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Abstract Planar markers enable an augmented reality

(AR) system to estimate the pose of objects from images

containing them. However, conventional markers are diffi-

cult to detect in blurred or defocused images. We propose a

new marker and a new detection and identification method

that is designed to work under such conditions. The prob-

lem of conventional markers is that their patterns consist

of high-frequency components such as sharp edges which

are attenuated in blurred or defocused images. Our marker

consists of a single low-frequency component. We call it a

mono-spectrum marker. The mono-spectrum marker can be

detected in real time with a GPU. In experiments, we confirm

that the mono-spectrum marker can be accurately detected

in blurred and defocused images in real time. Using these

markers can increase the performance and robustness of AR

systems and other vision applications that require detection

or tracking of defined markers.

Keywords Augmented reality · Spectrum analysis ·

Planar marker

1 Introduction

Estimating the relative position and orientation of a cam-

era from images is a fundamental requirement of augmented

reality (AR). The technique is used for table top interfaces

[10], registration for AR surgery systems [4] and many other
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applications, such as estimating robot position and posture

or tracking of moving objects. A planar marker is an efficient

and effective tool for this estimation in many cases.

However, these applications tend to produce images that

are blurred due to camera motion or defocused due to vari-

ations in scene depth with a fixed focal distance, and these

artifacts cause problems with typical marker detection and

identification methods. We propose a new planar marker for

mobile cameras and moving objects which can be reliably

detected even in blurred or defocused images.

Conventional markers, such as those used in ARToolKit

[9] and QR Code, have patterns with high-frequency compo-

nents such as edges or corners. These attributes make their

markers hard to detect in blurred or defocused images, which

have attenuated high-frequency components.

The problem can be solved with the marker having a

characteristic frequency spectrum. In this paper, we describe

the methods for making the new marker and detecting it in

blurred and defocused images. We call the marker a mono-

spectrum marker. The key idea is that the mono-spectrum

marker consists of only low-frequency components. The fre-

quency components pass through the low-pass filtering of

blurring and defocusing with a small loss. The markers can be

detected in real time with GPUs by analyzing their frequency

components. Our approach has a relatively high computa-

tional cost, and thus requires GPU computing. We believe

that the rapidly growing availability of GPUs on mobile

devices will make this approach to deal with blurred and

defocused images feasible.

2 Related works

The physical marker of ARToolKit [9] is a popular tool for

calibration, estimating the pose of the camera relative to the
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scene. The marker consists of a black bold frame and an

internal binary pattern. It is detected in camera images, and

its position and orientation are estimated by locating the four

corners of the black frame. The internal pattern helps to iden-

tify the marker. Other markers, such as the ARTag [6], QR

Code, and random dot markers [19] also consist of binary

edges, corners or dots of black and white.

These conventional markers are difficult to detect and

identify under conditions of image blur and defocusing,

which attenuates the high-frequency components from their

sharp edges and corners. Fiala [6] reported how much

Gaussian noise affects marker detection, but did not address

the effect of image blurring and defocusing.

Changes in marker appearance are considered in the

nested marker [18] and Bokode tag [12]. The nested marker

has a fractal structure so that it looks the same at long dis-

tance as it does at short distance, to provide distance invari-

ance. The Bokode tag consists of a light-emitting component,

which is best detected when the camera’s focal length is set

to infinity. These markers do not consider the possible loss

of high-frequency components in images.

Natural feature points such as SIFT [11] and SURF [3] also

enable one to do calibration. The feature points are detected

not in planar markers but in general objects. Systems like

PTAM [10] or DTAM [13] for registration of real environ-

ment and virtual objects are constructed based on the map of

natural features. The applications are different from those of

planar markers, since the feature points of the planar markers

are registered in a database in advance to estimate the posi-

tion and posture of target objects. Like our marker, SIFT and

SURF were designed with frequency changes in mind. They

provide frequency-shift-free tracking. However, they do not

consider the loss of high-frequency components altogether,

but rather just changes in frequency components at least when

the environmental map is reconstructed. The Fourier tag [21]

and fiducial image [15] use frequency components for iden-

tification, but the components do not contribute to robust

detection or identification in blurred or defocused images.

We also proposed a new AR marker in [1], but this marker

could not be correctly detected when viewed with a large

distortion caused by perspective projection when the plane

containing the marker is tilted with respect to the camera

plane. The problem is addressed in the current paper by the

introduction of vertical and horizontal filters. The details are

described in Sect. 3.

Several template matching methods can deal with the blur-

ring and defocusing problem. ESM-Blur [16] creates blurred

templates in advance. Image resampling [7] addresses the

problem by sequentially updating templates. The practical

disadvantage of the template matching method is that only

a few kinds of markers can be used. Conventional markers

for AR support hundreds of markers or more, as does our

mono-spectrum marker.

The failure of marker detection can be mitigated by inter-

polating the results of detection in frames [20]. The method

assumes that the detection failure occurs only in a few frames,

but this assumption is not valid when the images are blurred

or defocused.

The recovery of image quality is being studied actively

[2,17]. Blurred or defocused images are degraded images,

and the aim is to restore such images so that they are free of

blurring and defocusing. The degradation is modeled with a

point spread function (PSF). The images are restored by esti-

mating the PSF and its inverse function. However, restoration

works well only when the blurring and defocusing are small.

That means images taken with actively moving cameras can-

not be effectively restored. Note that our marker can be used

together with the restoration methods.

Blurring and defocusing parameters are used for display-

ing virtual objects on the observed images [14]. The parame-

ters are extracted from the appearance changes of the special

pattern marker of ARToolKit under the assumption that the

blurring and defocusing are not large. The appearance of the

virtual object is adjusted with the extracted parameters. Our

marker can be used to estimate parameters from blurrier and

more defocused images, making the appearance adjustment

method more usable.

3 Mono-spectrum marker design and detection

3.1 Inhibition of high-frequency components by image

blurring and defocusing

Images are blurred when the relative position between the

camera and an observed object changes during exposure.

Blur happens when either the camera or the object is mov-

ing. Although a shorter exposure time can solve the problem

in some cases, it tends to produce underlit, and thus noisy,

images.

Figure 1b depicts the frequency spectrum of the observed

image shown in Fig. 1a. With the camera moving horizon-

tally, we obtain a blurred image Fig. 1c, and its spectrum

changes as in Fig. 1d. The spectrum loses the high-frequency

components along the x-axis.

Images are defocused when the focal length of the camera

is incorrectly set for the current distance between the camera

and the object. The degree of defocusing depends on the dif-

ference between the focal distance and the distance between

the camera and the object. Short exposure time, adequate

lighting, stable cameras and objects, and appropriate focal

length would solve the above problem; however, these mea-

sures are impractical in most dynamic situations, especially

in AR applications. Moving cameras often result in blurred

images. Moreover, the focal length is either fixed or adapts

to one of many possibly scene objects.
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Fig. 1 Change of frequency spectrum due to blurring and defocusing.

a Original image, b spectrum of a, c blurred image, d spectrum of c,

e defocused image, f Spectrum of e

A defocused image is shown in Fig. 1e; its spectrum

changes can be seen in Fig. 1f. The spectrum of a defocused

image loses high-frequency components in all directions.

Conventional markers are designed without considera-

tion of the circumstances where high-frequency components

are lost. They are difficult to detect in blurred or defocused

images.

3.2 Design of the mono-spectrum marker

We present the design of our marker, which is designed to

be invariant to the blurring and defocusing artifacts described

above. The extraction method covers both detection and iden-

tification of the marker in the observed images.

The mono-spectrum marker consists of the pattern shown

in Fig. 2, a two-dimensional sinusoidal intensity pattern with

multiple colors that looks like a pattern of blurry dots to

the observer. We designed the marker so that its brightness

changes at a single low frequency. This low-frequency com-

ponent is little affected by blurring and defocusing. Hence,

the regions in the observed images corresponding to the

markers also have a single low-frequency component.

H

S

V

Fig. 2 Design of the mono-spectrum marker

The color value of each position of the mono-spectrum

marker is given in hue, saturation, and value (HSV) color

space. The values of H, S and V are determined as follows.

A special H value, yellow in our experiment, is reserved

for the corner dots of the marker. That is, colors excluding

yellow are used for dots that are not corners. The markers

are identified through the alignment of the colors of dots.

Individual colors should be distinguishable even when they

are slightly changed in the images. We empirically used 6

colors for making markers. A larger number of colors will

not be distinguishable in various illumination conditions.

The value of S is set to the maximum value for each posi-

tion.

The value of V changes with the single low-frequency

component. The regions of the markers are distinguished

from other regions by using the characteristic frequency spec-

trum. Let us denote by r the distance from the center of

region, and L the width and height of a square region. The

value of V ∈ [0, 1] is defined as follows:

V =

{

(1 − α)
(

cos 2πr
L

)

+ α,
(

r ≤ L
2

)

0, (otherwise)
(1)

where α is the offset of the brightness. By adjusting α, we can

give the center of each dot a brightness which can be retained

in both the printed paper and captured image. An appropriate

value for α can be found by checking whether the dots are

clearly perceivable in the printed paper, like the one shown

in Fig. 2. We set α = 0.1 in our experiments. Image blurring

and defocusing can be assumed to be low-pass filters with a

certain cut-off frequency value. The frequency components

of the center of the regions should be smaller than the cut-

off frequency value. If they are filtered out by blurring or

defocusing, the marker detection will fail.

3.3 Number of possible marker patterns

Corner dots have a reserved color. Figure 3 shows rotationally

identical dots. The dots indicated with the same shape are

rotationally identical for the rotation angles of 0◦, 90◦, 180◦,

and 270◦. A group of same color dots matches another group

of dots when the marker is rotated. A 4 × 4 marker has 4

groups of 3 dots. We denote by d the number of dots on an
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(b)(a)

Fig. 3 Groups of dots that are rotationally identical. a 4×4 Dot marker,

b 5 × 5 dot marker

edge. In case of the 4 × 4 marker, d is 4. According to the

Cauchy–Froebenius theorem [5], when d is odd, a marker

has 4 groups of u1 = (d − 1)(d + 1)/4 − 1 dots together

with an independent dot at the center of marker. When d is

even, a marker has 4 groups of u2 = (d/2)2 − 1 dots. The

number of patterns that m colors are assigned to the groups

of dots is calculated as the following.

⎧

⎨

⎩

m
(

m4u1+m2u1 +2mu1

4

)

, (If d is odd)
(

m4u2 +m2u2 +2mu2

4

)

. (If d is even)
(2)

The number of patterns is 825 when m = 5 and d = 3,

and 544, 207, 356 when m = 6 and d = 4. m and d should

be set in consideration of the size of markers, robustness of

marker extraction, and required number of patterns.

3.4 Extraction of mono-spectrum marker

Figure 4 shows an overview of marker detection and identi-

fication. We remove the zero frequency components (Step 1)

and band-pass filtering of each region (Step 2) in the observed

images. The corner dots are detected by referring to the col-

ors of the regions (Step 3). Valid corner dots are selected by

a segmentation of the original image. The mono-spectrum

markers are then detected and identified (Step 4). We describe

each step in detail below.

Step 1 Remove zero frequency component.

Let us denote the signal of mono-spectrum markers as f (x)

and that of other objects as g(x).

Geometric transform together with a perspective projec-

tion changes not only the frequency, but also the amplitude

of the signal. The illumination also adds an offset to the sig-

nal. Therefore, the signal of the observed marker usually has

a wider range in the frequency domain as shown in the left

column of Fig. 4. In the regions corresponding to the mono-

spectrum marker M and the ones of the other regions N , the

following signals of different features are observed since the

Fig. 4 Extraction of mono-spectrum marker from observed images
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signals are projected on the images:

M : f̃ (x) + c, (3)

N : g̃(x) + c. (4)

f̃ and g̃ means that f and g are transformed with a perspec-

tive projection. c is the DC (Direct Current) offset.

In Step 1, we remove the DC components from the original

signals. The high-pass filter b0(x) that cuts off only the DC

component is convolved with the observed signals.

M : ( f̃ (x) + c) ∗ b0(x) ≈ f̃ (x), (5)

N : (g̃(x) + c) ∗ b0(x). (6)

Since f (x) originally consists of a single frequency, f̃ (x)

should have a transformed single frequency and a little wider

range. Thus, f̃ (x) passes through the filter b0(x) in M . On the

other hand, g(x) would consist of various frequency compo-

nents, and g̃(x) should not pass through the filter b0(x) in N .

The GPU convolves the band-pass filters in the space domain

in real time as described in Algorithm 1.

Algorithm 1 Remove zero frequency component

1: x = threadid.x, y = threadid.y, sum = 0.0.

2: for (xw, yw) ∈ f ilter Window0 do

3: sum = sum + s(x + xw, y + yw) ∗ b0(xw, yw).

4: end for

5: s0(x, y) = sum.

Step 2 Band-pass filtering.

In the next step, all small regions are band-pass filtered.

Although f (x) is known in the original marker image,

f̃ (x) is unknown in the observed image. f̃ (x) no longer

appears to be mono-spectrum in the observed image because

of perspective or the inclination of marker plane. In addition,

neither the location nor the range in the frequency domain

is known for the marker in the observed image. To solve

the problem, we use multiple vertical and horizontal band-

pass filters that have different pass bands. We still can expect

that most frequency components are located within a cer-

tain range of the transformed single frequency at least along

the vertical and horizontal lines. There should be one or more

vertical and horizontal filters that pass the signal with a small

loss.

Denoting bv
i (i ∈ (1, . . . , nv) = Nv) and bh

j (i ∈

(1, . . . , nh) = Nh) as vertical and horizontal band-pass fil-

ters, and s(x) as the observed image; the following region R

is calculated as the candidate region of the mono-spectrum

marker.

di f f v
i (x, y) =

∣

∣

∣

∣

∣

∣

∣

∣

(s ∗ b0 ∗ bv
i )(x, y) − (s ∗ b0)(x, y)

(s ∗ b0)(x, y)

∣

∣

∣

∣

∣

∣

∣

∣

,

di f f h
i (x, y) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(s ∗ b0 ∗ bh
j )(x, y) − (s ∗ b0)(x, y)

(s ∗ b0)(x, y)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

Rp =
{

(x, y)
∣

∣(s ∗ b0)(x, y) > th p

}

,

Rv =
{

(x, y)
∣

∣ ∃i ∈ Nv, di f f v
i (x, y) < thr

}

,

Rh =

{

(x, y)

∣

∣

∣
∃ j ∈ Nh, di f f h

i (x, y) < thr

}

,

R = Rp ∩ Rv ∩ Rh, (7)

where th p is the threshold of absolute brightness and thr

is the threshold of relative remaining power. The thresholds

should be appropriately defined depending on the average

brightness of captured images. Auto white balance function

helps to define the appropriate values of th p and thr , and

the function is generally implemented in recent consumer

cameras. All the experimental results in Sect. 4 are given

with the same parameters, which th p was set to 0.05 and thr

was set to 0.20.

The band-pass filters bv
i and bh

j are designed in the fre-

quency domain. The shape of each filter is determined by

a particular band to be passed. An inverse Fourier transfor-

mation generates bv
i and bh

j in the space domain. The filter

passing the signal with period of N1 pixels to N2 pixels in

the space domain is designed such that values are 1 for 1/N2

to 1/N1 in the frequency domain.

The pseudo-code for detecting the candidate regions of

the mono-spectrum markers is shown in Algorithm 2.

Algorithm 2 Detect marker candidate regions

1: candidateRegion = φ.

2: x = threadid.x, y = threadid.y.

3: if s0(x, y) > th p then

4: for i ∈ N do

5: sumv = 0.0.

6: for xw ∈ f ilter Windowv
i do

7: sumv = sumv + s0(x + xw, y) ∗ bv
i (xw).

8: end for

9: if ||sumv − s0(x, y)||/s0(x, y) < thr then

10: sumh = 0.0.

11: for yw ∈ f ilter Window j do

12: sumh = sumh + s0(x, y + yw) ∗ bh
j (yw).

13: end for

14: if ||sumh − s0(x, y)||/s0(x, y) < thr then

15: candidateRegion = candidateRegion ∪ (x, y).

16: end if

17: end if

18: end for

19: end if

Step 3 Corner detection.

The corner dots of the mono-spectrum markers have the

selected H values and large S values. The corner dots are

detected by searching for these values in the detected marker

regions in Step 2. The centers of the dots have local maxima.

A window with size corresponding to the filter frequency is
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set around each pixel of the marker regions. If a pixel has the

maximum value in its window, the pixel is a candidate of the

corner dots.

We avoid false detections of corner dots by first smoothing

the observed images to remove the noise of the observed

images. The set of the candidate corner dot pixels can be

also calculated in real time with the use of the GPU.

Step 4 Detection and identification.

Valid corner dots are selected from candidates of detected

corner dots in this step. The binarized image of the original

image is divided into segments. The number and positions

of candidates are checked in each segment. If three or fewer

candidates are detected in a segment, these candidates are

removed. False-positive candidate corners may be extracted

especially from a cluttered background, counting four cor-

ners in a binarized segment guarantees that only the true cor-

ners of mono-spectrum markers are detected. The ARToolKit

method removes falsely detected corners in a similar man-

ner. The method can detect multiple markers in an observed

image.

The centers of the four corner dots give a homography

which projects from the marker coordinates to the coordi-

nates of the observed image. The position and posture of the

marker are represented with the homography. The pattern

of the marker is also recognized with the homography. The

marker in Fig. 2 has 3 × 3 dots. The H values of the dots

are put on a lattice that is defined by the four corners. The H

values represent the marker pattern. The marker in the image

is identified by matching it with stored patterns of markers.

After the identification, the centers of the four corners

are refined by parabola fitting [8]. The brightness peaks of

parabolas define final positions of the corner dots.

4 Experimental results

In order to assess the viability and performance of the new

mono-spectrum marker, we ran two experiments: one with

artificially blurred and defocused images (so we could con-

trol the magnitude of the artifacts), and one with real-world

blurred and defocused imagery.

A marker was observed with a USB camera (Qcam S7500

of Logicool Corporation) whose resolution was 640 × 480

pixels and frame rate was 15 fps. We used the auto-white-

balance function of the camera. The marker was detected

using our mono-spectrum method as well as ARToolKit

method running on a desktop PC (OS: Windows XP, CPU:

Intel Core 2 Duo 2.66 GHz, GPU: NVidia GeForce GTX295

896 MB). Our program was implemented with CUDA 4.0.

Two pairs of vertical and horizontal band-pass filters were

used for detecting the mono-spectrum marker. One pair of

the filters passed a signal with a period of 7–15 pixels, and

the other passed a signal with 15–31 pixels. Thus, a 3 × 3

Fig. 5 Results of marker detection on blurred and defocused images.

(top-left) Original image of 67th frame. (top) Blurred ((b) and (c))

or defocused ((d) and (e)) images. (middle) Teapots placed on the

marker positions detected as an ARToolKit marker. The marker was

not detected when images were blurred and defocused, and detected

on farther positions when images were defocused. (bottom) Teapots

placed on the marker positions detected as a mono-spectrum marker in

the blurring image. The marker positions were correctly estimated. The

marker could not be detected in severely defocused image. a Original

image, b σt = 4.0, c σt = 7.0, d σx = 4.0, e σx = 7.0
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(a) (b) (c) (d)

Fig. 6 Results of marker detection. (top) Average errors of four corner positions of detected markers as ARToolKit markers. (bottom) Errors as

mono-spectrum marker. The x-axis is the number of frames, and the y-axis is the error. a σt = 4.0, b σt = 7.0, c σx = 4.0, d σx = 7.0

(a) (b)

Fig. 7 Errors and processing time. a Errors and processing times (ms/frame) of marker detection (Not including frames in which markers could

not be detected.), (b) processing time versus number of band-pass filters

marker should be observed as 21–93 pixels in width and

height.

In the first experiment, images s(t) (t = 0, . . . , 510) were

captured with a moving camera. The movement of the camera

was small so that the images would not be blurred. The focal

length of the camera was appropriately set, so the images

would not be defocused.

Next, the images were artificially blurred and defocused

in the following way. Blurred images sB(x, t) were gener-

ated by summing the weighted values in H(−t)G(0, σ 2
t ) of

pixels of the neighboring frames. H(−t) is the Heaviside

function and G(0, σ 2
t ) is a Gaussian function with variances

σt defining the degree of blurring.

The defocused images sD(x, t) were generated by sum-

ming the weighted values in G(0, σ 2
x ) of pixels of the neigh-

boring pixels with variances σx defining the degree of defo-

cusing.

The results of marker detection for the blurred images and

the defocused images are shown in Fig. 5. The top images

in Fig. 5 are the ones of 67th frame in the movie. Figure 5b

and c are examples of blurred images, and Fig. 5d and e

are defocused ones. ARToolKit could not detect markers in

blurred images with σt = 7.0 and defocused images with

σx = 7.0 of Fig. 5. ARToolKit markers tend to be detected

on farther positions in defocused images. The position of

mono-spectrum markers were estimated more correctly than

those of ARToolKit markers.

Figure 6a shows the average error of the extracted four cor-

ners from the blurred images when the marker was extracted

using ARToolKit. We assumed that the correct position of the

corners of the marker was the one estimated with ARToolKit

from the original observed images without blurring or defo-

cusing. The error was calculated for the estimated position

from the blurred or defocused images. The error is infinity

when no marker is detected.

Figure 6a shows that the ARToolKit marker and the mono-

spectrum marker could be detected the all frames. Since blur-

ring makes it difficult to detect edges perpendicular to the

moving direction of the camera, mono-spectrum marker gave

a smaller error, although it was not negligible. When more

blurred as shown in Fig. 6b, the markers could not be detected

in several frames since the low-frequency components of the
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Fig. 8 Marker detection in various illumination and various scales,

indoor and outdoor. The images were captured by Logicool Qcam Pro

9000 with auto white balance, autoexposure and autofocus functions.

The teapots are placed at the center of the detected markers. Even though

several images are blurred or defocused, the markers could be robustly

detected. Especially, the images in the third column include cluttered

backgrounds, which consist of the same frequency components with

mono-spectrum dots. The mono-spectrum marker could be correctly

detected even in the images
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mono-spectrum marker were severely attenuated with sig-

nificant blurring. The average and variance of the error are

listed in Fig. 7a.

Figure 6c shows the errors in defocused images. Although

the ARToolKit marker could be detected in all frames, the

error was large on average. The mono-spectrum marker was

extracted in all frames, and the error was smaller than the

error of ARToolKit. Image defocusing makes the ARToolKit

marker appear smaller and results in a larger error. The error

of the mono-spectrum marker is the same level as in the case

of image blurring. When more defocused as shown in Fig. 6d,

both of markers were not detected in several frames, since

the low-frequency components were severely attenuated as

well as the case of blurring.

Processing times for our mono-spectrum marker approach

are listed in Fig. 7b. For 640 × 480 pixel images, 15 or more

frames were processed per second, therefore the operation

was almost real time. We used two pairs of vertical and

horizontal band-pass filters for the signal with a period of

7–15 pixels and the ones with a period of 15–31 pixels in the

above experiments. More filters give a wider depth range of

detection, but also use more processing time. Consequently,

we examined the change in processing time by varying the

number of filters. Since a bandpass filter with a period of

31–63 pixels was employed as the third one, the 3×3 marker

can be observed as 189 × 189 pixels. Figure 7b shows the

relationship between the number of pairs of filters and the

processing time. For the image resolution of 640 × 480 pix-

els, the processing time was 5.1 ms per band-pass filter on

average. For 320 × 240 pixel images, the processing time

was 1.2 ms per band-pass filter on average.

More experimental results are shown in Fig. 8. Figure 8

shows the marker detection in various illumination scenes

including in indoor and outdoor, and various scales. The

images are captured by a moving camera. The markers could

be robustly detected even in blurred or defocused images.

The results shown in Fig. 8 were generated with the parame-

ter setting. The number and supporting range of the filters do

not require further tuning in the cases. The additional filter

supporting a period of 31–63 pixels enables us to detect a

3 × 3 marker observed as 189 × 189 pixels, although more

number of filters takes more time as mentioned above.

5 Conclusions

We proposed a mono-spectrum marker that can be accurately

extracted even from blurred or defocused images. The marker

has only a low-frequency component. Band-pass filters that

pass different frequency components are used for extracting

the mono-spectrum marker. In an experiment, the marker was

accurately extracted from blurred or defocused images in real

time.

Processing without GPUs is also a future topic. GPUs

were used for band-pass filtering. They can filter in parallel

all pixels. ARToolKit has an advantage in processing time and

required PC specs. The need to use GPUs would restrict the

applications of the mono-spectrum marker. The disadvantage

could be overcome with digital signal processors (DSPs).

DSPs are used in mobile devices for processing voice signals,

and filtering voice signals is a major function. Such a function

could be used for extracting the mono-spectrum marker. On

the other hand, GPUs are also mounted on into recent mobile

devices. They would be useful for extracting mono-spectrum

markers.
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