends of different components of

biodiversity –not just forest area– using standardized open

methodologies and applying solid analytical techniques to these

data, we will not only contribute to measuring progress towards

our commitments to reduce biodiversity loss through the CBD

Aichi Targets, but also provide actionable scientific information

for on-time management decisions.
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Amazônia. In: Duarte JMB, editor. Biologia e Conservação de Cervı́deos Sul-

Americanos: Blastocerus, Ozotoceros e Mazama. Jaboticabal.: FUNEP. 69–77.

37. Emmons L, Feer F (1997) Neotropical rainforest mammals: a field guide.

University of Chicago Press Chicago.

38. Caso A, Lopez-Gonzalez C, Payan E, Eizirik E, de Oliveira C, et al. (2008)

Leopardus pardalis. editor. IUCN 2012. IUCN Red List of Threatened Species.

Version 2012.2. Red list website. Available: http://www.iucnredlist.org.

Accessed 2013 August 7.

39. Timm RM, Wilson DE, Clauson BL, LaVal RK, Vaughan CS (1989) Mammals

of the La Selva–Braulio Carrillo Complex, Costa Rica. N Am Fauna 75: 1–162.

40. Kuprewicz EK (2013) Mammal Abundances and Seed Traits Control the Seed

Dispersal and Predation Roles of Terrestrial Mammals in a Costa Rican Forest.

Biotropica 45: 333–342.

41. Schelhas J, Sánchez-Azofeifa GA (2006) Post-frontier forest change adjacent to

Braulio Carrillo National Park, Costa Rica. Hum Ecol 34: 407–431.

42. Abba AM, Superina M (2010) Dasypus novemcinctus. editors. IUCN 2012. IUCN

Red List of Threatened Species. Version 2012.2. Red list website. Available:

http://www.iucnredlist.org. Accessed 2013 Aug 7.

43. McBee K, Baker RJ (1982) Dasypus novemcinctus. Mamm Species 162: 1–9.

44. Royle JA (2004) N-Mixture Models for Estimating Population Size from

Spatially Replicated Counts. Biometrics 60: 108–115.

45. Kinnaird MF, O’brien TG (2012) Effects of private-land use, livestock

management, and human tolerance on diversity, distribution, and abundance

of large african mammals. Conserv Biol 26: 1026–1039.

46. O’Brien TG (2008) On the use of automated cameras to estimate species

richness for large- and medium-sized rainforest mammals. Anim Conserv 11:

179–181.

Using Camera Trap Surveys for Conservation

PLOS ONE | www.plosone.org 10 September 2013 | Volume 8 | Issue 9 | e73707


