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The monoamine oxidases (MAOs) are flavin-containing amine oxidoreductases
responsible for metabolism of many biogenic amine molecules in the brain and
peripheral tissues. Whereas serotonin is the preferred substrate of MAO-A,
phenylethylamine is metabolized by MAO-B, and dopamine and tyramine are nearly
ambivalent with respect to the two isozymes. β-Carboline alkaloids such as harmine,
harman(e), and norharman(e) are MAO inhibitors present in many plant materials, including
foodstuffs, medicinal plants, and intoxicants, notably in tobacco (Nicotiana spp.) and in
Banisteriopsis caapi, a vine used in the Amazonian ayahuasca brew. The β-carbolines
present in B. caapi may have effects on neurogenesis and intrinsic antidepressant
properties, in addition to potentiating the bioavailability of the hallucinogen N,N-
dimethyltryptamine (DMT), which is often present in admixture plants of ayahuasca
such as Psychotria viridis. Tobacco also contains physiologically relevant
concentrations of β-carbolines, which potentially contribute to its psychopharmacology.
However, in both cases, the threshold of MAO inhibition sufficient to interact with biogenic
amine neurotransmission remains to be established. An important class of antidepressant
medications provoke a complete and irreversible inhibition of MAO-A/B, and such
complete inhibition is almost unattainable with reversible and competitive inhibitors
such as β-carbolines. However, the preclinical and clinical observations with synthetic
MAO inhibitors present a background for obtaining a better understanding of the
polypharmacologies of tobacco and ayahuasca. Furthermore, MAO inhibitors of
diverse structures are present in a wide variety of medicinal plants, but their
pharmacological relevance in many instances remains to be established.
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INTRODUCTION

The monoamine oxidases (MAOs EC 1.4.3.4) are flavin-
containing amine oxidoreductases that occur in the outer
mitochondrial membrane of most mammalian cells. MAOs
deaminate their endogenous substrates in the presence of
molecular oxygen; this generates the corresponding aldehyde-
intermediates, which further metabolize to carboxylic acids or
alcohol derivatives. The deamination step releases the amine
nitrogen as ammonia and with the production of hydrogen
peroxide. As such, MAO is a double-edged sword, ridding the
organism of excess biogenic monoamine compounds, while also
producing potentially toxic metabolites. MAO occurs in MAO-A
and MAO-B isozymes with slightly divergent amino acid
sequences, and having similar genetic organization with 15
exons on the X-chromosome (Shih and Chen, 2004).
Apparently having arisen by a gene duplication event early in
the mammalian lineage, the two forms have differing substrate
specificities. Whereas serotonin is the preferred substrate of
MAO-A, phenylethylamine is the preferred substrate for
MAO-B; dopamine and tyramine are nearly ambivalent with
respect to the two forms of MAO (Schoepp and Azzaro, 1981;
Yang and Neff, 1973). These metabolic activities point to a key
role of MAO in maintaining homeostasis of biogenic monoamine
neurotransmitters, but by no means does MAO expression occur
only in the central nervous system (CNS); MAO-A is present in
the liver, pulmonary vasculature, the gastrointestinal tract (more
about this later) and the placenta, whereas MAO-B is present in
blood platelets. As shall be seen below, heterocyclic β-carboline
(9H-pyrido[3,4-b]indole) alkaloids such as harmine, harmane,
and norharmane1 are MAO inhibitors present in many plant
materials, including tobacco and its smoke, and in the decoctions
known as ayahuasca or yagé used in Indigenous Amazonian
medical systems and practices. In the context of the
psychopharmacology of ayahuasca, it is widely believed that β-
carbolines may potentiate the psychoactive potency of N,N-
dimethyltryptamine (DMT); although from a traditional
Amazonian perspective this may not be the only essential
mechanism of action, and ayahuasca brew samples need not
invariably contain DMT (McKenna 1984a; Callaway et al., 2005;
Ona et al., 2020; Politi et al., 2021), we present for reference
purposes the chemical structures of DMT and key naturally
occurring β-carbolines (Figure 1).

THE CLASSES OF MAO INHIBITORS

MAO inhibitors fall into various categories with respect to the
nature of the binding to the enzyme. Certain molecules are MAO
substrates that can exert competitive inhibition of the enzyme by
virtue of their occupation of the binding pocket, and other
compounds, like the β-carbolines, are reversibly binding
competitive inhibitors that are not substrates for MAO. Still

other compounds, like pargyline, clorgyline, and rasagiline, are
irreversible MAO inhibitors, also known as suicide substrates.
This class of MAO inhibitor are substrates that mechanistically
form a covalent bond with the enzyme via the propargyl moiety;
this reaction permanently kills the enzyme. To this day, there is a
prevailing notion that pharmacologically blocking the breakdown
of dopamine, serotonin, and other MAO substrates should
underlie the antidepressant property of MAO inhibitors by
rectifying some neurochemical deficiency, despite the paucity
of evidence for any such deficiency syndrome in patients with
depression (Gryglewski, 2014). Be that as it may, irreversible
MAO inhibitors were among the first effective antidepressant
medications (Quitkin et al., 1979), including the non-selective
(MAO-A/B) inhibitors phenelzine (Nardil), isocarboxazid (Thase
et al., 1995), and tranylcypromine (Ulrich et al., 2017). While
effective against depression and anxiety symptoms, the
irreversible MAO inhibitors have fallen out of favor due to the
risk of toxic interactions arising from complete blockade of MAO.
Certain foods and beverages contain high levels of
pharmacologically active substances such as tyramine that
normally undergoes inactivation by MAO-A in the gut.
Consuming certain cheeses rich in tyramine can thus provoke
a dangerous hypertensive crisis in people treated with irreversible
MAO inhibitors, known as the “cheese effect” (Youdim and
Weinstock, 2004). While individuals free of MAO inhibition
can consume tyramine by the spoonful without ill effect,
patients treated with tranylcypromine are at risk for a
hypertensive crisis after consuming as little as 10 mg of
tyramine (Gillman, 2011; Ulrich et al., 2017). This is unlikely
to occur with use of irreversible MAO-B inhibitors such as
rasagiline (an antiparkinsonian compound), or with reversible
MAO-A inhibitors such as moclobemide, an antidepressant that
has largely supplanted irreversible inhibitors in clinical practice,
despite arguments for their greater antidepressant efficacy
(Shulman et al., 2013). In addition to the perhaps overstated
cardiovascular risks, MAO inhibition has effects on the chemistry
of the CNS. For example, treatment with pargyline increased the
vesicular concentrations of dopamine and noradrenaline in
rodent brain (Buu and Lussier, 1989). Acute treatment with
pargyline enormously increases the brain concentrations of the
trace amines phenylethylamine and tryptamine (Durden and
Philips, 1980) as well as tyramine (Suzuki et al., 1979) and
other MAO substrates that are normally present at low
concentrations in brain. There is a diverse family of trace
amine-associated receptors (TAAR), which can exert a variety
of actions in the brain and peripheral tissues (Gainetdinov et al.,
2018). It follows that treatment of patients with MAO inhibitors
should exert actions extending beyond effects on the far more
abundant neurotransmitters such as dopamine, noradrenaline,
and serotonin.

THE BEHAVIORAL EFFECTS AND
NEUROCHEMISTRY OF MAO INHIBITION

While MAO inhibition should increase the levels of a wide variety
of endogenous and xenobiotic substances, the threshold for

1Harmane/norharmane are often also written as harman/norharman; we follow the
former convention in this manuscript.
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physiologically relevant MAO inhibition is not well established.
In particular, is MAO inhibition from tobacco smoke merely an
epiphenomenon, or does it contribute to the
psychopharmacology of tobacco use, its experienced effects,
and/or dependence? Some work indicates that the norharmane
level in plasma of habitual smokers was inversely related to
tobacco craving in smokers with a relatively low dependence
on tobacco (Van Den Eijnden et al., 2003). This suggests that
certain β-carbolines may have intrinsic effects on drug-seeking
behavior, unrelated to any direct interaction with (for example)
nicotine. Mice treated with the irreversible MAO inhibitor
tranylcypromine showed an increased liking for nicotine,
based on their self-administration behavior (Villégier, 2007).
Similar studies in rats showed that clorgyline or norharmane
(5 mg⁄ kg⁄day) potentiated the reinforcing effects of nicotine,
whereas the MAO-B selective inhibitor L-deprenyl had no
such effect (Guillem, 2006). Yet another study confirmed the
potentiation of nicotine self-administration in rats pretreated
with tranylcypromine, but failed to show a comparable effect
from a cocktail of tobacco alkaloids including harman and
norharmane, perhaps due to insufficient dose (Smith, 2015).
On the other hand, treatment of rats with three β-carbolines
(harmane, norharmane, and harmine) evoked dose-dependent
increases in the threshold for intracranial self-stimulation (ICSS)
(Harris et al., 2020). In this experimental paradigm, trained rats
press a lever in order to get a (rewarding) electrical stimulation of
mesolimbic dopamine release. The increasing ICSS thresholds
suggest that β-carbolines in isolation exerted aversive/anhedonic
effects. Conditioned place preference (CPP) is another paradigm
to measure “drug-liking”; if an animal finds a drug treatment
rewarding, they will tend to return to the very spot where the drug
was first administered, which might be described as magical
thinking, or simple pragmatism. Pretreatment of rats with
clorgyline at a low dose (1 mg/kg) did have some interaction
with the CPP induced by the powerful psychostimulant
methamphetamine (Kitanaka, 2006), and a still lower

clorgyline dose (0.1 mg/kg) more clearly interfered with the
methamphetamine CPP, while selectively decreasing the
concentration in brain of the noradrenaline metabolite 3-
methoxy-4-hydroxyphenylglycol (MHPG) (Kitanaka, 2010).
Thus, partial MAO inhibition in brain may be relevant to the
reinforcing and/or aversive properties of drugs such as nicotine or
methamphetamine.

Genetic ablation of MAO gives insight into the perturbations
produced by pharmacological MAO inhibition. Thus, knockout
of MAO-A in mice results in elevated brain levels of dopamine,
serotonin, and noradrenaline (Shih and Chen, 1999), along with a
behavioral phenotype including aggression, perseveration, and
social behavior deficits, which have been likened to autism
spectrum disorder (Bortolato, 2013), and which were partially
rescued by treatment with serotonin reuptake inhibitors (Godar,
2014). Perhaps similarly, males in a Dutch kindred with a loss of
function mutation in the MAO-A gene showed a pattern of
intellectual disability as well as abnormal behavior including
aggression, arson, and various other forms of criminality
(Brunner, 1993). However, mice with ablation of the MAO-B
gene do not show the aggressive behavior typical of MAO-A
knockouts, but have the expected increases in tissue levels of
phenylethylamine (Shih and Chen, 1999). Two individuals with
Norrie disease involving deletion of the MAO sequences on the
X-chromosome showed markedly reduced formation of the
noradrenaline metabolite MHPG and enormously elevated
urine levels of the MAO-B substrates phenylethylamine and
tyramine (Murphy, 1990). In some sense, these developmental
abnormalities may mirror the consequences of pharmacological
MAO inhibition, with the caveat that genetic ablation must result
in a divergent pathway of brain development.

How might MAO inhibition alter cerebral function by increasing
levels of neurotransmitters? The cerebral microdialysis technique
enables the detection of dynamic changes in interstitial
neurotransmitter levels after drug treatments and across
behavioral states. In one such study, treatment with a high dose

FIGURE 1 | Structures of the alkaloid β-carboline, its common naturally occurring derivatives and metabolites, as well as of the hallucinogen N,N-
dimethyltryptamine.
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of pargyline non-significantly increased the interstitial level of
dopamine in rat striatum by about 50% (Cumming, 1992), while
enormously increasing the levels of the default metabolite 3-
methoxytyramine (Brown, 1991). A subsequent study seemed to
show that pargyline-evoked increases in dialysates from rat striatum
were likely an artefact of the procedure for implanting the dialysis
probes (Blaha et al., 1996). We may suppose that dopamine fibers
autoregulate their rate of dopamine synthesis and release following
MAO inhibition, despite the net increased tissue concentration of
dopamine.While dopamine is ambivalent with respect to the form of
MAO in vitro, other microdialysis studies involving clorgyline or
L-deprenyl treatment indicate that MAO-A normally metabolizes
dopamine inmouse striatum, but thatMAO-B also contributes under
conditions of elevated dopamine levels (Fornai, 1999). This may not
hold for the rat, in which brain dopamine metabolism is apparently
exclusively mediated by MAO-A; the case is less clear for humans, in
whom the expression ofMAO-B increases with age (Shih et al., 1999).
Various microdialysis studies showed that interstitial serotonin levels
were two-fold higher in MAO-A knockout mice compared to wild-
type mice, and that other perturbations included down-regulation of
serotonin transporters and loss of autoregulation of serotonin release.
These adaptive phenomena might underlie the antidepressant effects
of irreversible MAO blockers, but the incomplete inhibition obtained
with plant-derived MAO inhibitors may not suffice to produce
chronic adaptive changes in dopamine and serotonin pathways.
On the other hand, the presence of 2,3,6-trimethyl-1,4-
naphthoquinone and β-carbolines in tobacco smoke may be
responsible for the protection against Parkinson’s disease afforded
by smoking. A follow-up study of 30,000 male British doctors lasting
65 years indicated a 30–50% lower incidence of Parkinson’s disease
among the smokers (Mappin-Kasirer, 2020). As in the case of 1-
methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced
neurotoxic parkinsonism, uninhibited MAO may generate a toxic
metabolite or excess amounts of hydrogen peroxide, thus promoting
the senescence of vulnerable dopamine neurons (Castagnoli and
Murugesan, 2004).

NATURAL SOURCES OF MAO INHIBITORS;
THE CASE OF TOBACCO

Substances acting as MAO inhibitors occur in a wide variety of
lichen, fungi, and plants. For example, 5-hydroxy-2-methyl-
chroman-4-one from a lichen fungus (Daldinia fissa) inhibits
MAO-A/B at µM concentrations (Jeong, 2021), as do a variety of
plant-derived and synthetic coumarin derivatives
(Koyiparambath, 2021). The pigment derived from madder
root (purpurin; 1,2,4-trihydroxyanthraquinone) is another
MAO inhibitor with reputed antidepressant effects in a rodent
model (Ma, 2020). Even licorice (Glycyrrhiza glabra) extracts are
significantly potent inhibitors of MAO-B in vitro (Ramadan,
2021), perhaps due to the sweet tasting saponin compound
glycyrrhizin. St. John’s Wort (Hypericum perforatum) has long
served as an antidepressant in traditional medicine, an effect
often attributed to MAO-inhibition by one or more of its
constituents. Floral extracts indeed inhibited MAO-A in vitro
(IC50 65 μg/ml), which proved to be due to quercetin and

flavonoids rather than hypericin (Herraiz and Guillén, 2018),
much as shown in an earlier study (Bladt and Wagner, 1994); the
more recent study indicated 1000-fold higher inhibition of MAO-
A by Peganum harmala extracts, which contain high levels of
harmaline and harmine. MAO-inhibitory activity in a plant
extract need not suffice to evoke significant MAO inhibition
upon consumption. However, concentrations of the β-carboline
alkaloids harmane and norharmane in sesame seeds or their oil
may partially inhibit MAO after consumption (Liu, 2021).

Recent years has seen burgeoning interest in the pharmacological
and therapeutic effects of β-carbolines, which are present at
significant concentrations in extracts of P. harmala, a rue native
to the Mediterranean region (Moloudizargari, 2013), and in the
South American vine Banisteriopsis caapi. The latter plant is the key
constituent of the ayahuasca decoction widely used in Indigenous
Amazonian social and medical practice. In that context, MAO-
inhibition among other things serves to potentiate central action of
the hallucinogenic component N,N-dimethyltryptamine (DMT),
which is a hallucinogenic serotonin 5-HT2A agonist otherwise
subject to rapid deamination in the gut following oral
administration (Cumming, 2021), as attested by a series of self-
experiments (Ott, 1999). DMT also forms endogenously in the living
brain and might thus properly be termed a trace amine
neurotransmitter comparable to tyramine, phenylethylamine, and
tryptamine. The latter trace amines normally occur at very low
concentrations in brain, being vulnerable to rapid metabolism by
MAO; it is currently unknown ifMAO inhibition increases the brain
concentration of endogenous DMT to a relevant extent. Certainly,
irreversible MAO inhibitors are not hallucinogenic, but their
administration might still increase brain levels of DMT to a
degree evoking some physiological effects or interactions.
However, DMT is naturally present in a wide variety of plant
sources; notably the south American plant Psychotria viridis
(Carbonaro and Gatch, 2016), and likewise reportedly in
Diploterys cabrerana (McKenna 1984) and Mimosa tenuiflora
(Simão, 2019). While orally administered DMT is essentially
inactive, conjoint consumption of the ayahuasca decoction’s
constituents (e.g., B. caapi and P. viridis) (Simão, 2019), evokes
an intense psychedelic and visionary experience. However, these two
plants have highly variable alkaloid contents; 32 B. caapi samples
collected in Brazil had β-carboline concentrations ranging from 0.3
to 8.4 mg/g dryweight for harmine and 0.03–8.3 mg/g dryweight for
harmaline (Callaway et al., 2005). In the same study 36 samples of P.
viridis had DMT contents ranging from nil to 18 mg/g dry weight.
Other constituents of ayahuasca rituals may sometimes include the
potent tobacco species Nicotiana rustica, which contains unknown
levels of β-carbolines and other alkaloids. Hallucinogenic
preparations of myristicaceous bark and leaf samples contained
DMT and its congener 5-methoxy-N,N-dimethyltryptamine (5-
MeO-DMT), but only traces of β-carbolines (McKenna, 1984b),
an observationwhichmay call for qualifying the necessity of conjoint
administration of DMT along with an MAO inhibitor.

According to Paracelsus, dosis sola facit venenum (the dosemakes
the poison). In our considerations of MAO interactions, we must be
mindful that MAO inhibitors, despite their ubiquity in plants, may
not be sufficiently active to have pronounced effects on biogenic
amine metabolism in the living organism. For example, sensitive
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analyses reveal the presence of harmane and norharmane at low
concentrations (<50 ng/g) in a wide variety of foodstuffs, and
moderately high levels in coffee beverages (200 ng/ml). The first
attestation of the presence of harmane and norharmane in tobacco,
and its apparent pyrolytic formation from tryptophan in the tobacco,
dates to 1962 (Poindexter and Carpenter, 1962). Janiger and de Rios
likewise noted 40–100-fold higher harmane and norharmane levels
in tobacco smoke than in the uncombusted tobacco and raised the
possibility of inherent psychoactive effects of these compounds
(Janiger and de Rios, 1973). More recent reports indicate
impressively high concentrations of these alkaloids in cigarette
smoke (up to 3,000 ng/cigarette) (Herraiz, 2004). In keeping with
the notion of pyrogenic formation of β-carbolines, others reported
concentrations of around 0.5 ng/g harmaline and harmine in the
leaves and flowers of Nicotiana tabacum (Tarkowská, 2020).
Interestingly, the authors of that study also reported relatively
high concentrations (10 ng/g) of the alpha2 antagonist yohimbine,
which has a pressor and anxiogenic action; administration of
yohimbine increased the reinforcing efficacy nicotine in an
intravenous self-administration paradigm, but only in female rats
(Li, 2014).

As noted above, mainstream smoke from commercial tobacco
contains roughly 2 µg harmane and 4 µg norharmane, but smoke
from barley tobacco can have several-fold higher concentrations
(Zhang et al., 2011). The authors of that study also reported on
the presence in smoke of “exotic” heterocyclic compounds derived
from tryptophan, namely 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]
indole and 3-amino-1-methyl-5H-pyrido[4,3-b]indole. Tobacco
smoke particulate has very high nicotine concentrations, greatly
exceeding the amounts of harmane and norharmane, which
seemed insufficient to inhibit completely MAO-A/B in smokers
(Truman et al., 2017); the authors postulated that unidentified
substances might account better for the MAO-inhibitory effect of
smoking. Nonetheless, β-carbolines such as norharmane are clearly
present in blood of tobacco smokers, attaining a concentration of
200 pg/ml after smoking a single cigarette (Breyer-Pfaff, 1996).
Further work demonstrated an association with smoking, but no
such effect of alcohol consumption by non-smokers (Spijkerman,
2002). Norharmane and harmane are present in tobacco smoke;
whereas norharmane inhibits MAO-A andMAO-B with low µMKi,
harmane inhibits MAO-B with much greater potency, having a Ki of
55 nM (Herraiz and Chaparro, 2005). Surprisingly, flavored e-liquids
favored by some tobacco smokers as a less harmful nicotine delivery
system proved to have significantMAO-A/B inhibitory action, which
was attributed to the presence of vanillin (4-hydroxy-3-
methoxybenzaldehyde) (Truman, 2019). Indeed, vanillin inhibits
MAO-A (IC50 20 µM) and MAO-B (IC50 45 µM), as does
eugenol (2-methoxy-4-(prop-2-en-1-yl)phenol), the main odorant
of clove oil (Dhiman et al., 2019).

As suggested above, components of tobacco smoke other than β-
carbolines may contribute to the net inhibition of MAO in brain of
smokers. For example, analysis of cured tobacco leaf revealed the
presence of the non-selective MAO inhibitor 2,3,6-trimethyl-1,4-
naphthoquinone and the selective MAO-B inhibitor farnesylacetone
(Khalil et al., 2006); in vitro enzyme competition assays indicated Ki
values close to 1 μM, which may or may not be physiologically
relevant. A Philip Morris study confirmed the presence of 2,3,6-

trimethyl-1,4-naphthoquinone in tobacco or smoke, along with
other potential MAO inhibitors such as anabasine, 2-
naphthylamine, and farnesylacetone (van der Toorn, 2019).

PET IMAGING OF MAO IN VIVO

Molecular imaging by positron emission tomography (PET) affords a
window on the living brain, whereby the uptake and binding of
selective ligands reveals the molecular targets. We can properly
understand PET as a binding assay in vivo, where the
requirement for external detection by the tomograph calls for
integration of certain positron-emitting radionuclides into the
tracer molecule of interest. In practice, this is most commonly
accomplished using cyclotron-generated fluorine-18 (physical half-
life 109min) or carbon-11 (physical half-life 20min). The radioactive
decay with emission of a positron in the medium of the brain is
followed swiftly by annihilation of the positron upon meeting its
counterpart electron; the entire energy bound up in the mass of the
electron-positron pair (E = mc2) then converts into two photons of
enormously high energy, approximately 512 keV. These photons,
commonly known as gamma rays, fly apart at an angle of just about
180°. If such an emission occurs when an individual’s head is within
the aperture of the PET instrument, this counts as “an event”. The
accumulating recording of millions of such events over time gives rise
to a dynamic PET image, analysis of which maps out the uptake and
distribution of binding sites for the tracer molecule. Arguably, MAO-
PET was one of the earliest successful uses of this molecular imaging
technology to yield new information about human physiology
(Fowler, 1987; Fowler, 1988; Kumlien, 1995; Bergström et al., 1997).

In fact, the very first PET study with an MAO ligand employed
the neurotoxin MPTP labelled with carbon-11 in the 1-position,
i.e., [11C]MPTP (Moerlein, 1986). Like MPTP, this radiotracer
undergoes oxidative deamination by MAO-B present in
astrocytes and some specific neuronal populations, yielding the
product [11C]-MPP+. That charged metabolite remains inside
living cells, thus imparting an increasing PET signal proportional
to the local MAO-B activity, as evidenced by the effect of
pretreatment with the irreversible MAO inhibitor
tranylcypromine, which blocked the specific PET signal in brain
of non-human primates. Others confirmed theMAO-B specificity of
[11C]MPTP in non-human primate brain by blocking its retention
through pretreatment with theMAOA/B suicide substrate pargyline,
whereas brain trapping was unaffected by pretreatment with the
MAO-A-preferring suicide substrate clorgyline (Hartvig, 1986).
Other studies in non-human primates with MPTP-induced
parkinsonism showed no change in the intensity of [11C]-
deprenyl uptake in the dopamine depleted striatum, thus
indicating that the enzymatic conversion does not take place in
the dopamine fibers per se (Leenders, 1988). Indeed, it emerged that
the toxic MPTP metabolite MPP+ is formed elsewhere (perhaps in
astrocytes), whereas it gains access to the vulnerable dopamine
neurons via the dopamine uptake site and accumulates to toxic
levels via the ionic gradient of living neurons; blockers of dopamine
uptake protect againstMPTP-induced parkinsonism.Unfortunately,
doses of MPTP as low as 1mg/kg cause an irreversible syndrome of
parkinsonism, due to the toxic degeneration of brain dopamine
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neurons. While the microgram doses of [11C]MPTP used in PET
studies might be safe, there was a general feeling that better tracers
should be developed for human use. Indeed, there soon followed a
report on the uptake in mouse and human brain of the MAO-B
ligand [11C]N,N-dimethylphenylethylamine (Shinotoh, 1987). Its
uptake in mouse brain was blocked by L-deprenyl but not
clorgyline pretreatment, and the PET tracer showed abundant
accumulation in human brain, especially in the thalamus; the
mechanism underlying its trapping in living brain seems to entail
enzymatic conversion, as was the case with [11C]MPTP.

Initial PET studies in human volunteers showed abundant
cerebral uptake of L-[11C]deprenyl, anMAO-B-preferring suicide
substrate, which was blocked by pretreatment with non-
radioactive L-deprenyl (Fowler, 1987). In serial pig PET
studies, MAO-B was blocked by treatment with L-deprenyl
and the time course of the subsequent return of L-[11C]
deprenyl binding in brain was monitored (Oreland, 1990).
This approach indicated a half-life for the turnover of MAO-B
in living brain to be about 1 week, which was one of the first such
estimates for a specific brain protein. Other pharmacological
studies measured the uptake of L-[11C]deprenyl in brain of
healthy volunteers, in conjunction with various doses of the
then novel reversible MAO-B inhibitor, Ro 19–6,327 (Bench,
1991; Lammertsma, 1991). Kinetic analyses of the scans with
various doses indicated an ID50 of 0.3 mg/kg, i.e. the dose of Ro
19–6,327 sufficient to blockMAO-B activity in brain by 50%. This
competitive inhibition application has since emerged as an
important tool in medicinal chemistry for establishing
appropriate dose regimens, for example with respect to the
necessary frequency of dosing with Ro 19–6,327 required to
maintain a constant blockade of MAO-B (Fowler, 1993). The
quantitation of L-[11C]deprenyl uptake in brain is a bit
problematic, as it binds so rapidly and irreversibly to brain
MAO-B that its uptake is partially limited by cerebral
perfusion rate; the greater the blood flow, the greater the PET
signal. Aiming to resolve this, the pioneering researchers at
Brookhaven National Laboratory and the Karolinska Institute
modified L-[11C]deprenyl by the addition of a deuterium (heavy
hydrogen) in the molecule (Fowler, 1988). Since breaking the
carbon-deuterium bond by MAO-B is disfavored
thermodynamically, the rate of irreversible trapping in brain
was slowed substantially compared to ordinary L-[11C]
deprenyl, which allowed the physiological separation of MAO-
B binding from cerebral blood flow effects (Fowler, 1995).
Alternatives exist, for example the highly specific reversible
MAO-B inhibitor 5-[4-(benzyloxy)phenyl]-3-(2-cyanoethyl)-
1,3,4-oxadiazol-[11C]-2 (3 H)-one, which has nM affinity
in vitro (Bernard, 1996). PET studies in nonhuman primate
indicated a good signal for the detection of MAO-B in brain.

Preliminary work showed the promising reversible MAO-A
ligand [11C]brofaromine to be largely unsuitable for PET studies
due to insufficient specific binding (Ametamey, 1996). The
irreversible ligand [11C]clorgyline binds to MAO-A in living
brain, albeit with a non-MAO-A signal present in the cerebral
white matter that may impede quantitation (Fowler, 2001).
Nonetheless, the PET study with the suicide-substrate [11C]
clorgyline PET revealed a substantial inhibition of MAO-A in

brain and peripheral organs of habitual smokers (Fowler, 1996).
That remarkable observation was the first evidence that MAO-
inhibition might be an aspect of the psychopharmacology of
tobacco addiction. The finding was confirmed in a completely
independent PET study with the alternate MAO-A ligand [11C]
befloxatine (Leroy, 2009). That study used the arguably superior
endpoint of binding potential (BPND), showing a mean 60%
reduction of MAO-A activity in cerebral cortex of tobacco
smokers, versus a 40% reduction in subcortical regions.
Deuterium-substituted [11C]deprenyl PET revealed a similar
reduction of MAO-B availability in brain of smokers (Fowler,
1998). Further to the question of H. perforatum, a [11C]harmine
PET study did not indicate any MAO-A inhibition in brain of
volunteers consuming the product at the dose recommended for
depression (Sacher, 2011). This may present an example of the
Paracelsus dictum; the presence of MAO-inhibitory substances in
extracts ofH. perforatummay not suffice to inhibit the enzyme in
vivo, unless consumed in enormous quantities.

Smoking one or two cigarettes increased plasma levels not just of
the MAO-B inhibitor norharmane, but also increased levels of the
MAO-A inhibitor harmane to 20–30 pg/ml (0.1 nM), then declining
with a half-life of about 1 h (Rommelspacher, 2002). This low
concentration may explain why smoking a single cigarette was
without discernible effect on the cerebral binding of deuterated L-
[11C]deprenyl (Fowler, 1999); the harmane dose is simply too low to
evoke much in the way of MAO-B inhibition in brain. Furthermore,
there is a pool of endogenous norharmane in human blood, which
may be derived from metabolism of plasma tryptophan (Fekkes,
2001); it remains to be established if this endogenous pool has any
physiological relevance. The broader action of MAO is indicated by
its ubiquity in various organs other than the brain; the
aforementioned deuterium isotope effect can be used to confirm
specificity of [11C]deprenyl binding for MAO-B in various organs of
the human body, with a rank order of abundance kidneys ≥ heart >
lungs = spleen (Fowler, 2002). This ubiquity makes it difficult to
assign a singular role of MAO in physiology.

Early work in vitro indicated the β-carboline [11C]harmine to have
good properties for detection of MAO-A sites in tissue specimens
(Goller, 1995). PET studies in pigs showed a very abundant
distribution of [11C]harmine binding throughout brain, which was
entirely blocked by pretreatment with pargyline (Jensen, 2006). That
experiment aimed to test a specific hypothesis that blockade ofMAO-
Awould potentiate the effect of amphetamine on dopamine release in
brain. Insofar as MAO-A activity contributes to the control of brain
dopamine concentrations, and given that amphetamine acts by
releasing the intracellular dopamine pool and flooding the synapse,
we expected that pargyline pretreatment would potentiate the
amphetamine-induced displacement of the dopamine D2 receptor
ligand [11C]raclopride by dopamine. There was no evidence for any
such potentiation according to the PET competition paradigm in
anesthetized pigs. Very similarly, pretreatment of rats with pargyline
did nothing to enhance the displacement of striatal [11C]raclopride
binding evoked by amphetamine (Pedersen, 2007). This may stand in
contrast to clinical investigations as cited above that MAO inhibition
is a salient aspect of tobacco addiction (van Amsterdam, 2006).
Similarly, a [11C]raclopride PET study in depressed smokers versus
healthy controls did not indicate any main effect of depression,
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although tobacco addiction in depressed individuals tended to
decrease the amphetamine-evoked dopamine release (Busto, 2009).
That result, in accord with the pig and rat PET studies described
above, does not support a strong role for the modulation of
amphetamine-induced dopamine release by MAO inhibition from
tobacco smoke. Others used [18F]altanserin PET to measure
availability of serotonin 5-HT2A receptors in brain of depressed
individuals; treatment with clomipramine, a re-uptake inhibitor
likely to increase interstitial serotonin levels, did reduce [18F]
altanserin binding, but there was no comparison made with
healthy controls. Therefore, that study cannot support any claims
about altered serotonin release as a biomarker of depression, or indeed
any interaction withMAO-inhibition due to smoking (Larisch, 2003).

Further [11C]harmine PET studies in humans indicated that
acute serotonin depletion decreased MAO-A binding, whereas
pharmacological activation of dopamine synthesis had the
opposite effect of increasing MAO-A availability (Sacher, 2012).
The authors interpreted these results to indicate a dynamic
regulation of MAO-A activity serving to accommodate
homeostasis, but did not provide a compelling mechanism to
account for that phenomenon. Electroconvulsive therapy for
depression, which causes massive serotonin and dopamine release
in brain, had only a slight effect in reducing [11C]harmine binding
(Baldinger-Melich, 2019), which might argue against homeostatic
control of MAO-A activity in brain. On the other hand, remission
frommajor depression in patients treatedwith SSRImedicationswas
not associated with any decline in the elevated [11C]harmine
binding, suggesting persistence of a trait that might tend to
deplete cerebral levels of serotonin and other substances.

[18F]Fluoroethylharmol was developed as an alternative to
[11C]harmine, which presents logistic difficulties due to its very
brief physical half-life (Maschauer, 2015). Using a synthesis of
findings in vivo and in vitro, [18F]fluoroethylharmol binding
results in rat brain suggested a dopamine concentration of
0.4 μM in the striatal compartment containing MAO-A, which
seems insufficient to reduce the ligand binding by competition.
This might support the implication of the previously described
finding (Sacher, 2012) that endogenous MAO substrates do not
have directly competitive effects on the activity of MAO in living
brain. On the other hand, sevoflurane anesthesia, which is not a
direct inhibitor of MAO, decreased deuterated L-[11C]deprenyl
uptake in non-human primate brain by 80%, which is certainly
consistent with some novel regulation of MAO-B availability
(Varnäs, 2021). Hormones may also play a role here; testosterone
treatment for gender dysphoria slightly decreased (−10%) the
[11C]harmine binding in human brain (Kranz, 2021).

Returning to the theme of [11C]harmine PET, studies in
nonsmoking patients with major depression indicated a mean
34% greater distribution volume in brain compared to non-
depressed controls; this increase was present throughout
cerebral cortex, hippocampus, and in subcortical structures
(Meyer, 2006). Examination of the scatter plots in Figure 2 of
that paper indicated a large effect size (Cohen’s d > 1). While an
impressive finding for biological psychiatry, the increased MAO-
A availability was not pathognomonic of depression, as there was
still considerable overlap in [11C]harmine uptake between the two
groups, even in the regions of highest binding, i.e., thalamus and

cingulate cortex. One might presume that increased MAO-A
levels in depressed individuals would predict decreased brain
levels of its preferred substrate, i.e., serotonin. This scenario
might match with the widely held consideration that major
depression is in some sense a serotonin deficiency syndrome,
as suggested by the supposed antidepressant efficacy of SSRIs.
Furthermore, decreased tonic serotonin levels might alter phasic
serotonergic signaling, and could be a factor the meta-analytic
finding of slightly (10%) decreased levels of serotonin
transporters in brain of depressed individuals compared to
age-matched controls (Gryglewski, 2014).

THE PHYSIOLOGICAL RELEVANCE OF
MAO INHIBITION; THE CASE OF
AYAHUASCA
We have focused in the preceding section on the molecular imaging
of MAO, and its possible relation to neurotransmission and
behavior. The physiological relevance of partial MAO-inhibition
is a key consideration. Therapy withMAO inhibitors usually aims to
obtain nearly complete inhibition of MAO in brain (and
consequently in peripheral organs). How important, then, is the
transient and partial MAO inhibition seen in the context of tobacco
smoking?More dramatically, harmine or other β-carboline alkaloids
potentiate the hallucinogenic action of DMT in the context of
ayahuasca, presumably by a peripheral action of blocking DMT
metabolism in the gut. However, central MAO inhibition might be
an independent aspect of the psychopharmacology of harmine in
ayahuasca mixtures. Unfortunately, there is scant information about
the pharmacokinetics of harmine. An early study followed the
disposition of harmine and its metabolites following intravenous
injection in humans (0.5 mg/kg) and rats (5 mg/kg) (Slotkin et al.,
1970). Much as seen in PET studies with [11C]harmine at tracer
doses (Jensen, 2006), there was a rapid decline in harmine
concentration in human blood (Slotkin et al., 1970). The harmine
level in human plasma declined to about 4 μg/ml (10 µM) within
minutes after injection, remaining around this level for about 1 h, but
falling to about 0.8 μg/ml (2 µM) at 4 hrs after intravenous injection.
Given the affinity of harmine for MAO-A in vitro (circa 1 nM), we
can predict substantial MAO-A inhibition throughout the body and
lasting several hours after a dose of 0.5 mg/kg harmine.

While B. caapi is an essential component of ayahuasca, the
importance of DMT and other alkaloids in P. virdis is less clear.
In an ayahuasca study, a group of 15 male volunteers (mean body
weight 75 kg) consumed 150 ml of a decoction containing 30 mg
harmaline, 250 mg harmine and 159 mg tetrahydroharmine, as
well as 35 mg DMT (Callaway, 1999). Pharmacokinetic analysis
indicated peak plasma levels of 90 ng/ml (500 nM) for harmine
at 30 min post-ingestion, which declined with a half-life of
116 min. Tetrahydroharmine attained a peak plasma level of
80 ng/ml (400 nM) at 180 min post ingestion and declining with
a half-life of 530 min. The peak plasma level of DMT was 12 ng/
ml (60 nM) at 120 min post ingestion, and then declining with a
half-life of 260min. A similar study involving oral administration of
ayahuasca to healthy volunteers similarly indicated peak plasma
levels of DMT (10 ng/ml) harmaline (3 ng/ml) and harmol (12 ng/
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ml) at about 2 hrs after administration (Riba, 2003). These
concentrations had substantially declined within 6 hrs after
ingestion, although tetrahydroharmine and harmalol levels tended
to persist for up to 24 h. Remarkably, the treatment was without
effect on the urine levels of the MAO-A serotonin metabolite 5-
hydroxyindoleacetic acid (5-HIAA), nor was there any decrease in
levels of catecholamine metabolites despite the transiently high
plasma levels of MAO inhibitors. This result might be
confounded by the prolonged urine collection period (24 h)
relative to duration of the peak plasma levels of some of the β-
carbolines. More importantly perhaps, the subjective effects of the
ayahuasca peaked at about 2 hrs after ingestion, and had declined
almost to baseline 4 hrs later. Thus, there is a close alignment of the
plasma concentrations of DMT and some β-carbolines with the
intensity of the psychotropic effects. Brito-da-Costa et al. (2020) have
recently presented a detailed review of the literature on DMT and β-
carboline kinetics presenting a wealth of details. Wang (2019)
produced a similarly detailed investigation of the
pharmacokinetics of various alkaloids in rats fed with seeds of P.
harmala, the rue plant mentioned above. A single rather high dose of
the seeds (150mg/kg) resulted in plasma harmaline levels above
10 ng/ml persisting for at least 12 h, whereas harmine levels were
around 100 ng/ml for a similar period, but harmol levels were
generally below 10 ng/ml. The corresponding concentrations were
much lower in rats treated with a low P. harmala dose (15mg/kg),
with harmaline and harmine being barely detectable in plasma. This
suggests a non-linear dose-response, making it difficult to extrapolate
these results to human ingestion of P. harmala; there is a case report
of fatal toxicity due toP. harmala ingestion (Ghizlane, 2021), whereas
a study from Morocco indicated a 6% fatality rate in a series of 200
cases of poisoning marked by neurological, gastrointestinal and
cardiovascular signs (Achour, 2012). We cannot attribute these
effects to β-carbolines per se. However, the causal relationship
may be clearer in a fatality following consumption of unspecified
extracts, with post mortem findings of DMT (20 μg/L; 100 nM) the
notorious toad toxin 5-methoxy-N,N-dimethyltryptamine (2mg/L;
10 µM) and harmine (0.2 mg/L; 1 µM) (Sklerov, 2005). However,
that case reported was critiqued in the contemporary literature
(Callaway, 2006). Severe poisoning by β-carbolines is certainly
possible, but seems to be a rare occurrence, and might properly
be attributable to interactions with other pharmacologically active
substances, as in the case of the “cheese effect” discussed above.

CONCLUSION

In summary, β-carbolines and other classes of MAO inhibitors are
present in tobacco andmany other plants, and likely contribute to the
psychopharmacology of tobacco usage and perhaps dependence.
However, there is incomplete documentation of the dose-response
relationships; a low degree of MAO inhibition may potentiate the
reinforcing properties of nicotine or amphetamine, but complete
MAO blockade may be aversive. There is a particular involvement of
MAO-A inhibition in the pharmacology of ayahuasca, which is
generally attributed to its potentiation of the bioavailability of the
actively hallucinogenic ingredient DMT. However, not all ayahuasca
preparations contain significant amounts of DMT (McKenna 1984a;

Callaway et al., 2005), and some Indigenous groups of the Amazon
employ B. caapi without admixture plants, in the context of healing
and initiatory rites (Rodd, 2008; Politi et al., 2021); we need to
consider better the polypharmacolgy of ayahuasca and the possible
independent effects of β-carbolines on brain function. The β-
carbolines present in B. caapi were found for instance to stimulate
neurogenesis in adult mice (Morales-García, 2017) and harmane and
norharmane (i.e., the alkaloids present in tobacco) were associated
with antidepressant-like effects in the mouse forced swim test (Farzin
and Mansouri, 2006). Furthermore, it remains unknown if MAO
inhibition increases the brain concentration of endogenous DMT, as
is well established for the classical trace amines. In the context of
tobacco use, what accounts for the composite effect onMAO-activity?
Self-rolled cigarettes produce particulate with higherMAO-inhibitory
activity than is the case in tailor-made cigarettes (Lewis, 2012). Is this
due to the variety of tobacco species used, or its curing process?What
is the alkaloid content of Indian beedis and do the wrapping leaves
(Diospyros melanoxylon) contain pharmacologically active
compounds? Clove cigarettes (kreteks), which are popular in
Indonesia, contain half as much nicotine as typical cigarettes, but
their aromatic quality may encourage deeper inhalation and thus
greater absorption of alkaloids (Malson, 2003).Where there is smoke,
there is fire; this aphorism does not apply to snuff and chewing
tobacco, which have not been addressed in this brief contribution and
are scantly investigated with respect to their psychopharmacology.
The composition of MAO-inhibiting alkaloids in different tobacco
species also remains unknown.Nicotiana rustica, for instance (“Aztec
tobacco,” in Peru known as “Mapacho”) in the Amazon region is
considered an important medicinal plant and is a frequent
component of Amerindian ethnobotanical mixtures, also
elsewhere. In traditional Amazonian medicine, this tobacco species
is prepared as a liquid remedy and is ingested orally to treat mental
health and other ailments (Berlowitz, 2020); the rapid first pass
clearance of oral nicotine could mean that unidentified alkaloids
other than nicotine play a role in the psychopharmacology of this
orally taken ethnomedical application of N. rustica.

In this account, we have emphasized the family resemblance
between tobacco and ayahuasca; both substances contain a
mixture of alkaloids, with considerable potential for
interaction, especially through the inhibition of MAO by β-
carbolines and other competitors. We may inadvertently have
raised more questions than we have answered, but we see a clear
need for a more systematic examination of the separate and
combined contributions of polypharmacy in the contexts or
tobacco or ayahuasca consumption.
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