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Abstract—We present a real-time monocular vision based
range measurement method for Simultaneous Localization and
Mapping (SLAM) for an Autonomous Micro Aerial Vehicle
(MAV) with significantly constrained payload. Our navigation
strategy assumes a GPS denied manmade environment, whose
indoor architecture is represented via corner based feature points
obtained through a monocular camera. We experiment on a case
study mission of vision based path-finding through a conventional
maze of corridors in a large building.

I. INTRODUCTION

The complexity of urban environments poses unique

challenges and risks for the military forces to conduct

urban operations. The capability of vision based SLAM

in an autonomous MAV can provide vital information for

situation awareness. A vision-based solution does not emit

light or radio signals, it is portable, compact, cost-effective

and power-efficient. Such a platform has a broad range of

potential military applications including navigation of robotic

systems and soldier position localization with wearable or

helmet-mounted devices. Moreover, an MAV with the ability

to hover can play a key role in Intelligence, Surveillance and

Reconnaissance missions held at GPS denied environments

which are not suitable for fixed wing flight.

Nonetheless, the limitations on payload, size, and power,

inherent in small MAVs, pose technological challenges due

to the direct proportionality in between the quality and

the weight of conventional sensors available. Under these

circumstances, a theory for developing autonomous systems

based on the information gathered from images is appealing,

since a camera possesses a far better information-to-weight

ratio than any other sensors available today. On the other

hand, it breeds another rich kaleidoscope of computational

challenges. For instance, there is no standard formulation of

how a particular high level computer vision problem should

be solved, albeit a plethora of the methods proposed for

solving well-defined application specific problems that can

seldom be generalized.

Indoor flight of a rotorcraft MAV, where no GPS signal

is available, is a collective effort of two main challenges;

platform attitude management, and path planning. The

former is straightforwardly automated via lightweight sensors

Fig. 1. Potential applications of vision-based navigation in GPS denied
environments.

such as gyroscopes and with minimal information about

the environment, or even lack thereof. Whereas the latter

requires gathering and aggregation of excessive amounts of

information about the surroundings, particularly true for a

vehicle that would be destroyed upon the slightest impact with

the surroundings. The stringent weight requirements of MAVs

prevent the use of standard obstacle sensing mechanisms

such as laser range-finders, and parabolic cameras [1], [2].

However, the machine vision technology has evolved so as

to allow for cameras less than an ounce in weight with a

decent picture quality, and such a video stream includes more

information about the surrounding environment than other

sensors alone can provide.

Nevertheless, this information comprises a surpassingly

high level of abstraction and redundancy, which is particularly

aggravated in cluttered environments. Therefore it requires

acutely specialized knowledge to interpret. Ironically, the

lack of such knowledge is often the main motivation behind

conducting a reconnaissance mission with an MAV. Therefore

the technique used in navigating an MAV by vision alone

must assume minimal a priori knowledge, while it still

provides reliable results. The MAV needs to construct a

collective view of its unknown environment in order to

navigate through it. Nevertheless, even after three decades of
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research in machine vision, the problem with “understanding”

sequences of images stands bordering on being uninfluenced.

We propose a method for gathering useful landmarks from

a monocular camera for SLAM use. We make use of the

corners by exploiting the architectural features of the manmade

indoors. Our decision to use corners is particularly due to the

level of the consistency that corners can offer for the purpose

of understanding the surrounding environment. A corner is a

consistent feature for a variety of reasons, but the following

three are particularly important. First, corners are unlikely

to change their position in three dimensional space. Second,

corners are relatively convenient to detect and track. Third,

the positions of corners can be further exploited to infer about

the location and size of surrounding walls. The contribution of

this paper is a new absolute range and bearing measurement

algorithm using a monocular camera. Such measurements can

be used for a vision-based navigation and SLAM problem in

an unknown indoor environment.

A. Related Work

There are two main technological challenges associated

with the mono-vision based SLAM problem: the lack of

absolute depth information, and the development of robust

SLAM algorithms. Since an image is a projection of a three

dimensional world on a two dimensional surface, it is merely

a shadow. Hence it contains no depth information to those

without extensive knowledge pertaining to its content. To

mitigate the complications entailed by the absence of direct

depth information, some alternative approaches have been

tried involving the attachment of additional sensors to a

camera, such as laser range finders [3] and cross validating

the precise depth information provided by the laser range

finder with the interpretations from the camera. However,

such a technological advantage is a luxury for an aircraft

of miniature proportions, it is more appropriate for a land

based robot with no practical weight constraints. Even if a

laser range finder could be designed as light as a camera,

they have a shorter range than cameras, and they make a one

dimensional slit through the scene versus the two dimensional

signal created by a camera.

Using a camera with an adjustable focus via moving

lenses have been discussed in the literature [4] owing to

the depth-of-field effect and the Scheimpflug Principle [5],

in which the distance in front of and beyond the particular

subject in front of a camera appearing to be out of focus when

the lens axis is perpendicular to the image plane. Therefore,

the distance of a particular area in an image where the

camera has the sharpest focus can be acquired. Nonetheless,

the focus of interest may not be an useful feature to begin

with. The other reasons rendering these methods far from

practical for our application include calibration issues specific

to different cameras and lenses, and limitations of cameras

currently available that are suitable for MAV use. In addition,

unless the lenses can be moved at approximately 30 Hz, this

approach will significantly reduce the sensor bandwidth.

Binocular cameras for stereo-vision have been promising

tools for range measurement for purposes of path planning

and obstacle avoidance where the computer compares the

images while shifting the two images together over top

of each other to find the parts that match. The disparity

at which objects in the image best match is used by the

computer to calculate their distance. Nonetheless, binocular

cameras are heavier and more expensive than their monocular

counterparts. Moreover, stereo-vision has intrinsic limitations

in its ability to measure the range, particularly when large

regions of the image contain a homogeneous texture such as a

wall or a carpet. Furthermore, human eyes change their angle

according to the distance to the observed object to detect

different ranges, which represents a significant mechanical

complexity for a lens assembly and a considerable challenge

in the geometrical calculations for a computer.

The literature recognizes MonoSLAM [6] an elegant ap-

proach to vision based SLAM with minimum assumptions

about the free movement of the camera, it may be summarized

in three steps as follows, detect and match feature points,

predict motion via analyzing feature points with error esti-

mates, and update a map with locations of feature points. This

results in “a probabilistic feature-based map, representing at

any instant a snapshot of the current estimates of the state

of the camera and all features of interest and, crucially, also

the uncertainty in these estimates”[6]. These error estimates

mentioned, along with the map containing all known feature

points, allow the algorithm to correct for drift when a feature

point is rediscovered, providing a precise tracking system in

which other than a standard initialization target defining the

origin and orientation of the world coordinate frame. However,

MonoSLAM assumes an extensive feature initialization proce-

dure, and is not meant to leave the immediate vicinity of the

starting position. In case it did so, with so many new features

being introduced, using “image patches” as feature points, in

which, small portions of the scene are stored in the memory

for later reference via correlation, the increasing number of

possible feature points would quickly become overwhelming

for the computer mounted on an MAV with limited power and

system resources. In addition, corners are better (i.e. more

rigid) features in overall, considering the features used in

MonoSLAM experiments. Moreover, MonoSLAM assumes a

hand-held camera with a limited range but in contrast, the

camera in this paper should be able to move through, for

instance, an entire floor of a building, and still be able to

maintain the track of its relative position. We address these

issues in the next sections.

II. THE PLATFORM

As a test platform, we are using an electric powered MAV.

Fully loaded weight is 2lbs, with up to 10 minutes endurance,

and 1 mile of effective combat range. Mechanically identical

to her full size counterparts the MAV features true-to-life

344



collective pitch helicopter flight dynamics. The flight stability

and control is handled via an on-board IMU and autopilot

unit from Micropilot[8] that uses two yaw gyroscopes, two

roll and pitch gyroscopes, planar accelerometers, barometric

and ultrasonic altimeters, and a magnetic compass to achieve

flight control.

Fig. 2. The MAV used in our experiments

Since the MAV does not have any GPS reception indoors,

the autopilot is merely responsible for governing the PID loops

aileron from roll, elevator from pitch, and collective (mixed

with throttle via a quadratic function specific to aircraft) from

altitude to keep the MAV at hover. In other words the autopilot

is flying the MAV but not navigating it, since it has no way of

measuring the consequential results of its actions. Navigation,

including obstacle avoidance and Simultaneous Localization

and Mapping (SLAM) are to be performed by vision.

III. FEATURE EXTRACTION FROM LIVE VIDEO STREAM

In order to produce a reliable solution for tracking motion

and trajectory, it is essential to have a reliable method for

feature extraction in which feature points are consistently

extracted from an environment whenever a feature is in the

field of view of the camera. Furthermore, the set of features

selected should be large enough to allow for accurate motion

estimations, but at the same time, sparse enough so as not

to create a negative impact on the system performance.

[10] has addressed several different approaches as to what

constitutes to a “better” feature and what not, such as

texturedness, dissimilarity, and convergence. According to

Shi and al. sections of an image with big eigenvalues are to

be considered “good” features. The general method involves

calculating the minimal eigenvalue for every source image

pixel in the image, followed by a non-maxima suppression

in 3x3 neighborhood remain. The features with minimal

eigenvalue less than a threshold value are rejected, leaving

only stronger features.

Although a promising method, there are a few pitfalls to

its operations. For instance, the method will get attracted to

Algorithm-1: Harris Corner Detection Algorithm
1 I = CaptureFrame().
2 I = rgb2gray(I).
3 Consider an image patch over the area (u, v), shifted by (x, y).
4 Calculate sum of square difference between (u, v) and (x, y).
5 A = approximate S with a 2nd. order Taylor series expansion.
6 Express A in derivatives of I. (angle brackets denote averaging)
7 Determine eigenvalues of A.
8 IF(both eigenvalues remain nearly zero)
9 THEN, There is no feature of interest at this pixel.
10 IF(eigenvalue[1] � 0 AND eigenvalue[2] � 0)
11 THEN, An edge is found.
12 IF(both eigenvalues are distinct positive values)
13 THEN, A corner is found.

a bright spot on a glossy surface, which will perhaps be the

reflection of ambient lightning, therefore an inconsistent, or

worse, deceptive feature. Considering indoor environments of

manmade architectures, corners of the architecture provide

a rigid single point of identification which makes the

comparison of features scalable. Corners are also consistent

about their location in space, that is to say it is unlikely to

find the corner of a wall move to a different location. Corner

detection works on the principle that if a small window is

placed over an image, and if that window is placed on a

corner, then if it is moved in any direction there will be a

large change in intensity. If the window is over a flat area of

the image then there will be no intensity change when the

window moves. If the window is over an edge there will only

be an intensity change if the window moves in one direction.

If the window is over a corner then there will be a change

in all directions. This well established probabilistic technique

for identifying corners in an image is the Harris - Stephens

- Plessey Corner Detection Algorithm [7]. The Algorithm-1

describes our implementation and use of this method.

IV. MOTION AND MAPPING ESTIMATION

After the corner extraction process is complete for the

current set of feature points (i.e. corners) within the field of

view of the camera, the next step is to exploit the relative

point locations in response to the movement of the MAV

and attempt to determine the structure of the elements that

may lay ahead, such as walls and corridors. Other relevant

information to be extracted in this step includes the speed,

direction and degree of motion.

Nevertheless, this set of corners is likely to have redundant

features in it, such as corners that do not belong to the

boundaries of the architecture. We are more interested in

corners that provide hints about the shape and structure of

the architecture the MAV is flying through, particularly those

that we refer to as the “golden four”. The golden four is

the four particular corners that indicate a wall or an opening

(e.g. door) approximately perpendicular to the pitch axis

of the MAV, so we can we adjust the attitude and position

with respect to those four corners, which ensures the MAV

is always flying at the middle point of the hallway. Edge
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detection and analysis helps reveal the likelihood of detected

corners being a golden four. The MAV features an onboard

digital magnetic compass which measures the bearing of

the MAV in degrees along the yaw axis with respect to the

magnetic North. The computed heading of the MAV is cross

validated with the true heading from the compass.

A. Range Measurement in a Hall Way

We begin the range and bearing measurement by assuming

that the height of the camera from the ground, H , is known

a priori, which equals the altitude of the MAV, and is conve-

niently and precisely measured using the ultrasonic altimeter

onboard. For another application, where a human carries a

helmet-mounted monocular camera (see Fig 1), obtaining such

height information is trivial. The camera is pointed at the

far end of the corridor, but slightly tilted down with an

angle β, which is measured by the tilt sensor on the MAV.

And X denotes the distance from the normal of the camera

with the ground, to the first detected corner (see Figure 3).

The two lines that define the ground plane of the corridor

are of particular interest, indicated by blue arrows in Figure

4. By applying successive transformations [23], [25] among

the camera image frame, the camera frame, and the target

corner frame, we can compute the slope angles for these lines,

denoted by φ in Figure 5.

tanφ1 =
H

Wl cos β
= L1, tanφ2 =

H

Wr cos β
= L2 (1)

Using the (1) we determine the individual slopes, L1 and L2. If

the left and right corners coincidentally have the same relative

distance, Wr + Wl gives the width of the corridor as shown

in Figure 4. Equation (2) shows how these coordinates are

obtained for the left side of the hallway.

uL = uo +
α(Wl)

cos βx + sin βH
vL = vo +

cos βH − sin βx

cos βx + sin βH
(2)

where (uL, vL) and (uR, vR) denote the perspective-projected

coordinates of the two corners at the left and right side of

the corridor. It should be mentioned that we wrap (u, v) with

a radial distortion [6] to find a more accurate location of the

corners on the image frame. In addition, the ratio of the camera

focal length to the camera pixel size is given by

α =
f

d
(3)

From the two equations given in (2), we can solve for H in

(4).

H =
αWl

uL − uo
sin β +

(
vL − vo

uL − uo

)
Wl cos β (4)

For the sake of simplicity, we can introduce C as follows.(
1− vL−vo

uL−uo

1
L1

)
H = αWl

uL−uo
sin β

C =
(
1− vL−vo

uL−uo

1
L1

) (5)

Fig. 3. The image shows a conceptual cutaway of the corridor from the left.

Fig. 4. The image shows the three dimensional representation of the corridor
and the camera.

Finally, we solve for the longitudinal distance X and the

transverse distance Wl, by combining the preceding equations:

Wl = (uL−uo)H
α

√
C2 + α2

(uL−uo)2L2
1

assume that, uL > uo

cos β = H
WlL1

X =
(

αWl

uL−uo
− sin βH

)
1

cos β

(6)

The same process can be repeated for any number of corners,

including the corners on the other side. In essence, exploiting

the certain geometry of the corners present in the corridor, we

can compute the absolute range and bearing of the features

(corners) needed for the SLAM formulation.

B. Corner SLAM formulation

Let us consider one instantaneous field of view of the

camera, shown in Figure 6, in which the center of the four

corners (shown in red) is shifted. Note that the proposed

method uses only the ground corners (corners 3 and 4 in the

figure). From the distance measurements in (6), we can derive

the relative range and bearing of a corner of interest as follows

y = h(x) =
(√

X2 + W 2

tan−1(±W
X )

)
, (7)

which can be related with the states of the vehicle and the i-th
corner (landmark)at each time stamp (k) as follows

yi(k) =

(√
(xr(k)− xci(k))2 + (yr(k)− yci(k))2

tan−1( yr(k)−yci(k)
xr(k)−xci(k) )− θr(k)

)
+ w(k)

(8)
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Fig. 5. The image plane of the camera.

Fig. 6. 3D representation of an instantaneous shot of the MAV-camera flying
through a corridor towards a wall, with bearing angle θ.

For simplicity, we focus on the two-dimensional car-like

vehicle model [13], [14] as our vehicle dynamics. Indeed, the

dynamic model of MAVs with an autopilot system that takes

care of the altitude hold resembles a car-like kinematic model.

The extended Kalman filter (EKF) [13] based SLAM formu-

lations can be used to simultaneously estimate the vehicle pose

and the location of the corners. In particular, we make use of

the compressed EKF SLAM algorithm, presented in [22], that

can significantly reduce the computation requirements when

the vehicle navigates for a long period of time. A more so-

phisticated method such as FastSLAM [14] is a subject of the

future work. Since the Kalman filters of the autopilot system,

which incorporates the IMU/gyroscope and electronic compass

measurements, output the heading information, we are only

concerned about providing the global metrology system in the

absence of the GPS signal. We have to simultaneously locate

Fig. 7. The world as seen from the MAV. Green dots represent useful corners,
blue circles represent corners that are currently considered for measurement.
The yellow lines represent the slope measurements.

Fig. 8. The visual radar that displays the MAV, and features used for
SLAM calculations. An elliptical feature represents the uncertainty in the
ellipse direction. Therefore a large ellipse represents an inconsistent feature.
Such features are introduced when external disturbances are present. The arc
represents the current range of the visual radar, which is is a variable we adjust
based on the resolution of the camera such that features at very far distances
where the resolution is inadequate for a high quality feature detection are
disregarded. As illustrated in the figure, our system has correctly located the
corner locations.

the landmarks (corners shown in red in Fig 5), as well as the

vehicle states xr, yr, θr described by

x(k + 1) =

⎛
⎝cos θr(k)u1(k) + xr(k)

sin θr(k)u1(k) + yr(k)
u2(k) + θr(k)

⎞
⎠+ γ(k) (9)

where the linearized input signal noise γ(k) can be represented

by [22]

γ(k) =
∂F

∂u
|kγu(k) + γf (k) (10)

The standard EKF routines iterate the prediction step and

measurement update step using the Jacobian matrices obtained

from (8) and (9). Care must be taken to determine if the

detected corners exist and can be associated with the existing

corners in the map. This data association problem also decides

if a new corner is sufficiently different from the existing ones

to warrant a new land mark. For the data association, the

measure of the innovation is written as

Iv = (y(k)− h(x(k)))T S−1 (y(k)− h(x(k))) (11)

and the innovation covariance S is given by

S =
∂h
∂x

P
∂h
∂x

T

+ R (12)
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where P is the error covariance matrix, and R is the co-

variance matrix of the measurement noise. As a result, the

preceding formulation solves the SLAM problem, thereby

simultaneously estimating the pose and orientation of the MAV

with respect to the corners as well as the location of the

corners. Our preliminary experiments with a 2 mega-pixel web

camera with α = 281.49 achieved accurate range measurement

as depicted in Figs. 7 and 8.

C. The Mapping Function

As the MAV moves through the scenery, every incoming

video frame is processed for presence and behavior of good

corners, which are then passed as landmarks to the SLAM

algorithm to calculate and return motion parameters to the

radar screen, which is a six degree-of-freedom description

that includes information about pitch, roll, and collective

actions of the MAV. Mapping function uses these parameters

to plot the detected motion trajectory, with the assumption

that the MAV is a unit sphere, initially centered at origin,

C(x, y, z). A vector starting at the center of this sphere with

unit magnitude and a direction represents the gimbal angle

where the camera is pointing. Every time the MAV makes

a move a corresponding motion parameter is generated, the

direction of the vector changes accordingly, therefore a new

intercept point is calculated. Every time the MAV moves the

sphere center is moved accordingly to this new interception

point.

V. CONCLUSION

This paper introduced the implementation of a vision based

SLAM and navigation strategy for an autonomous indoor

MAV, and tested it in a vision based path-finding mission

through hallways of a building as an indoor airborne naviga-

tion and mapping system. Since our system uses a light-weight

monocular camera, able to measure ranges to ggod features,

and does not depend on GPS coverage, a practical solution is

born for autonomous indoor flight and navigation. Our design

is also robust in the sense it does not depend on extensive

feature finalization procedures. Airborne SLAM is still at its

infancy, nevertheless its capabilities over conventional sensors

stimulates future research. Our system is only limited by

the capabilities of the camera and the availability of good

corners. Many of the current limitations in airborne SLAM

are also governed by the computational power-per-ounce ratio

of computers which affects the real-time quality of service of

any algorithms involved. This problem can be addressed by

by removing the computer from the helicopter and processing

video on the ground control center, which brings a limit to the

effective range of the aircraft as a compromise.
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