
Monitors: An Operating System Structuring

Concept

C.A.R. Hoare
presented by: Ryan O’Connor <rjo@cs.ubc.ca>

September, 21st 2009

C.A.R. Hoarepresented by: Ryan O’Connor <rjo@cs.ubc.ca> Monitors: An Operating System Structuring Concept



Motivation

Operating systems are designed to share resources amongst
competing, unpredictable user programs

Therefore resource scheduling algorithms are an inportant area
of operating system designs

Idea: create seperate scheduler for each class of resources

C.A.R. Hoarepresented by: Ryan O’Connor <rjo@cs.ubc.ca> Monitors: An Operating System Structuring Concept



Monitors

Monitors are a scheduler with local administrative data and
procedures. Monitors have the following properties:

Any running program may call the monitors’ procedures

Only one program may call a monitor procedure at any given
time

Monitors’ procedures should only access variables local to the
monitor

Monitors’ local variables should only be accessed from within
the monitor

C.A.R. Hoarepresented by: Ryan O’Connor <rjo@cs.ubc.ca> Monitors: An Operating System Structuring Concept



Condition Variables

A scheduler may need to pause a program that wishes to access a
resource that is not currently available. To achieve this Hoare
introduces the Condition Variable.
Programs can:

wait on a condition varaible, which pauses the program.

signal on a condition variable, which immediately resumes a
waiting program. No third program can enter the monitor
between one program’s call to signal and another program’s
return from wait.

C.A.R. Hoarepresented by: Ryan O’Connor <rjo@cs.ubc.ca> Monitors: An Operating System Structuring Concept



Monitor and Semaphore Equivalence

A monitor that schedules access to a single resource simulates a
semaphore. Similarly a monitor can be constructed out of
semaphores (overview):

add semaphore to serialize access to monitors’ procedures
[mutex]

add semaphore to ensure no third program may intervene
between a signal and the resumption of a waiting program

add semaphore for each condition variable within the monitor

C.A.R. Hoarepresented by: Ryan O’Connor <rjo@cs.ubc.ca> Monitors: An Operating System Structuring Concept



Example: Scheduled Waits

Idea: add parameter when waiting on a condition variable to give
the monitor control over which program is resumed by a signal.
Hoare then demonstrates a monitor that suspends a program for a
given amount of time:

monitor updates a time counter on each tick

programs call wakeme which adds the timecounter value to
the requested time and waits with the result as a parameter

must call signal after each tick

C.A.R. Hoarepresented by: Ryan O’Connor <rjo@cs.ubc.ca> Monitors: An Operating System Structuring Concept



Example: Buffer Allocation

Hoare discusses a solution to buffer allocation, where two or more
procucers must allocate buffers.
Problem: If both producers fill buffers at the same rate, but one
has a slower consumer, that producer will eventually ’hoard’ the
buffers.
Solution

count the number of buffers currently help by each producer
and perform a scheduled wait using the count.

a buffer will then be allocated to the producer with the fewest
number of buffers

C.A.R. Hoarepresented by: Ryan O’Connor <rjo@cs.ubc.ca> Monitors: An Operating System Structuring Concept



Example: Readers and Writers

Problem:

must prevent access to object between readers and writers.
Many may read, only one may write.

writers must not indefinately block readers

readers must not indefinately block writers

Solution: create a monitor with...

a varaible to count readers and a boolean to indicate a write
in progress

two condition variables, to indicate that a program may read
or write respectively

C.A.R. Hoarepresented by: Ryan O’Connor <rjo@cs.ubc.ca> Monitors: An Operating System Structuring Concept



Conclusion

”Monitors can be reccomended without reservation” for OS
design

boolean wait conditions may seem attractive, but they are
expensive.

condition variable give program better control over efficiency
and scheduling

C.A.R. Hoarepresented by: Ryan O’Connor <rjo@cs.ubc.ca> Monitors: An Operating System Structuring Concept



Monitor Design Principles

avoid bad scheduling decisions rather than actively seeking
optimal decisions

do not try to present a virtual machine better than the
hardware

use preemptive techniques

avaid fixed priorities

aim for graceful degredation

assume user programs will obey sensible rules regarding
monitor calls

C.A.R. Hoarepresented by: Ryan O’Connor <rjo@cs.ubc.ca> Monitors: An Operating System Structuring Concept



Big Picture

Contributions:

Monitors for OS design

Seperate resource scheduling algorithms when building an OS

Condition Variables

C.A.R. Hoarepresented by: Ryan O’Connor <rjo@cs.ubc.ca> Monitors: An Operating System Structuring Concept



Questions

There are some languages in which specific contracts can be
formally stated, such as class invariants. Those invariants can
be automatically checked before and after each procedure
invocation. Are there any languages where these invariants
are also checked automatically when a thread waits on a
condition variable?

Does any language support automatic creation of condition
variables, for instance by (1) having the waiter state an actual
condition to wait for, rather than a variable name of a
condition variable, and (2) having potential signallers check
whether each waitable condition is true on every exit from the
monitor and signal a waiter if so, rather than having to
manually invoke signal() to wake up a waiter at the
appropriate time?

C.A.R. Hoarepresented by: Ryan O’Connor <rjo@cs.ubc.ca> Monitors: An Operating System Structuring Concept



Questions

Not to nitpick, but this has me in a bit of confusion - In the
Buffer allocation example, shouldn’t the buffer b be added to
the freepool in the release procedure? In both the examples, it
uses freepool := freepool -b, which doesn’t seem to make any
sense when releasing a buffer. Or am I missing something?

Is there any advantage of the signaled thread being given
priority over the signaling thread, as opposed to the more
intuitive (in my opinion) mechanism that the signaling thread
gets priority to finish before the signaled thread starts? It
seems to add a fair bit of complexity without any particular
discernible benefit.

C.A.R. Hoarepresented by: Ryan O’Connor <rjo@cs.ubc.ca> Monitors: An Operating System Structuring Concept



Questions

In principle, are there any differences between original monitor
propose in this paper and Java synchronized object? What
has been improved over these years.

Are the 8 principles mentioned at the end of this paper still
hold? I’m interested in how are monitors used to manage
resources in current operation systems?

C.A.R. Hoarepresented by: Ryan O’Connor <rjo@cs.ubc.ca> Monitors: An Operating System Structuring Concept



Questions

The paper states that ”Significant improvements in efficiency
may also be obtained by avoiding the use of semaphores, and
by implementing conditions directly in hardware” Are there
any systems that implement conditions in hardware like this?

Why is having a signal as the last statement in a monitor a
great simplification (aside from omitting two variables)?

C.A.R. Hoarepresented by: Ryan O’Connor <rjo@cs.ubc.ca> Monitors: An Operating System Structuring Concept


