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Abstract: Over 75% of depressed patients suffer from painful symptoms predicting a 
greater severity and a less favorable outcome of depression. Imaging, anatomical and 
functional studies have demonstrated the existence of common brain structures, neuronal 
pathways and neurotransmitters in depression and pain. In particular, the ascending 
serotonergic and noradrenergic pathways originating from the raphe nuclei and the locus 
coeruleus; respectively, send projections to the limbic system. Such pathways control 
many of the psychological functions that are disturbed in depression and in the perception 
of pain. On the other hand, the descending pathways, from monoaminergic nuclei to the 
spinal cord, are specifically implicated in the inhibition of nociception providing rationale 
for the use of serotonin (5-HT) and/or norepinephrine (NE) reuptake inhibitors (SSRIs, 
NRIs, SNRIs), in the relief of pain. Compelling evidence suggests that dopamine (DA) is 
also involved in the pathophysiology and treatment of depression. Indeed, recent insights 
have demonstrated a central role for DA in analgesia through an action at both the spinal 
and suprasinal levels including brain regions such as the periaqueductal grey (PAG), the 
thalamus, the basal ganglia and the limbic system. In this context, dopaminergic 
antidepressants (i.e., containing dopaminergic activity), such as bupropion, nomifensine 
and more recently triple reuptake inhibitors (TRIs), might represent new promising 
therapeutic tools in the treatment of painful symptoms with depression. Nevertheless, 
whether the addition of the dopaminergic component produces more robust effects than 
single- or dual-acting agents, has yet to be demonstrated. This article reviews the main 
pathways regulating pain transmission in relation with the monoaminergic systems. It then 
focuses on the current knowledge regarding the in vivo pharmacological properties and 
mechanism of action of monoaminergic antidepressants including SSRIs, NRIs, SNRIs and 
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TRIs. Finally, a synthesis of the preclinical studies supporting the efficacy of these 
antidepressants in analgesia is also addressed in order to highlight the relative contribution 
of 5-HT, NE and DA to nociception. 
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1. Neurobiology of Pain and Its Modulation by Monoamines 

Pain is a subjective experience that results from transfer and brain analysis of various information 
such as the nature, location, intensity and duration of a stimulus. It also involves adaptation and 
modulation of the nociceptive messages by various neuromediators and related receptors. Since these 
neuromediators are present in the central network of brain structures that process or regulate nociceptive 
information, it is difficult to dissociate the affective dimension of pain from its sensory dimension [1]. 
Anatomically, several brain regions have been implicated in both depressive disorder and pain. 

At the peripheral level, the pain comes from direct or indirect stimulation and sensitization of 
nociceptors by various endogenous signalling molecules, including ions, prostaglandins and/or 
leukotriens, histamine, bradykinines, but also monoamines [2]. The activation of nociceptors creates 
action potentials that are transmetted by Aδ fibers (fast-conducting, location) and/or C fibers (delayed 
transmission, a feeling duller and less localized) leading to a more diffuse pain. Both types of pain 
fibers terminate in the superficial layers of the dorsal horn of the spinal cord where several 
neuropeptides but also 5-HT and NE play a major role in antinociception [3,4]. Fibers from the 
transmission cells of substantia gelatinosa convey impulses to the thalamus, the main brain region 
responsible for the integration of pain input. From the thalamus, third-order neurons transmit pain 
impulses to the cerebral cortex where further processing occurs resulting in pain awareness [5]. In this 
review, particular attention will be focused on the central brain monoaminergic regions and their 
pathways that regulate the nociceptive information at the central level. Indeed, given the close 
anatomical relationship between areas involved in pain and emotion and the emotional nature of pain, 
it is possible that treatment of mood disorders with monoaminergic antidepressants display a powerful 
impact on pain by regulating the affective, emotional and sensory dimensions of pain. 
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1.1. Spinal Cord, Ascending and Descending Pathways 

At the spinal level, the central terminal of the nociceptor forms synapses with neurons of the 
superficial dorsal horn of the spinal cord. Glutamate seems to be the main neurotransmitter released in 
response to a nociceptive stimulus. Glutamate then acts on post-synaptic receptors present in: (i) the 
projection of cells whose axons convey information to various parts of the brain; and (ii) interneurons 
(both excitatory and inhibitory) that all contribute to the local modulatory circuit in the spinal cord. 
Thus, the ascending pathways distribute spinal action potentials to brain areas related to the two 
dimensions of pain perception, sensory and affective: the somatosensory cortex, the periaqueductal 
grey (PAG), hypothalamus and basal ganglia. Spreading from central projections, corticolimbic 
pathways are also activated. These sites which process noxious activation include the thalamus, insular 
cortex, anterior and posterior cingulated cortex, prefrontal cortex [6-8] but also the amygdala [9] and the 
hippocampus [10]. All these brain regions are endowed with a rich serotonergic, noradrenergic and/or 
dopaminergic innervations suggesting the role of monoamines in the modulation of pain. 

Descending inhibitory or facilitatory pathways from brain areas converge at the dorsal horn, 
controlling peripheral inputs from nociceptors. Monoaminergic fibers originating from various 
brainstem nuclei control pain perception through the release of 5-HT and NE in the superficial dorsal 
horn via the dorsolateral funiculus (DLF) [11]. DLF fibers from descending pathway are thus 
comprised of serotonergic projections from the raphe nuclei and noradrenergic projections from the 
locus coeruleus (LC) [12]. Both 5-HT and NE contribute to the modulation of pain, constituting a 
gating mechanism that control impulse transmission in the dorsal horn (Figure 1). In this figure the 
limbic system (blue structures) includes various cortical subregions such as the somatosensory (SI and 
SII), anterior cingulate (ACC), prefrontal and insular cortex but also the amygdala (AMY), 
hippocampus (HIPP) and basal ganglia. All these structures, involved in the initiation of the 
descending controls of nociceptive information, are innervated by serotonergic, noradrenergic and 
dopaminergic neurons originating in the dorsal raphe nucleus (DRN), locus coeruleus (LC) and 
Ventral Tegmental Area (VTA) (purple structures); respectively. Distinct populations of 
monoaminergic neurons, via the dorsolateral funiculus (DLF) borrow descending pathways (green 
circuits) to exert a strong inhibitory effect on pain transmission in the dorsal horn (mediated by 5-HT, 
NE and likely DA, which may produce a local release of opioids). In particular, serotonergic inputs to 
the dorsal horn originate in neurons of the rotstral ventromedial medulla (RVM), including the raphe 
magnus and the nucleus reticularis magnocellularis. The noradrenergic innervation of the dorsal horn 
originates from several cell groups in the pontine tegmentum, including the A5 group. The main 
source of descending dopaminergic innervation of the dorsal horn is the A11 neurons of the 
periventricular posterior hypothalamus [13]. On the contrary, ascending pathways (red circuit) via the 
spino-thalamic tract, excites neurones in the periaqueductal grey matter (PAG: yellow structure) and 
thalamus (grey structure), which have direct and/or indirect interactions with the limbic system and 
monoaminergic nuclei. Interestingly, all the three monoaminergic nuclei display anatomical and 
functional reciprocal interactions (black arrows) regulating the release of 5-HT, NE and DA in their 
projections areas and thereby the sensory and emotional dimensions of pain.  
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Figure 1. Schematic illustration of the main pathways involving monoaminergic systems 
in the modulation of pain perception. 

 

Compared with the enormous literature devoted to 5-HT and NE, the spinal action of DA has 
received less attention. It has been proposed that the dopaminergic innervation of the spinal cord may 
originate in the substantia nigra and hypothalamus [14]. Further, the purported existence of a small 
population of DA-synthesising cells in the dorsal root has been confirmed [14]. It is also possible that 
NE neurons themselves constitute an important source of DA in the dorsal horn to control pain. 
Although this property has yet to be determined in the spinal cord, several studies reported that the 
clearance of DA in various brain regions, may be mediated, at least in part, by the selective NE 
transporter NET [15-18]. 

1.2. The Brain 

The periaqueductal grey (PAG) is an important nociception modulation site where the emotional 
and cognitive sensations from thalamic or anterior cortical areas meet the vegetative aspects from the 
hypothalamus [19,20]. Although, the PAG is indirectly connected to the dorsal horn of the spinal cord 
through adjacent regions of the pont and the medulla [21], it initiates descending and ascending 
inhibition resulting in the reduction of pain. Consistent with this observation, it has been demonstrated 
that stimulation of the PAG produces a profound antinociception [22,23] whereas its electrolytic lesion 
reduced the analgesic effect of morphine [24]. These data suggest that this brain region is a major site 
of action of opiates in producing analgesia. However, descending facilitatory projections from the 
PAG to the RVM may enhance spinal nociceptive transmission of peripheral inputs. 
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The dorsal raphe nucleus (DRN) is interconnected and functionally related to the PAG. Although 
both brain regions display strong anatomical interactions [25-28], the mechanism underlying their role 
in the modulation of pain is not fully elucidated. The PAG modulates incoming pain information by 
activating DRN in the rostral ventromedial medulla, which in turn causes the 5-HT release in the 
dorsal spinal cord to inhibit incoming sensory stimuli [29]. It was proposed that substance P (SP), 
which is increased in response to a nociceptive stimulus, regulates both enkephalin and 5-HT 
neurotransmission in the PAG and the DRN [30]. Interestingly, a subpopulation of non-serotonergic 
neurons arising from the DRN could release SP in the PAG to produce a robust antinociception [31-34], 
particularly by evoking a release of enkephalin [35]. In turn, the PAG might also send SPergic 
projections to the DRN. Multiple sources of evidence suggests that SP activates serotonergic neurons 
in the DRN [36,37] suggesting that reciprocal interactions between the serotonergic and 
tachykininergic systems might be an important substrate for reducing pain. 

The LC and the A7 catecholamine cell groups, known to contain spinally noradrenergic neurons, 
are connected to the PAG through a monosynaptic pathway [38,39]. This provides direct anatomical 
evidence that this pathway may mediate at least some of the effects produced by activation of neurons 
in the PAG. For example, activation of projection neurons in the PAG has a predominantly inhibitory 
effect on LC neurons [40], this action contributing to the antinociception produced by PAG 
stimulation. Two neurochemicals have been suggested to be involved in the modulation of LC NE 
neuronal activity such as corticotropin-releasing factor (CRF) and the endogenous opioid enkephalin [41]. 
CRF has been shown to increase the spontaneous discharge rate of LC neurons [42] whereas 
enkephalins exert mostly inhibitory effects on LC neurons [43]. The balance between opioids and CRF 
influences in the LC regulate noradrenergic transmission and likely pain through the stimulation of 
descending pathways. 

Dopaminergic neurons from the ventral tegmental area (VTA) have no clear anatomical and direct 
functional interactions with the PAG. Interestingly, several studies have localized the antinociceptive 
effects of morphine to the PAG [24,44-46]. Together with the observation that the lesion of DA 
neurons by the neurotoxin 6-OHDA (injected with a norepinephrine reuptake inhibitor to prevent 
depletion of NE neurons), caused a decrease in the effect of morphine [24], these results suggest that an 
intact DA system is necessary to the antinociceptive effect of morphine, particularly in the PAG [47]. In 
agreement with this hypothesis, a subpopulation of neurons within the PAG is dopaminergic. These 
neurons project to the central nucleus of the amygdala, ventral striatum, and locally within the 
PAG [48,49]. Since there is substantial overlap in the neural systems containing opioid and dopamine 
receptors [50-52], it has been proposed that the antinociceptive effect of morphine results from the 
release of DA in the PAG, which in turn would facilitate the local action of opioids [53]. 

The thalamus is the main relay site for nociceptive inputs to cortical and subcortical structures. It 
includes several nociceptive nuclei of the somatosensory and intralaminar thalamus. Thalamocortical 
networks that produce both sensory discriminative and affective components of the pain response 
generate conscious pain. Initial studies have indicated that the ablation of the parafascicular nucleus 
(PFN) selectively reduces the emotional suffering associated with acute and chronic pain in humans, 
and reduces responses to noxious stimulation in animals [54]. 

The DRN projects axons to the thalamus including the PFN, to suppress the pain sensations. 
Stimulation of the DRN has been found to effectively inhibit the responses induced by noxious 
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stimulation of neurons in the PFN [55]. In contrast, the lesion of 5-HT neurons by the specific 
neurotoxin 5,7-DHT abolished the effect of DRN stimulation on pain-induced excitation of the PFN. 
These results indicate that 5-HT has a tonic inhibitory influence on responses to noxious stimulation. It 
was further found that, similar to DRN stimulation itself, iontophoretic application of 5-HT in the PFN 
inhibits changes caused by noxious stimulation [56] suggesting that the DRN is involved in pain 
modulation in this ascending pathway. 

The LC, but also the VTA, send projections to the somatosensory thalamus [57-59]. The 
involvement of ascending noradrenergic innervation of the somatosensory thalamus in pain processing 
is supported by a recent study showing that nociceptive stimulation activates LC neurons projecting to 
the thalamus [60,61]. About the role of DA, recent study reported that the local application of DA in 
the PFN modulates the frequencies of pain-excited and pain-inhibited neurons [62], raising the 
possibility that DA in this brain region play an important role in the modulation of the nociceptive 
response. However, it seems that DA produces dual modulatory effects depending on the DA receptor 
subtypes [63]. 

Apart from the well-known involvement in motoric circuitry of the basal ganglia, these brain nuclei 
are involved in many neuronal pathways having emotional, motivational, associative and cognitive 
functions as well. This brain region contains several nuclei including the putamen, caudate nucleus, 
globus pallidus, subthalamic nucleus, and nucleus accumbens that receive multimodal input from all 
sensory systems and thereby serve as a gating station for continuous sensory information, including 
pain. Several studies have suggested that basal ganglia may be involved in the sensory-discriminative 
aspect of pain, the affective and cognitive aspect of pain but also the modulation of nociceptive 
information and sensory gating of nociceptive information to higher motor areas, because they are the 
main link between the thalamus and the cerebral cortex [64]. Data supporting a role for the basal 
ganglia in pain and analgesia processing have been derived from numerous clinical and preclinical 
studies [65]. For example, lesions of the basal ganlgia in patients suffering from Parkinson’s disease 
have offered further insights into the potential role of this brain region in pain and analgesia. Indeed, 
infarction of the lenticular nucleus (composed of the putamen and globus pallidus) may result in 
sensory deficits including pain in some patients [66], whereas both unilateral and bilateral deep brain 
stimulation of the globus pallidus have been reported to relieve pain [67]. The basal ganglia receive 
inputs from all cortical areas (including medial and orbital, prefrontal, dorsolateral, premotor and 
motor cortex, sensorimotor and parietal cortex) and the thalamus, which are endowed with a rich 
innervation composed of serotonergic, noradrenergic and dopaminergic nerve terminals. 

The DRN heavily innervates the nucleus accumbens [68], a brain region receiving β-endorphin 
containing nerve terminals originating from the arcuate nucleus [69]. In humans, rats, and many other 
species, injection of β-endorphin into the nucleus accumbens exerts an analgesic effect [70-73]. It was 
hypothesized that the effect of 5-HT on chronic pain might be due to an interaction with endogenous 
opioid systems [74,75]. In line with this hypothesis, it has been shown that local application of 5-HT 
can facilitate the release of β-endorphin in the arcuate nucleus and nucleus accumbens [76]. The 
involvement of 5-HT in the nucleus accumbens in mediating the antinociceptive effect was further 
suggested by the finding that the local application of cinanserin, a 5-HT2 receptor antagonist, 
attenuated the antinociceptive effect of morphine [77]. Several possibilities has been raised regarding 
the interaction between 5-HT and β-endorphin: (i) the existence of enkephalins in about one third of 
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the neurons located in the DRN [78] suggests that 5-HT and enkephalins may act as co-transmitters in 
the synaptic events with one playing a regulatory function for the other; (ii) 5-HT released in the 
nucleus accumbens may activate the enkephalinergic interneurons within the nucleus, as demonstrated 
in the caudate putamen [79]; (iii) enkephalins may accelerate the release of 5-HT, although no 
evidence is yet available in favor of this possibility. 

The LC send projection to the striatum [or caudate-putamen (CPu) in human] as suggested by 
immunohistochemical and fluorescence histochemical studies [80]. The CPu is one of the important 
components of the basal ganglia, and is recognized as one of the several sites involved in the 
modulation of nociceptive sensory input through descending controls to the level of the spinal cord. It 
is rich in monoamine neurotransmitters, including NE and DA [80,81]. Neurons in the CPu respond to 
noxious thermal, mechanical and electrical stimulation [64,82]. Interestingly, the stimulation of the 
CPu induces analgesia [83] while the CPu display two types of neurons named PEN and PIN (“on-
cells” and “off-cells”), which are excited or inhibited respectively by nociceptive stimulation. NE 
potentiated the electric activities of the evoked discharges of PEN and simultaneously attenuated those 
of PIN, i.e. exhibiting the hyperalgesic effects of NE [84]. The latter study illustrate the fact that NE is 
involved in the modulation of nociceptive information transmission through an action in the CPu [85]. 

The VTA and substantia nigra (SN) send dense projection to the nucleus accumbens and basal 
ganglia [86]. Clinical and behavioral data indicate that dopaminergic pathways are involved in central 
pain processing. Data from electrical and chemical (i.e., DA receptor agonists and antagonists) 
stimulation or electrolytic and chemical lesions of the CPu, GP and substantia nigra (SN) provide 
evidence that the basal ganglia can modify behavioral responses to noxious stimulation. For example, 
it has been shown that a unilateral lesion of the nigrostriatal pathways causes hyperalgesic responses to 
painful stimuli at contralateral side [64,87-89]. As well, DA depletion by 6-OHDA injection into the 
medial forebrain bundle, CPu and SN results in hypersensitivity to mechanical [90,91], electrical [92] 
and thermal stimulation [91]. A recent study found hyperalgesic responses to painful chemical 
stimulation of the hind paw ipsilateral to intrastriatal 6-OHDA administration [88]. The role of DA in 
pain needs to be further investigated. Nevertheless, it seems that the activation of nigro-striatal 
dopaminergic transmission is associated with individual variations in subjective ratings of sensory and 
affective qualities of pain, whereas mesolimbic activation appears associated with variations in 
emotional responses during pain challenge [20]. 

The limbic system mainly consists of the anterior cingulated cortex (ACC), the insular cortex (IC), 
the prefrontal cortex (PFC), the amygdala and the hippocampus. Monoaminergic neurons project into 
these various brain regions and are involved in the regulation of pain, mood and in the affective 
dimension of pain [93]. Dysfunction of these ascending projections from the DRN, LC and VTA may 
contribute to the classical symptoms of depression. The activation of cortical structures has been 
shown in humans using imaging studies in response to pain [94-98]. Lesions of cortical region such as 
the ACC significantly reduced acute nociceptive responses [99]. The involvement of the ACC in pain 
modulation may be attributable to the activities of a variety of neurotransmitters as DA and glutamate [7]. 
Indeed, it has been reported that increased activity of glutamatergic projections intensifies nociception 
whereas dopaminergic projections into the ACC inhibits nociception [100]. DA also appears to be key 
neurotransmitters in nociception modulation in the IC that displays a high density of DA fibers arising 
principally from the VTA and SN [101]. 



Pharmaceuticals 2011, 4   292 
 

  

The role of 5-HT and NE in these cortical regions is also well documented. For example, the 
increase in 5-HT extracellular levels induced by the inhibition of the 5-HT transporter (5-HTT) in the 
primary somatosensory cortex produces anti-hyperalgesic and anti-allodynic effects [102]. 

About the insular cortex, essentially considered as the anatomical substrate for integration and 
processing information from different functional systems, the mid-posterior part has been involved in 
somato and viscerosensory painful stimuli. Dense connections and interconnections between the 
different cortical areas allow multimodal integration of both informations [103]. 

The amygdala performs a primary role in the formation and storage of memories associated with 
emotional and affective events [104] and plays a key role in attaching emotional significance to 
pain [105]. Amygdala receives input from LC noradrenergic projections [19] and is involved in 
defense response, i.e. analgesia, associated with intense fear and dangerous situations [106]. Imaging 
studies showed an activation of the amygdala in response to different painful stimuli [107]. Changes in 
5-HT receptor function in the amygdala were observed under a chronic pain-like state [102]. Apart 
interactions with hypothalamus and brainstem, it has been described that amygdala is involved in 
cognitive effects of pain through amygdala-cortical interactions. In addition, pain-related decision-
making deficits involve increased GABAergic synaptic inhibition in prefrontal cortex [9]. 

Finally, activation of the hippocampus has been demonstrated in healthy volunteers in response to a 
pain stimulus [108], and preclinical studies have reported changes in the hippocampal morphology, 
cell proliferation and gene expression in response to chronic pain [109,110]. Since the hippocampus 
receives a dense monoaminergic innervation, it is possible that the increase in extracellular levels of 5-
HT, NE and DA, each monoamine known to stimulate neurogenesis and the expression of 
neurotrophic factors in the hippocampus [111-113], may produce antinociceptive effects. This is in 
agreement with a recent study showing that chronic pain suppresses the increase in the 
immunoreactivity of doublecortin-positive cells (a marker of neuron maturation) induced by an 
enriched environment [114]. 

2. Pharmacological Properties of Monoamines Reuptake Inhibitors 

For many years, studies mainly focused on the serotonergic and the noradrenergic systems because 
of the efficacy of selective 5-HT or NE reuptake inhibitors (SSRIs/NRIs) in the treatment of major 
depressive disorder. SSRIs and NRIs block the 5-HT or NE transporter (5-HTT or NET), respectively; 
thereby increasing extracellular concentrations of these monoamines in the synapse and prolonging 
their duration of action at postsynaptic level. Despite the variety of SSRIs (citalopram, escitalopram, 
fluovoxamine, fluoxetine, paroxetine and sertraline) and NRIs (atomoxetine, desipramine, reboxetine), 
their binding property towards monoamine transporters may vary [115]. In addition, since close 
anatomical and functional interactions between monoaminergic systems exist, any action on one 
system may reverberate in the other system [116]. A corollary of this cross-modulation is that the in 
vivo net effect of SSRIs or NRIs on 5-HT or NE neurotransmission is difficult to anticipate. Functional 
in vitro and in vivo approaches have thus been applied to characterize the pharmacological properties 
of these antidepressants. Inhibition of [3H]-5-HT or [3H]-NE reuptake in synaptosomes, is one of the 
most widespread method to assess the in vitro potency of reuptake inhibitors [117] and to predict 
indirectly, their affinity and selectivity on biogenic amines transporters. Intracerebral 
electrophysiology and microdialysis have proven to be sensitive methods to assess the in vivo 
inhibitory potency of various drugs on reuptake. Indeed, at presynaptic level, when 5-HTT or NET are 
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blocked on the serotonergic or noradrenergic cell bodies, respectively, there results an accumulation of 
5-HT or NE in the vicinity of somatodendritic 5-HT1A or α2 autoreceptors in the dorsal raphe (DR) or 
locus coeruleus (LC). This lead to an attenuating firing DR 5-HT and LC NE neurons in a dose-
dependent manner due to the activation of these neuronal elements exerting a negative feedback 
influence [118]. This parameter can be used to characterize the pharmacological profile of reuptake 
inhibitors. At nerve terminals, an accumulation of 5-HT or NE also occurs in response to the 
inactivation of the 5-HTT or the NET by SSRIs or NRIs, and the enhancement of extracellular levels 
of monoamines can be probed by microdialysis in various brain regions [119] and constitutes another 
parameter to study the functional activity of reuptake blockers. Nevertheless, since microdialysis 
methodology may vary between laboratories, the electrophysiological approach seems to be the most 
appropriate approach to establish relevant comparisons between compounds. 

2.1. Single- and Dual-Acting Monoamine Reuptake Inhibitors 

The six approved SSRIs in the treatment of depression are all potent 5-HT reuptake inhibitors in 
vitro as well as in vivo [117,120]. Paroxetine is the most potent inhibitor of 5-HT transporter, whereas 
citalopram and escitalopram are the most selective ones [115,117]. However, the 5-HT/NE ratios vary 
considerably between SSRIs (Table 1). Multiple sources of evidence from electrophysiological studies 
indicate that SSRIs reduce the firing activity of DR 5-HT neurons in rats with ED50 ranging between 
(60 and 600 μg/kg; i.v.). It is important to note that some of them also produce a weak, but significant 
decrease in LC NE and VTA DA neuronal activities after acute or sub-chronic administration (Table 2). 
As expected, microdialysis studies showed that all SSRIs enhance the extracellular levels of 5-HT. 
Interestingly, SSRIs may also enhance the extracellular levels of NE in the frontal cortex and 
hippocampus after acute or chronic administration in rodents [15,121-129]. Different hypotheses have 
been raised to explain such effects of 5-HT reuptake inhibitors on the noradrenergic system. It is 
possible that an increase in 5-HT is a prerequiste to stimulate the central NE transmission. 
Accordingly, the release of NE in serotonergic nerve terminals areas was observed in response to the 
activation of postsynaptic 5-HT1A [130] or 5-HT3 receptor types [131]. Together with the observation 
that SSRIs decreased the spontaneous neuronal activity of NE neurons in LC [132-134], this suggests 
that the enhancing property of SSRIs on the noradrenergic system may involve a local excitatory 
mechanism at nerve terminals, independent from the inhibition of the NET. Given the high degree of 
homology between monoamine transporters, another possibility would be that SSRIs exert non-
selective effect through the blockade of the NET. In line with this assumption it was shown that 
paroxetine blocks the NET [135,136]. In addition, we have recently shown that the enhancement of 
cortical extracellular levels of NE induced by escitalopram remained intact in 5-HTT−/− mice, while the 
increase in cortical extracellular levels of 5-HT was suppressed (unsubmitted data), confirming the 
possibility that SSRIs may also inhibit, at least partially, the NET. Aberrant uptake of NE from 
serotonergic nerve terminals might also explain that SSRIs increase the extracellular levels of NE [137] 
but this latter point is still debate of matter. Finally, the pharmacological profile of SSRIs and more 
paticularly their monoaminergic receptor-profile may also play a significant role in the modulation of 
NE neurotransmission. As an example, the 5-HT2C blocking activity of fluoxetine [138] may prevent 
SSRI-induced decrease in LC NE neuronal activity [139] and consequently may participate in 
stimulating NE at nerve terminals. 
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Table 1. In vitro reuptake inhibition of monoamines transporters by monoaminergic 
reuptake inhibitors from rat synaptosomal fractions. * Ki values (nM). 

Drug Mechanism 

In vitro functional activity – Uptake 
inhibition into rat brain 

synaptosomes (IC50, nM) 
Ref 

[3H]5-HT [3H]NE [3H]DA 
Citalopram SERT ∼3.9 ∼6100 >10,000 [140] 
Escitalopram  ∼2 ∼2500 >10,000 [140] 
Fluoxetine  ∼32 ∼630 ∼5170 [141] 
Fluvoxamine  ∼10 ∼1000 >10,000 [141] 
Paroxetine  ∼0.5 ∼97 ∼1170 [141] 
Sertraline  ∼58 ∼1200 ∼1100 [142] 
Atomoxetine NET ∼170 ∼0.25 ND [143] 
Desipramine  ∼380 ∼1 ∼3580 [141] 
Reboxetine  ∼794 ∼2 >10,000 [144] 
Duloxetine SERT - NET ∼1.5 ∼40 ND [143] 
Milnacipran  ∼28 ∼29 >10,000 [141] 
Venlafaxine  ∼63 ∼316 ∼7940 [144] 
Bupropion NET - DAT ∼19,900 ∼1500 ∼600 [145] 
Nomifensine  ∼830 ∼6.6 ∼48 [145] 

DOV102677 
SERT - NET 
- DAT 

∼133 ∼103 ∼129 
[146] 

DOV21947  ∼12.3 ∼22.8 ∼96 [147] 
JNJ-7925476  ∼1* ∼0.9* ∼2.6* [148] 
PRC200-SS  ∼2.1* ∼1.5* ∼61* [149] 

Atomoxetine, desipramine and reboxetine are potent and selective NET inhibitors [150]. Their 
capacity to inhibit the NET in vitro is in the nanomolar range, whereas data from synaptosomes studies 
indicate that their potency to inhibit 5-HT reuptake is at least 50 times weaker (Table 1). In term of 
electrophysiological property, desipramine and reboxetine inhibit the firing activity of rats LC NE 
neurons with an ED50 of 110 and 480 μg/kg (i.v.), respectively. Accordingly, in vivo microdialysis 
experiments have revealed that this class of antidepressants is very potent at enhancing brain NE 
transmission in the rat frontal cortex, hippocampus and nucleus accumbens either after acute or 
chronic administration [15,151-156]. In contrast, these drugs had no effect on the DR 5-HT and VTA 
DA neuronal activities (Table 2), confirming their selectivity towards the NET. Nevertheless, the 
effects of reboxetine on the serotonergic system remains equivocal since an inhibition [157] or an 
increase [144,158] in 5-HT firing activity in rats was described after its systemic administration. 
Moreover, although additional works are required to elucidate the impact of NRIs on the serotonergic 
system, some studies failed to demonstrate that reboxetine increased 5-HT outflow [156,159]. 
Svensson and colleagues found that in rats it enhanced the extracellular levels of 5-HT despite their 
apparent low affinity for 5-HT reuptake sites [158]. Hence, NRIs may cause a secondary enhancement 
of central serotonergic activity by a mechanism separate from 5-HT reuptake inhibition. Accordingly, 
it has been proposed that the enhanced levels of synaptic NE in postynaptic regions likely enhanced 
serotonergic activity through the stimulation of postsynaptic α1-adrenoceptors located on 5-HT cell 
bodies in the DR [160,161]. Interestingly, since prolonged administration of desipramine or reboxetine 



Pharmaceuticals 2011, 4   295 
 

  

desensitize α2-adrenergic receptors present on 5-HT terminals, it is possible that such a mechanism lead 
to an increase in synaptic availability of endogenous 5-HT as observed in the rat hippocampus [158]. 

Table 2. In vivo elecrophysiological effects of monoaminergic reuptake inhibitors on the 
firing activity of DR 5-HT, LC NE and VTA DA neurons in rats. [---]: 100% of inhibition, 
[--] between 50 and 100% of inhibition, [-] <50% inhibition, (0) No significant effect, 
(ND): Not Determined. Values into brakets indicate the dose that produces 50% of 
complete inhibition of neuronal activity (IC50). 

Drug Mechanism 
In vivo functional activity – Inhibition of 

neuronal activity (IC50, μg/kg; iv) Ref 
DR 5-HT LC NE VTA DA 

Citalopram SERT - - - 
(∼250) 

0 
 

- 
 

[116] 
[133] [162] 

Escitalopram  
- - - 

(∼60) 
0 
 

0 
 

[116] 
[133] [163] 

Fluoxetine  
- - - 

(∼5000) 
- - [162]  

[132]  

Fluvoxamine  - - - 
(∼600) 

ND - [164] 

Paroxetine  
- - - 

(∼240) 
0 
 

- 
 

[164] 
[165] 

Sertraline  
- - - 

(∼180) 
ND - 

 
[164] 

Atomoxetine NET ND ND ND  

Desipramine  
0 
 

- - - 
(∼240) 

ND [166] 
[165] 

Reboxetine  0 
 

- - - 
(∼110–480) 

0 
 

[134] 
[144] [158] 

Duloxetine SERT - NET 
- - - 

(∼10-700) 
- - - 

(∼480) 
ND [167] 

[168] 

Milnacipran  
- - - 

(∼5700) 
0 
 

ND 
[169] 

Venlafaxine  - - - 
(∼110-230)

- - - 
(∼700-1000)

0 
 

[165] 
[144] 

Bupropion NET - DAT 0 0 0 [170] [171] 

Nomifensine  0 - - - 
(∼40) 

- - - 
(∼450) 

[172] 

SEP225289 
SERT - NET 

- DAT 
- 
 

- - 
 

- 
 

[173] 

DOV216303  - - - - [173] 

A second generation of antidepressants targeting both 5-HT and NE, named serotonin and 
norepinephrine reuptake inhibitors (SNRIs), has then been developed with the hope to produce more 
robust therapeutic effects in depression. Among these antidepressants, duloxetine, milnacipran and 
venlafaxine have provided one of the first opportunities to propose that a specific dual-acting 
antidepressant would be significantly more effective than SSRIs in depressed patients [174,175]. 
Indeed, it is currently believed that the therapeutic efficacy of antidepressant drugs may depend on 
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their capacity to enhance simultaneously brain 5-HT and NE neurotransmissions. Although SNRIs 
inhibit both 5-HTT and NET, there are considerable differences in their affinity, selectivity and 
potency [115] (Tables 1). In vitro, duloxetine and venlafaxine have a high affinity for the 5-HTT 
compared to the NET whereas milnacipran has a more balanced affinity for these transporters (Table 1). 
Electrophysiological experiments in rats have confirmed these pharmacological properties since 
duloxetine and venlafaxine reduce the firing activity of DR 5-HT neurons with an ED50 lower than that 
obtained for LC NE neurons (Table 2). Surprisingly, although high doses of milnacipran are required 
to inhibit the discharge of 5-HT neurons in rats, it does not modify the neuronal activity of NE neurons 
(Table 2). The effects of the three SNRIs on the extracellular levels of 5-HT and NE have been 
extensively studied. In freely moving rats duloxetine produced a dose-dependent increase in the 
extracellular levels of both 5-HT and NE in the frontal cortex or hypothalamus [176-178]. Venlafaxine 
enhanced the levels of NE but not 5-HT in the cortex [179,180]. Other studies, however, found a dose-
dependent increased of both 5-HT and NE concentrations in the frontal cortex and 
hippocampus [124,144,181,182] with a greater increase of 5-HT output compared with that of NE [122]. 
About milnacipran, microdialysis studies revealed that it produced a dose-related similar increased in 
both extracellular 5-HT and NE in the guinea pig hypothalamus [141,183] in agreement with its in 
vitro pharmacological profile [184]. It is interesting to note that, in agreement with their 
pharmacological profile, neither venlafaxine nor milnacipran increased the extracellular level of DA in 
the rat hippocampus or frontal cortex [182,185]. However, a microdialysis study reported an 
enhancement of extracellular level of DA in the rat frontal cortex and nucleus accumbens in response 
to the administration of duloxetine [178]. These neurochemical data are surprising but agree with the 
observation that duloxetine displays a higher affinity for the DA transporter (DAT) [186,187], albeit 
weak, than the two other SNRIs. 

The recent observation that pure dopaminergic drugs, such as the D2/D3 receptor agonist 
pramipexole, a drug without apparent affinity for either NE or 5-HT neuronal elements, are effective 
antidepressants [188], suggested that enhancing DA function may underlie, at least in part, a 
therapeutic response in major depressive disorder. So far, no selective DA reuptake inhibitors are 
available in clinic. Bupropion and nomifensine remain the sole drug used in the treatment of 
depression and sharing the property of inhibiting the DAT [118]. Nevertheless, both agents are not 
selective and display a noradrenergic component. Bupropion is an effective antidepressant when used 
alone or in combination with SSRIs that would exert its therapeutic effect through the selective 
blockade of the DA, but also NE transporter (Table 1). Despite this pharmacological profile, acute 
administration of bupropion had no effect on the firing activity of VTA DA and LC NE neuronal 
activities (Table 2). However, it has been shown to enhance extracellular levels of DA in the striatum 
and frontal cortex of mice and rats [189-192]. Together, these data indicate that bupropion display an 
original mechanism of action. In line with this hypothesis, positron emission tomography (PET) scan 
studies reported that clinically effective doses of bupropion produce very low occupancy of DA 
reuptake sites [193]. In preclinical studies, bupropion was hypothesized to be a NE releaser in LC and 
at the level of NE terminals in the DR [171]. Hence, administration of sub-acute bupropion dose 
increases firing of 5-HT neurons whereas NRIs do not. This effect was no longer present in NE-
lesioned rats suggesting the involvement of the noradrenergic system in its mechanism of action. It is 
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thus possible that the effect of bupropion on the serotonergic system would be mediated via 
α1-adrenoceptor, which exerts an excitatory action on 5-HT neurons activity [171,194-196]. 

Nomifensine is an antidepressant with potent NE and DA reuptake inhibiting properties (Table 1). 
Animal studies showed that an acute administration of nomifensine had no effect on the neuronal activity 
in the LC but it markedly decreased the firing rate of NE neurons after 2 days of treatment [172] as 
previously found with the NRI reboxetine. Similar to NE neurons, the firing rate of DA neurons in the 
VTA was significantly decreased with a short-term nomifensine regimen (Table 2) while increasing the 
firing rate of 5-HT neurons when the treatment was prolonged [172]. It is well documented that increases 
in synaptically available NE and DA, a property that was observed by using microdialysis in response to 
the administration of nomifensine [197]. Such neurochemical effects could also account for the 
activation of 5-HT neurons via excitatory α1-adrenoceptors [160] and D2 receptors [198-200] in the DR. 

In summary, a wide range of monoaminergic antidepressants is thus available for clinicians. These 
agents with either selective or dual actions have distinct mechanisms of action and it seems important to 
take into consideration the high degree of connectivity between monoaminergic systems [173] to predict 
their in vivo effects. Understanding the mode of action of drugs targeting these catecholaminergic 
neurotransmitters can improve their utilization in monotherapy and in combination with other compounds 
particularly the SSRIs. Due to the purported role of DA in the depression, triple reuptake inhibitors (TRIs) 
could be the next generation of antidepressants after SSRIs, NRIs, SNRIs, in the treatment of depressive 
disorders and other symptoms such as sexual dysfunction and/or chronic pain [115]. 

2.2. Pharmacological Properties of Triple Monoamines Reuptake Inhibitors 

A number of compounds with the ability to bind and block all three monoamine transporters have 
been developed. To illustrate the growing interest for TRIs, it is interesting to note that just in 2010, 
the pharmacological profiles of seven compounds have been reported [201-207]. Experiments from rat 
cortical synaptosomal fractions indicate that the inhibition of monoaminergic transporters by TRIs is 
lower than that of single- or dual-acting agents (Table 1). This indicates that the novelty of this new 
class of antidepressant lies in their balanced profile at blocking 5-HTT, NET and DAT rather than in 
their in vitro potency. In an attempt to further characterize the functional activity of TRIs, recent 
electrophysiological and neurochemical studies have been conducted. In agreement with a low in vivo 
potency in comparison with single- or dual-reuptake inhibitors, relative high intraveinous doses of the 
TRIs SEP225289 and DOV216303 were required to inhibit the electrical activities of DR 5-HT, LC 
NE and VTA DA neurons. Although this may result from a lower affinity for the monoaminergic 
transporters than selective reupake inhibitors [115] or from a poor brain penetration, 5 mg/kg of 
DOV216303, produced an inhibition of 80% of LC NE neuronal activity but only of 30% and 40% of 
DR 5-HT and VTA DA neurons; respectively [173]. The observation that both TRIs exerted a 
predominant effect in the LC, while producing only a partial decrease in DR 5-HT firing activity was 
puzzling given the equal in vitro affinity and potency of the former drugs for all three transporters. The 
reciprocal interactions between monoaminergic neurons might have thus contributed to alter the functional 
in vivo activity of TRIs because the majority of SSRIs, NRIs and SNRIs produce a complete suppression of 
DR 5-HT neurons firing (Table 2). The possibility has been raised that the lesser than expected effect of 
SEP225289 or DOV216303 on the firing activity of 5-HT neurons resulted, at least in part, from the 
accumulation of DA and NE in the DR, which are supposed to be excitatory [160,198-200]. In line with 
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this hypothesis, when SEP225289 was administered to rats following an acute intravenous 
administration of the 5-HT1A receptor antagonist WAY100635, the discharge of 5-HT neurons was 
blocked [173]. These results further demonstrate that the excitatory influence of catecholamines (i.e., 
NE and DA) specifically unveiled in response to 5-HT1A autoreceptors inactivation. The observation that 
bupropion or nomifensine reversed escitalopram-induced decrease in 5-HT neuronal activity [170,172] 
further supports the idea that the simultaneous increase in cathecholamines may counteract the 
electrophysiological effect of 5-HTT inhibition in the DR. Despite these results, in two recent 
microdialysis studies in rats DOV216303 (20–60 mg/kg) simultaneously increased all three 
monoamines but did not produce a greater increase in cortical 5-HT outflow in comparison to 
catecholamines [201,208]. It is noteworthy that JAZ-IV-22, a new TRI displaying a balanced profile 
close to that reported for DOV216303, produced similar neurochemical effects than the former 
compound [201]. PRC200-SS (5 and 10 mg/kg; i.p.) also stimulated the cortical extracellular levels of 
all three monoamines [149] with a marked effect on NE and 5-HT transmissions, in agreement with its 
in vitro pharmacological profile. Nevertheless, PRC200-SS failed to modify the extracellular levels of 
DA in the mPFC. This is somewhat surprising given the dense dopaminergic innervation and the high 
expression of DAT in this brain region in rats [209]. These neurochemical observations also contrast 
with the fact that catecholamine uptake blockers such as nomifensine, desipramine and reboxetine 
increased, although moderately, DA levels [210-214]. Interestingly, in the core of the nucleus 
accumbens (Nacc), PRC200-SS (10 mg/kg; i.p.) increased DA, and, to a lower extent, 5-HT outflow 
without affecting NE, probably due to the highest density of dopaminergic nerve terminals in this brain 
region. As a last example to emphasize the contrast between in vitro and in vivo functional activity of 
TRIs, JNJ7925476 produced a robust and dose-dependent increase in all three monoamines, with a 
maximal effect for DA (15-fold above basal level) compared to 5-HT and NE (5–7 fold above basal 
level) at the highest dose tested (10 mg/kg; s.c.) in the cortex of freely moving rats [215]. However, 
data indicate that JNJ7925476 displayed a better in vitro binding affinity and blocking activity for 5-
HTT and NET than for DAT in rats [215]. Differences in transporter occupancy cannot explain these 
findings since this parameter followed the same trend observed with cortical extracellular monoamines 
levels. It was therefore proposed that the high cortical levels of DA might have resulted from the 
blockade of the NET by this drug, which displays a high affinity for the DAT [16,216]. Finally, it is 
interesting to note that among the recently synthesized TRIs, despite their overall balanced profile, 
their systemic administration in rodents resulted in considerable variations between 5-HT, NE and DA 
extracellular levels [205,206]. 

All these findings illustrate the fact that the in vivo activity of reuptake inhibitors will not 
necessarily reflect their in vitro functional activity, probably due in part, to the functional interactions 
between monoaminergic neurons. Despite such differences, all TRIs, depending on the brain region, 
are able to enhance monoaminergic neurotransmission to produce antidepressant-like effect in naïve or 
depressive-like animals. Thus, in generalized pain states in which mood changes and diffuse pain 
occur in relation with an attenuation of brain monoaminergic transmission, TRIs could modulate 
nociceptive systems and display a major role in its relief. 
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3. Monoamines Reuptake Inhibitors and Pain Preclinical Outcomes 

Acute and chronic pains may in part, result from reduced levels of endogenous 5-HT, NE and DA 
activity, at both the spinal and supraspinal levels [217]. As described in the first part of this review and 
depicted in Figure 1, nociception is a bi-directional process of ascending and descending neuronal 
pathways involving monoaminergic systems whose activation may have an inhibitory influence on 
pain. Consequentially, it is presumed that 5-HT, NE and/or DA reuptake inhibitors may attenuate pain 
by preventing their presynaptic reuptake, leading to increased postsynaptic monoamines’ levels and 
sustained activation of the descending pain inhibitory pathways [218]. In this part, we will describe the 
preclinical data supporting the role of currently available antidepressant drugs in the control of pain. 
Despite the complexity of pharmacological interactions between monoaminergic neurons that 
sometimes may attenuate monoaminergic neurotransmission (Figure 1), one would expect a better 
efficacy of dual-or triple-acting agents over selective 5-HT or NE reuptake inhibitors. Indeed, since all 
three monoamines are involved in antinociception, the recruitment of more than one system may 
produce beneficial effects. Although findings indicate that the antinociceptive potency of reuptake 
inhibitors varies according to their monoamine specificity, the nature of stimuli and the animal models 
of pain [219], this section may help determine the optimal choice of monoaminergic activity in the 
management of pain. In particular, it is important to consider the potency of monoaminergic reuptake 
inhibitors in animal models of pain in regard to their in vivo pharmacological properties towards 
SERT, NET and DAT and the reciprocal interactions between monoaminergic systems. 

3.1. Serotonin Selective Reuptake Inhibitors (SSRIs) 

The idea that the inactivation of SERT and the related increase in extracellular levels of 5-HT [220] 
could be a relevant strategy in the relief of pain, is supported by the observation that morphine-induced 
analgesia is potentiated in 5-HTT deficient mice [221]. Although the spontaneous pain sensitivity is 
unaltered in these mutant mice compared to their wild-type littermates [221], multiple sources of 
evidence suggest that the pharmacological blockade of 5-HTT induced by SSRIs reduces acute pain in 
the hotplate and tail flick tests (Table 3). For example, citalopram produces antinociceptive effects in 
both rats [222-224] and mice [219,225]. Such antinociceptive behaviors were reported with other 
SSRIs such as fluoxetine [226,227], fluvoxamine [219,222,228], paroxetine and sertraline [229-232] 
(Table 3). Interestingly, the effects of fluoxetine are completely blunted in 5-HT depleted 
animals [227,233] suggesting that SSRIs-induced antinociception involves serotonergic pathways. In 
addition, fluoxetine but also fluvoxamine, paroxetine and sertraline significantly potentiated the 
analgesic effect of morphine [234-239] (Table 3). Although these effects were blocked by naloxone, 
fluoxetine did not alter the binding of [3H]-naloxone demonstrating the lack of affinity of this SSRI for 
opioid receptors [239]. The site of action of SSRIs remains poorly studied and somewhat equivocal. It 
was reported that the effects of SSRIs may involve supraspinal structures since the 
intracerebroventrical, but not intrathecal, injection of citalopram mimics the effect of its systemic 
administration [223]. Nevertheless, this contrasts with studies demonstrating that citalopram attenuated 
evoked glutamate release in the dorsal horn of the anesthetized rat [240] or studies reporting that the 
antinociceptive effects of SSRIs resulted from an increase in opioid transmission in the spinal 
cord [241,242]. 
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Table 3. Effects of monoaminergic reuptake inhibitors on different models of acute and 
chronic pain in rodents. 

Drug 
(Mechanism) 

Animal 
Treatment 

(Duration; dose; 
route) 

Pain Model Test Effect Ref 

Citalopram 
(SERT) 

Mice A; 50 mg/kg; i.p. Acute Hot plate + [225] 

Mice A; 20 mg/kg; i.p Acute 
Tail flick − 

[246] 
Hot plate test − 

Mice A; 20 mg/kg; i.p. 
Acute Inflammatory 

PBQ 

Hot plate ++ 
[219] Abdominal 

writhes 
+ 

Rat 

A; 5 to 20 mg/kg; 
i.p. 

acute Hot plate 0 
[222] 

A; 20 mg/kg; i.p. 
Inflammatory  

Formalin 
Formalin test + 

Rat 

A; 3–30 mg/kg; 
i.p. 

Acute 
Tail flick 0 

[247] 

Hot plate 0 

A; 30 mg/kg; i.p. 
Inflammatory  

Formalin 
Formalin test + 

A; 3–30 mg/kg; 
i.p. 

NP CCI 
Von frey 0 

Hind pressure 0 
A; 10-30 mg/kg; 

i.p. 
NP CCI Radiant Heat ++ 

Rat 
A; 3–10 mg/kg; 

i.p. 
Visceral 

Colonic 
distension 

0 
[248] 

Rat 
C; 3–10 mg/kg; 

i.p. 
Visceral 

Colonic 
distension 

0 

Rat C; 10 mg/kg.j; i.p. Comorbid anxiety Hargreaves + [249] 

Rat - ; -; i.t. 
Inflammatory 

Acetic acid 
Abdominal 

writhing 
0 

[223] 
Rat - ; - ; i.c.v 

Inflammatory 
Acetic acid 

Abdominal 
writhing 

++ 

Rat 

A; 10–25 mg/kg; 
i.p. 

Acute 
Tail flick 0 

[224] 

Tail 
withdrawal 

++ 

C; 10–25 mg/kg; 
i.p. 

Acute 
Tail flick 0 

Tail 
withdrawal 

0 

A; 5–10 mg/kg; 
po 

Inflammatory 
Acetic acid 

Abdominal 
writhing 

0 

C; 25 mg/kg; po 
Inflammatory 

Acetic acid 
Abdominal 

writhing 
0 

A; 10–25 mg/kg; 
i.p. 

Electrical 
Flinch-jump 

test 
0 

C; 10–25 mg/kg; 
i.p. 

Electrical 
Flinch-jump 

test 
0 
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Table 3. Cont. 

Escitalopram 
(SERT) 

Mice 
A; 0,5 to 50 
mg/kg; i.p. 

Acute Hot plate 0 [225] 

Fluoxetine 
(SERT) 

Mice A; 10–30 mg/kg; 
Po NP CCI Von Frey ++ [251] 

Mice 

A; 10–40 mg/kg; 
Po Acute Hot plate ++ 

[252] C; 10 mg/kg; Po Acute Hot plate ++ 

A; 30 mg/kg; po Inflammatory  
Formalin Formalin test ++ 

Mice A; 20 mg/kg; i.p. 

Acute Tail flick ++ 

[253] 
Inflammatory  

Formalin Formalin test ++ 

Inflammatory 
Carrageenan Von Frey + 

Mice A; 15 µg; i.c.v. NP CCI Von Frey 0 

[234] 

Tail Pinch 0 

 A; 5–10 mg/kg; 
i.t. NP CCI Von Frey 0 

Tail Pinch 0 

 A; 15 µg; i.c.v. NP STZ Von Frey 0 
Tail Pinch 0 

 A; 5–10 mg/kg; 
i.t. NP STZ Von Frey 0 

Tail Pinch 0 

Mice A; 5–10–20 
mg/kg; i.p. acute Hot plate + [226] 

Mice A; 25 mg/kg; i.p. Acute Hot plate + [225] 

Mice A; 10–20 mg/kg; 
i.p. NP STZ 

Tail 
Immersion + 

[254] 
Hot Plate + 

Mice -; -; - Acute Hot plate + 
[255] 

NP STZ Hot plate 0 

Mice A; 30 mg/kg; s.c.
Inflammatory  

PPQ 
Abdominal 

writhes + 
[256] 

Rat A; 56 mg/kg; s.c. NP SNL Von Frey + 

Rat -; -; - Acute 
Tail flick 0 

[238] Hot plate 0 
Paw pressure 0 

Rat SC; 20 mg/kg.j; 
i.p. NP STZ Paw pressure + [257] 

Rat -; -; s.c. NP CCI Radiant heat 0 [258] 

Rat A; 3–10–30 
mg/kg; s.c. NP SNL Von Frey + [259] 

Rat 

A; 10–60 mg/kg; 
i.p. 

Inflammatory  
Carrageenan Paw oedema ++ 

[260] 
C; 20 mg/kg.j; i.p.

Inflammatory  
Carrageenan Paw oedema ++ 
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Table 3. Cont. 

Fluoxetine 
(SERT) 

Rat A; 10 mg/kg; i.p. Inflammatory  
Carrageenan Paw oedema + [261] 

Rat 

C; 0,8 mg/kg; Po Inflammatory  
Formalin Formalin test ++ 

[233] 

A; 0.32 mg/kg; 
i.p. 

Inflammatory  
Formalin Formalin test ++ 

C; 0.16 mg/kg; 
i.p. 

Inflammatory  
Formalin Formalin test ++ 

A; 10 µg; i.t. Inflammatory  
Formalin Formalin test ++ 

Rat 

A; 20 mg/kg; i.p. Acute Tail flick ++ 

[227] 

Hot plate ++ 
A; 5–20 mg/kg; 

i.p. 
Inflammatory 

Acetic acid 
Abdominal 

writhing ++ 

A; 1 µg; i.c.v. Inflammatory 
Acetic acid 

Abdominal 
writhing ++ 

Rat A; 100–300 nmol; 
i.pl. 

Inflammatory  
Formalin 

Formalin 2nd 
phase + 

[262] 
NP SNL Thermal 

hyperalgesia 0 

Rat 

A; 0.5–1–2–4 
mg/kg; i.v. Acute Hot plate 0 

[263] Tail flick 0 
A; 0.25 mg/kg; 

i.v. Electrical NIWR - 

Rat A; 3–30 mg/kg; 
s.c. 

Inflammatory  
Formalin Formalin test 0 

[264] 
NP SNL Von Frey 0 

Pin Prick 0 

Rat 

A; 3–30 mg/kg; 
i.p. Acute Tail flick + 

[265] 
A; 30 mg/kg; i.p. Inflammatory  

Formalin Formalin test + 

A; 3–30 mg/kg; 
i.p. 

NP CCI Von Frey ++ 
Radiant heat 0 

NP SNL Von Frey 0 
Radiant Heat 0 

Rat A; 5–10 mg/kg; - acute Tail jerk 0 [239] 

Fluvoxamine 
(SERT) 

Mice A; 2–6–12 µg; 
i.c.v. 

Inflammatory  
Formalin Formalin test ++ 

[266] 
NP SNL Radiant heat ++ 

Mice A; 10 mg/kg; s.c. NP SNL Von Frey + 
[267] 

Hargreaves 0 
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Table 3. Cont. 

Fluvoxamine 
(SERT) 

Mice A; 10–30 mg/kg; 
i.p. Acute Paw pressure ++ 

[268]  A; 10–30–100 µg; 
i.t. NP SNL Von Frey ++ 

 A; 10–30–100 µg; 
i.c.v. NP SNL Von Frey 0 

Mice A; 1–70 
mg/kg;i.p. acute Hot plate +++ [225] 

Mice 

A; 30 mg/kg; i.p. acute Hot plate +++ 

[269] A; 2.6–10 µg; i.t. acute Hot plate ++ 
A; 0.6–2.7 µg; 

i.c.v. acute Hot plate ++ 

Mice A; 20 mg/kg; i.p. 
Acute Hot plate ++ 

[219] Inflammatory 
PBQ 

Abdominal 
writhes + 

Rat C; 20 mg/kg.j; i.p. Arthritis Paw pressure 0 [236] 

Rat A; 20 mg/kg; i.p. Inflammatory 
Formalin Formalin test + [228] 

Rat 

A; 0.5–1–2–4 
mg/kg; i.v. Acute Hot plate 0 

[263] Tail flick 0 
A; 0.25 mg/kg; 

i.v. Electrical NIWR − 

Rat 

A; 5 to 20 mg/kg; 
i.p. acute Hot plate 0 

[222] 
A; 20 mg/kg; i.p. Inflammatory  

Formalin Formalin test + 

Rat 
A; 1 mol to 1 

µmol; i.t. NP CCI Von Frey 0 
[241] 

 NP STZ Von Frey 0 

Paroxetine 
(SERT) 

Mice 
A; 4 mg/kg; s.c. NP SNL Von Frey ++ 

[102] Radiant Heat ++ 
SC; 5 mmol/j; 

i.c.v. NP SNL Von Frey 0 
Radiant Heat 0 

Mice A; 5–10 mg/kg; 
i.p. Acute Hot plate test ++ [231] 

Mice -; -; - Acute Hot plate test ++ 
[255] 

NP STZ Hot plate test 0 

Mice A; 5–10–20 
mg/kg; i.p. 

Inflammatory 
Acetic acid 

Abdominal 
writhing ++ [235] 

Mice A; 5 mg/kg; i.p. Acute Hot plate test ++ [230] 

Mice A; 3.8 mg/kg 
(ED50); s.c. 

Inflammatory 
Acetic acid 

Abdominal 
writhing ++ [270] 

Mice A; 30 mg/kg; s.c.
Inflammatory 

PPQ 
Abdominal 

writhes + [256] 
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Table 3. Cont. 

Paroxetine 
(SERT) 

Rat A; 10–30 mg/kg; 
s.c. NP SNL Von Frey ++  

Rat A; 0.1–100 nmol; 
i.t. 

NP STZ Von Frey + 
[241] 

NP CCI Von Frey 0 
Rat A; 10–100 µg; i.t. NP SNL Von Frey 0 [271] 

Sertraline 
(SERT) 

Mice A; 5 mg/kg; i.p. acute Hot plate ++ 
[232] 

C; 5 mg/kg; i.p. acute Hot plate ++ 
Rat C; 30 mg/kg; Po NP STZ Hot plate ++ [229] 

Rat 

A; 5–20 mg/kg; 
i.p. acute Hot plate 0 

[222] 
A; 20 mg/kg; i.p. Inflammatory  

Formalin Formalin test + 

Rat A; 3.6 to 28.8 
mg/kg; i.p. 

Inflammatory 
Carrageenan Paw oedema ++ [261] 

Rat A; 30 µg; i.t. Acute Tail flick 0 [242] 

Desipramine 
(NET) 

Mice C; 10 mg/kg.j; i.p. NP SNL Von Frey ++ [272] 

Mice 

A; 20 mg/kg; i.p. acute Tail flick ++ 

[273] 

A; 2.5 to 
20mg/kg; i.p. acute Hot Plate 0 

A; 2.5–20 mg/kg; 
i.p. 

Inflammatory 
Acetic acid 

Abdominal 
writhes ++ 

A; 2.5–20 mg/kg; 
i.p. 

Inflammatory  
Formalin Formalin ++ 

Mice A; 20 mg/kg; i.p. 
acute Hot plate + 

[219] Inflammatory 
PBQ 

Abdominal 
writhes ++ 

Mice A; 30 mg/kg; s.c.
Inflammatory 

PPQ 
Abdominal 

writhes ++ 
[256] 

Rat A; 100mg/kg; s.c. NP SNL Von Frey ++ 
Rat C; 10 mg/kg.j; i.p. NP SNL Von Frey ++ [274] 

Rat 
A; 3–30 µg ; i.p. Inflammatory  

Formalin Formalin test ++ 
[275] 

A; 60–100 µg; i.t.
Inflammatory  

Formalin Formalin test ++ 

Rat A; 20 mg/kg; i.p. 
acute Hot plate ++ 

[222] Inflammatory  
Formalin Formalin test +++ 

Rat A; 10–30–60–100 
µg; i.t. 

Inflammatory 
Carrageenan Radiant heat ++ [276] 

Rat A; 100–300 
mmol; i.pl 

Inflammatory  
Formalin Formalin test + 

[262] 
NP SNL Thermal 

hyperalgesia ++ 

Rat A; 3µg; i.t. Acute Tail flick ++ [277] 
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Table 3. Cont. 

Desipramine 
(NET) 

Rat A; 25 mg/kg; - Acute Hot plate 0 [278] 

Rat 

A; 3–10–30–100 
mg/kg; s.c. 

Inflammatory 
 Formalin Formalin test ++ 

[264] 
A; 10–100 mg/kg; 

s.c. NP SNL Von Frey 0 
Pin Prick ++ 

Rat A; 2 mg/kg; i.v. NP SNL 
Paw pressure ++ 

[279] «Pain related 
behaviour» ++ 

Rat A; 25 mg/kg; Po Acute Tail flick + [280] 
[281] 

Rat C; - ; Po Acute Tail flick + 
[282] 

Hot Plate + 

Reboxetine 

(NET) 

Mice A; 10 mg/kg; i.p. Acute Hot plate + [283] 

Mice C; 1.6 mg/kg.j; 
i.p. NP SNL Von Frey ++ [272] 

Mice A; 3–10–30 
mg/kg; s.c. 

Inflammatory 
PPQ 

Abdominal 
writhes +++ 

[256] 

Rat A; 100 mg/kg; 
s.c. NP SNL Von Frey ++ 

Rat A; 0.5–5 µg; i.t.  
Paw incisional 

injury + [284] 

Rat A; 3–30 mg/kg; 
i.p. 

Acute Tail flick + 

[265] 

Inflammatory  
Formalin 

Formalin test ++ 

NP CCI 
Von Frey 0 

Radiant heat ++ 

NP SNL 
Von Frey 0 

Radiant Heat ++ 

Duloxetine 
(SERT – 

NET) 
 

Mice A; 30 mg/kg; i.p. 

Acute Tail flick + 

[253] 
Inflammatory  

Formalin Formalin test ++ 

Inflammatory  
Carrageenan Von Frey +++ 

Mice A; 5–10–20 
mg/kg; i.p. NP STZ 

Tail 
immersion ++ 

[285] 
Hot plate ++ 

Mice A; 30–100 mg/kg; 
po NP SNL Von Frey + [286] 
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Table 3. Cont. 

Duloxetine 
(SERT – 

NET) 
 

Mice A; 3–30 mg/kg; 
i.p. 

Chronic pelvic-
perineal 

“pain 
behaviour” + [287] 

Mice A; 1–100 mg/kg; 
Po 

Inflammatory 
Acetic acid 

Abdominal 
writhing ++ 

[288] 
Inflammatory 
Carrageenan 

Von Frey ++ 
Hargreaves ++ 

Mice 

A; 1–30 mg/kg; 
i.p. Acute Tail Flick 0 

[289] 

Hot Plate ++ 
A; 1 to 30 mg/kg; 

Po 
Inflammatory 

Acetic acid 
Abdominal 

writhing + 

Rat 

A; 1–30 mg/kg; 
i.p 

Inflammatory 
Carrageenan 

Von Frey ++ 
Tail flick ++ 

A; 30 mg/kg; i.p. Inflammatory  
Capsaicin Von Frey ++ 

Rat 

A; 0.16–40 
mg/kg; i.p. 

Inflammatory  
Formalin Formalin test ++ 

[290] 
A; 5–10–20–40 

mg/kg; i.p. Stress induced USV ++ 

Rat A; 30–90–150 
µg/kg; Po 

Inflammatory 
Osteoathritis Grip force ++ [291] 

Rat A; 3-60 mg/kg; 
s.c. 

Inflammatory  
Formalin Formalin test ++ [292] 

Rat 

A; 3–30 mg/kg; 
i.p. Acute Tail flick 0 

[247] 

Hot plate + 

A; 30 mg/kg; i.p. 

Inflammatory  
Formalin Formalin test ++ 

NP CCI 
Von frey 0 

Hind pressure ++ 
Radiant Heat ++ 

Rat A; 3–30 mg/kg; 
po Acute Tail flick ++ [293] 

 A; 3–15 mg/kg; 
i.p. 

Inflammatory  
Formalin Formalin test ++  

 A; 5–30 mg/kg; 
po NP SNL Von Frey +  

Rat A; 30 mg/kg; i.p. EAE 

Paint-Brush 
test 0 

[294] Pinch test 0 
Tail 

immersion + 

Cold plate + 

Rat A; 0.4–20 mg/kg; 
i.p. TASM ligation Von Frey ++ [295] 



Pharmaceuticals 2011, 4   307 
 

  

Table 3. Cont. 

Milnacipran 
(SERT – 

NET) 

Mice 

A; 210 ng–21 µg ; 
i.c.v. NP SNL Von frey ++ 

 

[296] 

Radiant heat ++ 
A; 210 ng–21 µg ; 

i.t. NP SNL Von frey ++ 
Radiant heat ++ 

A; 210 ng–21 µg ; 
local NP SNL Von frey ++ 

Radiant heat ++ 
A; 30–120 mg/kg; 

po NP SNL Von frey ++ 
Radiant heat ++ 

Mice A; 2.5-20 mg/kg; 
i.p. 

Inflammatory 
Acetic acid 

Abdominal 
writhing ++ [297] 

Mice A; 10 mg/kg; s.c. NP SNL Von Frey ++ 
[102] 

Radiant Heat ++ 
Rat A; 1–30 µg; i.t. Post operative Von Frey ++ [298] 

Rat 

A; 0.16–60 
mg/kg; i.p 

Inflammatory  
Formalin Formalin test + 

[290] 
A; 2.5-20 mg/kg; 

i.p. Stress induced USV ++ 

Rat C; 10 mg/kg.j; 
s.c. NP CCI Von Frey ++ [299] 

Rat A; 60 mg/kg; i.p. Acute Analgesimeter 0 [300] 

Rat A; 1µmol to 
10mmol; i.t. 

NP CCI Von Frey + 
[241]  NP STZ Von Frey + 

Rat A; 60 mg/kg; i.p. NP CCI Analgesimeter ++ [301] 
Rat A; 3–100 µg; i.t. NP SNL Von Frey ++ [271] 

Rat 
A; 10 mg/kg; i.v. Visceral Rectal 

distension 0 
[302] 

A; 1 to 10 µg; i.t. Visceral Rectal 
distension 0 

Rat 
A; 10–30 mg/kg; 

i.p. 
Inflammatory 

 Formalin Formalin test + 
[293] 

A; 300 mg/kg; po NP SNL Von Fre + 

Rat A; 5 mg/kg; i.p. Inflammatory 
Formalin Formalin test ++ [228] 

Venlafaxine 
(SERT –NET) 

 

Mice C; 10 mg/kg.j; i.p. NP SNL Von Frey ++ [272] 
Mice -; -; - Acute Hot plate + [303] 
Mice A; 70 mg/kg; i.p. Acute Hot plate ++ [304] 

Mice A;l 1 to 30 
mg/kg; i.p. Acute Hot plate + [305] 

Mice A; 1–30 mg/kg; 
i.p. Acute Hot plate ++ [306] 

Rat 

A; 10–30 mg/kg; 
i.p. 

Inflammatory 
Formalin Formalin test ++ 

[293] 
A; 300 mg/kg; po NP SNL Von Frey + 
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Table 3. Cont. 

Venlafaxine 
(SERT –NET) 

 

Rat A; 50–100 mg/kg; 
i.p. 

Inflammatory 
Carrageenan Von Frey ++ [307] 

Rat A; 2.5–5–10 
mg/kg; s.c. NP STZ Paw pressure ++ [272] 

Rat A; 10–40 mg/kg; 
s.c. NP Vincristin Paw pressure ++ [308] 

Rat A; 7.5 mg/kg; s.c. NP Oxaliplatine Tail-
immersion test ++ [309] 

Rat A; 22 mg/kg; i.p. NP Paw pressure 0 [310] 
Rat A; 25 mg/kg; i.p. Acute Hot plate test +++ [311] 

Rat A; 10–25–50 
mg/kg; s.c. NP SNL Von Frey 0 

[312] 
Formalin test ++ 

Rat A; 2.5 mg/kg; s.c.
Acute Paw pressure 0 

[313] Inflammatory 
 Formalin 

Formalin test 
2nd phase ++ 

Rat - ; - ; - NP SNL Paw pressure ++ [314] 

Rat SC; 22 mg/kg ; 
Po NP CCI Radiant Heat ++ [315] 

Rat A; 3–100 mg/kg; 
i.p. 

Acute Tail flick + 

[265] 

Inflammatory  
Formalin 

Formalin test 
2nd phase + 

NP CCI Von Frey 0 
Radiant heat + 

NP SNL Von Frey 0 
Radiant Heat 0 

Bupropion 
(NET – DAT) 

Mice A; 10–30 mg/kg; 
Po NP CCI Von Frey ++ [251] 

Rat A; 3–30 mg/kg; 
i.p. 

Acute Tail flick + 

[265] 

Inflammatory  
Formalin Formalin test 0 

NP CCI Von Frey ++ 
Radiant heat + 

NP SNL Von Frey ++ 
Radiant Heat 0 

Nomifensine 
(NET – DAT) 

Rat A; 0.625–5 
mg/kg; s.c. 

Inflammatory 
Formalin Formalin test ++ [316] 

Rat A; 25 mg/kg; i.p. Acute Charpentier 
pain mode 0 [317] 

Rat A; 0.1–10 mg/kg; 
i.p. Acute Tail 

immersion - [318] 

Rat 

A; 10–40 mg/kg; 
s.c. 

Acute 
Hot plate 0 

[319] 
A; 2.5–5–10 
mg/kg; s.c. 

Tail 
immersion - 
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Table 3. Cont. 

Bicifadine 
(SERT – NET 

– DAT) 
Rat 

A; 4-8-12 mg/kg; 
po 

Acute inflamatory 

Randall Selito 
test ++ 

[320] 

A; 50 mg/kg; po 
Kaolin-
induced 

arthritis test 
++ 

A; 25–50–75–100 
mg/kg; po Acute Tail flick ++ 

Hot plate 0 
A; 10–30 mg/kg; 

po 
Inflammatory 

PPQ 
Abdominal 

writhing ++ 

A; 5–10–20–40 
mg/kg; po Visceral Colonic 

distension ++ 

A; 40–60 mg/kg; 
po Inflammatory Freund 

adjuvant ++ 

A; 10–20–30 
mg/kg; po 

Inflammatory 
Formalin Formalin test ++ 

A; 40 mg/kg; po 

NP SNL 

Paw pressure ++ 
A; 40 mg/kg; po Von Frey ++ 
A; 12.5–25–100 

mg/kg; po Radiant heat ++ 

A; 12.5–25 
mg/kg; po NP STZ Paw pressure ++ 

Treatment A: acute, SC: Subchronic from 2 to 5 consecutive days, C: Chronic more than 5 
consecutive days. i.p.: intreperitoneal; i.c.v: intracerebroventricular; i.t.: intrathecal; 
i.v.intravenous; po: per os; s.c.: subcutaneous; Pain model NP: neuropathic pain; SNL: sciatic 
nerve ligation; CCI: chronic constriction injury; PH: post herpetic; EAE: experimental autoimmune 
encephalomyelitis; TASM: tendon of the anterior superficial part of the rat masseter muscle; 
NIWR: noxious-induced withdrawal reflexes; PBQ: para-benzoquinone; PPQ: para-
phenylquinone. Test USV: Ultrasound vocalization. Effect (−) pronociceptive effect; (0) No effect; 
(++) antinociceptive effect; (+) when authors specifie “weak”, “little” or “mild” antinociceptive 
effect; (+++) when authors specifie “strong” or “important” antinociceptive effect. 

It is thus possible that the antinociceptive effects of SSRIs in acute pain involves both spinal and 
supraspinal mechanisms. This hypothesis is supported by the fact that in “positive” studies comparing 
the effects of SSRIs in the tail flick and hot plate tests, these pharmacological agents produced analgesic 
responses in both tests (Table 3). Indeed, tail flick is known to result from a spinal reflex [243] whereas 
in the hot plate test, licking or jumping responses, are known to be the result of supraspinal sensory 
integration [244,245]. In a recent study comparing the effect of various SSRIs in the hotplate test, 
differences between citalopram, escitalopram, fluvoxamine and fluoxetine (all SSRIs administered 
intraperitoneally) were yielded [225]. There are several hypotheses that may explain such differences 
in the antinociceptive action of SSRIs. Since all three monoamines are involved in antinociception, it 
is possible that the differential interaction of SSRIs with the noradrenergic and/or the dopaminergic 
systems may mediate an additional effect. Another possibility may arise from the differential 
interaction of each SSRI with monoaminergic or non-monoaminergic receptors (e.g. 5-HT2C receptor 
for fluoxetine, sigma opioid receptor for fluvoxamine). 
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In chronic neuropathic and inflammatory models of pain, citalopram reduced hyperalgesia [247]. 
The observation that escitalopram produced more robust antinociceptive effects than citalopram [225], 
is in agreement with previous study showing that the R-enantiomer may antagonize and thus attenuate 
the effects of the active enantiomer [116,321,322]. All six SSRIs share this analgesic property in 
chronic models of pain in rodents since fluoxetine, paroxetine and sertraline also produced anti-
hyperalgesic and/or anti-allodynic effects in streptozotocin (STZ)-induced diabetic neuropathy, sciatic 
nerve ligation (SNL) [241,251,254,255,257,266,268,323] or in inflammatory conditions such as 
formalin or acetic-acid injection [222,233,260,261,265,324] (Table 3). Surprisingly, the 
antinociceptive effects in chronic models of pain have been revealed after single administration of 
SSRIs. Despite all these positive studies, some studies failed to unveil antinociceptive effects of SSRIs 
in chronic pain [241,258,262,264,271]. This inconsistency of effects needs to be validated following 
chronic SSRIs treatments.  

3.2. Norepinephrine Reuptake Inhibitors (NRIs) 

Genetically modified mice lacking the NE transporter exhibit normal nociceptive threshold [325]. 
This is consistent with findings showing that two NRIs, desipramine and reboxetine, failed to modify 
the response to a thermal nociceptive stimulation in the hotplate test [273,278,326] (Table 3). 
Nevertheless, some studies have reported a weak analgesic effect of NRIs in the tail flick and hotplate 
tests [219,280,281,283]. This could be attributable to the systemic administration of the drugs. Indeed, it 
was reported that intrathecal injection of desipramine produced antinociceptive effect in the tail-flick [277], 
but also in other analgesic tests [284,327]. It is also possible that a prolonged administration of NRIs is 
required to produce antinociception. In line with this hypothesis, repeated administration of 
desipramine produced analgesia in the tail flick and hotplate tests [282] and potentiated the analgesic 
effect of morphine [277,328,329]. Another hypothesis would be that NRIs acted at the spinal level 
since the majority of studies on acute pain suggests that NRIs produce analgesic responses specifically 
in the tail flick test (Table 3). 

In various models of neuropathic and inflammatory pains, both desipramine and reboxetine 
displayed robust antinociceptive effects by reversing allodynia and/or hyperalgesia either after acute or 
chronic administration in mice [256,272] and rats [262,274-276,279]. The observation that these 
antinociceptive behaviors were reversed by naloxone [279] strongly suggests the involvement of the 
opioid system in the analgesic effect of NRIs. Two others compounds, displaying a high selectivity for 
the NET were tested in chronic neuropathic pain in rat and appear to be promising candidate for 
development as novel analgesic drugs. The intrathecal administration of the conopeptide Xen2174 
resulted in a long duration anti-allodynic responses in rats with chronic constriction injury (CCI) of the 
sciatic nerve or an L5/L6 spinal nerve injury [330] whereas WAY-318068 was shown to be efficacious 
in models of acute, visceral, inflammatory, neuropathic, diabetic and bone cancer pain [331]. 

Although the increase in extracellular levels of 5-HT or NE induced by SSRIs or NRIs seems to 
participate, at least in part, in attenuating pain, the impact of both monoamines to nociception remains 
difficult to evaluate. In a recent study, the relative contribution of 5-HT and NE in the spinal nerve 
ligation (SNL) model of neuropathic pain has been examined. It was demonstrated that NRIs, 
desipramine and reboxetine, reversed allodynia, while the SSRI fluoxetine displayed a minimal 
activity suggesting that compounds with greater affinity for the NET are more effective in attenuating 
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pain than compounds with a greater affinity for the SERT [256]. Such results could be explained by 
the serotonin’s propensity to both facilitate and inhibit pain in contrast to NE, which is purely 
antinociceptive. Interestingly, in the latter study, paroxetine produced similar anti-allodynic effect to 
that observed with NRIs. This unexpected property of paroxetine, which is reported to be a selective 
SRI in vitro, may involve the noradrenergic property of paroxetine compared to fluoxetine (Table 1). 
This is in agreement with previous studies showing the capacity of paroxetine to block NET [135,136] 
and increase the extracellular levels of NE in the frontal cortex and hippocampus of rodents [118-126]. 
Another study comparing the antinociceptive effects of citalopram and duloxetine showed that in the 
hot plate test, duloxetine significantly increased the nociceptive response latency, whereas citalopram 
was ineffective [247], further supporting the fact that the simultaneous enhancement of 5-HT and NE 
neurotransmissions may induce synergistic effects [218]. SNRIs may thus produce more robust effect than 
SSRIs or NRIs in animal models of pain. Nevertheless, the efficacy of the highly selective NET inhibitors 
Xen2174 and WAY-318068 suggests that NRI activity alone was sufficient to produce analgesia. 

3.3. Serotonin Norepinephrine Reuptake Inhibitors (SNRIs) 

As observed with NRIs, duloxetine has no or modest effect in acute models of pain in mice [289] or 
rats [247,293]. Interestingly, when both tail flick and hot plate were tested in the same study, 
antinociceptive responses were only observed in the hot plate paradigm, suggesting an involvement of 
supraspinal mechanism. However, it clearly appears that in both species, duloxetine produced 
antinociceptive effects by reducing hyperalgesia and/or allodynia in chronic neuropathic [285,293] or 
inflammatory models of pain [247,289,293] (Table 3). Interestingly, duloxetine has a more 
pronounced antinociceptive potency than milnacipran or venlafaxine [290,293]. This may result, at 
least in part, from the fact that duloxetine, but not milnacipran and venlafaxine, increased DA 
transmission [178,182,185] in addition to their neurochemical effects on the serotonergic and 
noradrenergic systems. This is in agreement with the pharmacological profile of duloxetine, which is 
more potent at blocking SERT and/or NET than milnacipran or venlafaxine (Tables 1 and 2). 
Milnacipran also displays robust anti-hyperalgesic and anti-allodynic effects in various models of 
chronic pain such as the ligature of the sciatic nerve or the fifth lumbar 
nerve [102,241,271,296,299,301], or inflammatory pain [228,290,300]. The demonstration of the 
contribution of both serotonergic and noradrenergic systems in the antinociceptive property of 
milnacipran or venlafaxine comes from a recent study showing that the effects of these SNRIs can be 
prevented by the inhibitor of 5-HT or NE synthesis, parachlorophenylalanine or alpha-methyl-para-
tyrosine; respectively [301,332]. The observation that naloxone also attenuated the antinociceptive 
effect of milnacipran in these models [301], emphasizes the importance of the opioid system in its 
behavioral effects. Although the site of action of milnacipran has yet to be determined, evidence 
suggests that it produces antinociceptive effect not only at the spinal but also at the supraspinal level. 
Indeed, the effects of the systemic administration of milnacipran were reproduced after its intrathecal 
administration [241,271,298]. At the supraspinal level, milnacipran attenuates the increase in c-fos 
expression in the ACC in response to noxious stimulation [299]. Surprisingly, in contrast to duloxetine 
and milnacipran, venlafaxine produced antinociceptive effects in mice and rats in acute pain assessed 
in the hotplate test [303,304,311]. Although venlafaxine has a weak affinity for 5-HT and NE 
transporters in comparison with duloxetine and milnacipran, the reasons of such difference remain 
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obscure. It is possible that the metabolism of these drugs play an important role in their 
pharmacological activity. Indeed, the fact that venlafaxine is metabolized into desmethylvenlafaxine 
may potentiate its antinociceptive property. In rats, it has been shown that venlafaxine may act as an 
SSRI at low doses (<10 mg/kg; i.p.) and begin to exhibit dual reuptake activity at doses >30 mg/kg; 
i.p. Consequently, it was proposed that the maximal antinociceptive effect of venlafaxine was 
observed when it was acting as a dual re-uptake inhibitor. Finally, as observed with duloxetine and 
milnacipran, venlafaxine attenuated hyperalgesia and/or allodynia in various models of 
neuropathic [265,272,309,310,315,332,333] or inflammatory pain [307,313] (Table 3). In extension of 
these findings, venlafaxine dose-dependently attenuated formalin-induced nociceptive behaviors [265], 
an effect antagonized by naloxone [306]. 

Thus, although limited, studies comparing the analgesic effect of monoamines reuptake inhibitors in 
rodents suggest that dual acting antidepressants are more active in alleviating acute or chronic pain 
than selective NE reuptake inhibitors, which themselves appear more potent than SSRIs [334]. The 
rank of order of analgesic effects of these antidepressants is thus: SNRIs > NRIs > SSRIs. 

3.4. Norepinephrine and Dopamine Reuptake Inhibitors 

The role of DA reuptake inhibitor has been poorly studied in animal models of pain. This is likely 
due to the lack of selective DA reuptake inhibitors currently available. However, it was reported that the 
DA reuptake inhibitor, GBR12909 did not affect nociception in thermal or mechanical tests [335,336] 
but decreased buspirone-induced analgesia in the thermal test [336]. It was also shown that 
microinjection of the DA reuptake inhibitor GBR12935 into the rostral agranular insular cortex 
increased pain thresholds to radiant heat at baseline and produced analgesia to sustained pain from 
subsequent intraplanar formalin [337]. 

The contribution of DA and the putative interest of DA reuptake inhibitors in relieving pain must be 
estimated also from the behavioral effects of agents displaying a blocking DAT activity such as 
bupropion or nomifensine. In rats, bupropion decreased allodynia induced by CCI and spinal nerve 
ligation models of neuropathic pain [265]. The inability of reboxetine to reverse mechanical allodynia, 
in combination with in vitro and in vivo pharmacological property demonstrates that bupropion is a 
much weaker inhibitor of NE reuptake than reboxetine [338-340] (Tables 1 and 2), might suggest that 
inhibition of DA reuptake accounted for the anti-allodynic action of bupropion. Correspondingly, the 
inability of bupropion, in contrast to reboxetine, to attenuate formalin-induced nociceptive behaviors 
and thermal hyperalgesia in CCI rats might similarly be explained by its weak potency at inhibiting the 
NET in contrast to reboxetine (Tables 1 and 2). The analgesic properties of the catecholamine uptake 
inhibitor nomifensine were investigated in the tail immersion, hot plate and formalin tests. Systemic 
administration of nomifensine produced analgesia only in the formalin test. The analgesia was not 
affected by the opioid receptor antagonist naltrexone suggesting that nomifensine analgesia appears to 
be DA-mediated but independent of opioid mechanisms [316]. Nevertheless, these data contrast with 
previous studies indicating that nomifensine did not affect nociceptive behavior [317] (or even 
produced hyperalgesic effects [318].  

This poor literature contrasts with extensive data showing the role of DA and related receptors in 
pain [341]. For example, the systemic administration of the mixed dopamine agonist apomorphine in 
rodents induced a biphasic dose-response characterized by hyperalgesia at low doses and analgesia at 
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higher doses [342]. Since the antinociceptive effects of higher doses of apomorphine were antagonized 
by central-acting sulpiride, but not by the peripheral D2-like receptor antagonist domperidone, it was 
proposed that the activation of central D2-like receptor was involved in the antinociceptive effects of 
apomorphine. The hyperalgesia due to low dose of apomorphine could stem from selective activation 
of high-affinity presynaptic autoreceptors, which would attenuate normal dopaminergic reactivity in 
response to stimulation, whereas higher doses would be necessary to bind postsynaptic targets 
adequately to affect analgesia [342]. Although the central region(s) mediating the effects of DA on 
nociception are not clearly identified, pharmacological experiments strongly suggested that the 
striatum, cerebral cortex and PAG play a major role. Indeed, microinjection of the D2-like receptor 
agonist quinpirole within the nucleus accumbens has been found to inhibit the persistent phase of 
formalin-induced nociception in a dose dependent fashion while the D1-like receptor agonist SKF-
38393 was without effect [343]. Nevertheless, these results do not necessarily mean that the impact of 
D1-like receptor in the control of pain is insignifiant. Accordingly, microinjection of a D1-like 
receptor antagonist into the PAG likewise attenuated opiate-induced analgesia in the hot plate test in a 
dose-dependent manner, while D2-like receptor antagonism was without effect. These results 
demonstrated that the dopaminergic network of the PAG participates in supraspinal nociceptive 
responses after opiate administration through the involvement of D1-like receptors [344,345]. Finally, 
with respect to the role of DA an related receptors in the regulation of pain, its effect in the spinal cord 
should be considered. It was reported that intrathecal administration of dopamine induced thermal 
antinociceptive effects through D2-like receptors when assessed by the tail flick test [346,347]. 
Activation of spinal dopamine D2-like receptors also reduced pain-related behavior following the 
establishment of inflammatory pain in both the affected and contralateral limb, while D2-like receptor 
antagonism decreased pain thresholds [348]. Intrathecal administration of dopamine also increases the 
mechanical nociceptive threshold as does quinpirole, whereas D1-like receptor activation had no 
effect [349]. Interestingly, in a recent study combining the dual 5-HT/NE reuptake inhibitor duloxetine 
with selective D1- or D2-like receptor agonists, it was demonstrated in the rat formalin test, that 
combination of all pharmacological agents produced superior analgesic effect than that obtained with 
duloxetine alone [350]. This potentiation of duloxetine-mediated antinociception is interesting because 
it suggestes that antidepressant that can simultaneously enhance serotonergic, noradrenergic and 
dopaminergic neurotransmission within nociceptive pathways should provide a broader spectrum of 
antinociception than dual reuptake inhibitors. 

3.5. Triple Reuptake Inhibitors TRIs 

Taken together, these pharmacological studies strongly suggest that drugs simultaneously inhibiting 
the re-uptake of 5-HT, NA and DA may provide a broader spectrum of pain relief in animal models of 
experimental pain than single- or dual-acting agents. Precedent for the use of TRIs in the treatment of 
clinical pain exists with nefopam, a non-narcotic analgesic marketed in Europe [351]. DA plays a 
critical role in nefopam analgesia as indicated by the observation that rats treated with 6-OHDA plus 
desipramine, which selectively depletes brain dopamine, have a marked reduction in nefopam-induced 
analgesia [352]. A specific role for D2-like receptors in nefopam-induced analgesia was demonstrated 
from the observation that the D2-like receptor antagonist sulpiride inbibited the behovorial response of 
nefopam [353]. The potential interest of TRIs in the relief of pain has been corroborated by a recent 
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publication characterizing the antinociceptive effects of the TRI bicifadine in acute, persistent and 
chronic models of pain [320] (Table 3). In this study, bicifadine potently suppressed pain responses in 
two models of acute inflammatory pain in both rats and mice. It also normalized the nociceptive 
threshold in the complete Freund's adjuvant model of persistent inflammatory pain and suppressed 
mechanical and thermal hyperalgesia and mechanical allodynia in the spinal nerve ligation model of 
chronic neuropathic pain. Mechanical hyperalgesia was also reduced by bicifadine in the STZ model 
of neuropathic pain [320]. The impact of bicifadine on 5-HT, NE and DA neurotransmissions was 
confirmed by in vitro binding assays and intracerebral in vivo microdialysis study in freely moving 
rats. In a second study, another TRI, NS7051, has shown comparable antinociceptive properties to 
tramadol confirming the interest of these antidepressants in the relief of pain [354]. The molecule has 
undergone several Phase II and III trials for the treatment of pain, including acute postsurgical pain and 
chronic low back pain [355,356], and is being evaluated for painful diabetic neuropathy [357]. However, 
bicifadine has failed to meet endpoints in a number of trials such as diabetic neuropathy [358] suggesting 
that TRIs may be used in specific pain. Other TRIs currently under development for depression should 
draw attention for future investigation in the field of pain and confirm whether or not they display any 
activity in diabetic neuropathy. 

3.5. Bridging the gap between preclinical and clinical studies 

In the perspective to develop analgesic drugs, it is really important to take into consideration that 
pain research still faces enormous challenges and there remain many obstacles in the treatment of 
clinical pain. Unfortunately, there are celebrated examples of failed ‘‘translation,” where efficacy in 
animal models predicted efficacy in human clinical trials, but no efficacy was found. The most 
definitive example of this failure to translate is the substance P (SP) neurokinin-1 (NK1) antagonist 
MK-869, which failed despite demonstrations of adequate exposure, penetration, and occupancy [359]. 
There are several criticisms on animal paradigms that can account for the poor relationship between 
clinical and preclinical studies. First of all, animal pain models only produce conditions of tissue 
damage but not necessarily all dimensions of clinical pain. Even if animal models do duplicate clinical 
pain experience like humans, there is a lack of effective assessment tools to detect different dimension 
of pain experiences in animals [360]. In particular, evidence suggests that there is a network of brain 
regions involved in sensory, emotional, cognitive and motor processing. Combined to varying extents, 
and dependent upon conditions, these regions interact to generate the unique forms of pain experienced 
by different individuals [20]. Consequently, behavioral measures, although very informative, reduce 
significantly these dimensions of pain suggesting that an integrative approach is necessary to predict a 
clinical condition or the effects of an analgesic drug [360,361]. Secondly, while the prevalent method 
of pain assessment in clinical research is a self-reporting system using the visual analog (or numerical) pain 
scale, animals cannot tell us how much pain they are suffering. Thus, the probability of misinterpreting the 
evidence obtained from experiments in species other than humans is always present [362]. To overcome 
this issue, a new index for measuring pain in mice based on the rodents’ facial expressions has been 
recently developed [363]. This study provides a new preclinical approach for scoring the therapeutic 
potential of analgesic drugs in complement of conventional methods such as the tracking of animal 
position, locomotion and gross behavior (e.g., grooming, drinking, eating, social approach). This index 
of pain relies on changes to facial characteristics being identical to those observed in humans. Thirdly, 
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despite this advance in translational research, simple reflex tests (licking an inflamed paw or flicking 
the tail in response to heat) are still extensively used to measure pain in animal. However, such 
responses to evoke pain do not closely match the experience of continuous spontaneous pain in 
humans [364], especially because a persistent pain almost never results from heat stimulation in the 
clinical setting. In addition, reflexes tend to rely on the spinal cord and brain stem, whereas learned 
responses involve the brain’s cerebral cortex (and are thus closer to the human condition). In these 
conditions, it seems that brain imaging would offer interesting opportunities to better understand the 
neurobiology of pain and evaluate the therapeutic potential of analgesic drugs [65]. Functional 
imaging may be used as a language of translation to help overcome some of these deficits. Others 
criticisms have been raised to explain the bridge between basic and clinical research in the field of 
pain. For example, it has been proposed that the existing models using inflammatory mediators such as 
formalin, carrageenan and Freund’s adjuvant, are too artificial, [365]. It has also been argued that 
design issues and reporting standards in animal experiments are greatly inferior to those currently 
prevailing in human clinical trials [366]. Specifically, details regarding blinding, randomization, and 
data dropouts are relatively reported in animal studies of pain, likely leading to high experimental bias. 
Despite all these limitations that may explain, at least in part, the fact that several drugs active in 
animals study failed to become analgesic drugs in human, animal models have obvious advantages 
with respect to standardization of genetic and environmental backgrounds. Novel integrative 
approaches may help improve preclinical approach to nociception and also to enable the building of 
bridges between scientists and clinicians. 

4. Conclusions and Clinical Perspectives 

This review emphasized the fact that pain and depression share common neurotransmitters 
pathways and that monoaminergic reuptake inhibitors may relieve chronic pain. If chronic pain may 
result in depression, pain is also a symptom frequently observed in depressed patients [367]. If it is 
well established that brain 5-HT and NE systems play an important role in the inhibitory descending 
pathway controlling pain sensitivity, growing evidence suggests that DA may also have a strong 
influence at the spinal and supraspinal levels [341]. This supports promising efficacity of triple 
reuptake inhibitors in the treatment of chronic pain, which simultaneously enhance 5-HT, NE and DA 
neurotransmissions. Although the efficacy of SSRIs in the chronic pain management indicate that 
SSRIs are more effective than placebo [368], there are indications that the role of NE is more 
important than that of 5-HT in the relief of pain in preclinical but also in clinical studies [369]. Indeed, 
in humans, various neuropathic pain syndromes respond to dual-acting agents but not to SSRIs [370]. 
For example, venlafaxine was shown to be effective in several chronic neuropathic pain syndromes, 
whereas SSRIs such as fluoxetine or citalopram, did not show any activity [371,372]. In an extensive 
review of the clinical data, Fishbain and colleagues determined that, overall, dual acting 
antidepressants were more active than NRIs, which were more active than SSRIs [373]. A pooled 
analysis of 31 double-blind studies comparing venlafaxine with SSRIs found that the SNRI was 
significantly more effective than SSRIs in treating somatic symptoms associated with depression [374]. 
In particular, the proportion of patients with full remission of their somatic symptoms was significantly 
greater with venlafaxine than with an SSRI [374,375]. Recently, the SNRI duloxetine was the first 
reuptake inhibitor approved for the treatment of diabetic peripheral neuropathic pain [370,371]. 
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Efficacy of duloxetine, venlafaxine and milnacipran was studied only in fibromyalgia. Six trials 
including 2220 participants involved duloxetine. Three studies included participants with painful 
diabetic neuropathy and three treated participants with fibromyalgia. In an open-label trial, duloxetine 
has shown consistent efficacy in painful diabetic peripheral neuropathy [376], with effectiveness 
sustained for one year [373]. Duloxetine (60 mg daily) was effective in treating painful diabetic 
peripheral neuropathy in the short-term to 12 weeks, in fibromyalgia over 12 weeks and 28 weeks. 
There is moderately strong evidence that duloxetine (60 mg and 120 mg daily) is efficacious for 
treating pain in diabetic peripheral neuropathy and fibromyalgia. Direct comparisons of duloxetine 
with other antidepressants and with other drugs whose efficacy was already demonstrated in 
neuropathic pain would be appropriate [377]. Venlafaxine has shown efficacy in polyneuropathies of 
different origins, but not in post-herpetic neuropathy [376]. Two case reports have shown bupropion 
effectiveness in the treatment of non-depressed patients with chronic low back pain of undetermined 
origin [378]. Furthermore, an open-label trial of 22 patients suggested that bupropion might be an 
effective and well-tolerated treatment of the neuropathic pain [379]. A randomized, controlled, double 
blind, crossover study has shown relief of pain in a group of patients with mixed aetiology of 
neuropathies [380]. The authors concluded that bupropion may be useful for treatment of neuropathic 
pain, but large-scale studies are needed to confirm this expectation. Regarding triple reuptake 
inhibitors, bicifadine is being tested in the treatment of chronic diabetic pain (phase II) and chronic 
low back pain (phase III). The results of these clinical trials should be available in the next months and 
will likely help determine whether the addition of the dopaminergic component to SNRIs can improve 
their analgesic efficacy. 

To date, when comparative studies are available, clinical trials for pain invariably indicate a 
superiority of the dual-acting agents for pain treatment compared to single reuptake inhibitors. With 
the development of milnacipran, duloxetine and now the triple reuptake inhibitors such as bicifadine 
focusing in their ability to relieve pain, more extensive comparative data should be forthcoming to 
make a more evidence-based judgement on the superiority of the SNRIs and TRIs in these indications. 
In this context, preclinical studies are useful to unveil which antidepressants may display the best 
therapeutic profile and may determine whether doses that produce antidepressant effects also affect 
pain and reciprocally. 

One question that also should draw our attention is the management of side effects and particularly 
whether the simultaneous enhancement of serotonergic, noradrenergic and/or dopaminergic 
neurotransmission mitigate or accentuate these side effects. Despite the much improved side effect 
profile of newer antidepressants, all of them are still associated with adverse effects that vary between 
classes and within each class [381]. SSRIs have replaced tricyclics as the drugs of choice in the 
treatment of depression, mainly because of their improved tolerability and safety. Common side effects 
of all SSRIs include transient nausea, diarrhea or constipation, dry mouth, insomnia, anxiety, 
somnolence, weight gain and sexual dysfuntion [381,382]. The dual acting antidepressants (SNRIs) 
have tolerability profiles that are comparable to those of the SSRIs however with an elevation in 
diastolic blood pressure particularly for venlafaxine [381,382]. Regarding antidepressants that increase 
DA neurotransmission, bupropion causes dry mouth, constipation, headache, nausea, excessive 
sweating and tremor but few cardiovascular effects and little sedation. In additon, it has shown a 
favorable profile in terms of both weight gain and sexual dysfunction [381,382]. As expected from 



Pharmaceuticals 2011, 4   317 
 

  

these observations, data from various studies suggested that sexual dysfunction complaints particularly 
with the SSRIs and SNRIs can be managed by adding of dopaminergic antidepressant such as 
bupropion [383-385]. On the contrary, if certain medications do have weight gain as a side effect, there 
is a logical risk of severe increased weight gain when two of these antidepressants are combined [386]. 
Interestingly, in an effort to manage most SSRI-induced weight gain, it was reported that clinicians opt 
to switch agents rather than add a specific medication to the exisiting SSRI [387]. 

Regarding TRIs, a concern with drugs that block DA transporters is their potential reinforcing 
property and abuse liability [388]. Nevertheless, drugs that block DAT do not necessarily lead to 
dependence. Indeed, Volkow and collaborators showed that DA-transporter-blocking drugs must 
induce more than 50% DAT blockade to produce reinforcing effects [388]. Hence, DA reuptake 
inhibitors have been classified into two groups: type 1 blockers, which produce addiction and 
euphoria, and type 2 blockers, which do not [389]. It is thus possible that the capacity of DA reuptake 
blockers to produce dependence may involve other mechanisms that should carefully be considered 
with multi-targets agents such as triple reuptake inhibitors. Several Phase 1 studies have been 
conducted to evaluate their adverse effects. In a dose-escalating, placebo-controlled, double blind, 
Phase 1a trial, no adverse effects were observed after doses of DOV216303 several times higher than 
the projected therapeutic doses [390]. In a Phase 1b, clinical trial, 10 subjects were given either 
placebo (n = 3) or drug (n = 7) at 3 doses (25 mg b.i.d., 25 mg t.i.d. and 50 mg b.i.d.) for 10 days. No 
severe side effects were noted, although diarrhea, vomiting and nausea were observed. These 
observations contrast with those reported in a recent study showing that more patients suffering from 
Parkinson’s disease and treated with the triple reuptake inhibitor tesofensine (82%) than in the placebo 
group (74%) experienced adverse events such as a higher rate of nervous system disorders (dyskinesia 
and headache), gastrointestinal tract disorders (nausea and constipation), and psychiatric disorders 
(halluci- nations and insomnia) [391]. Finally, weight loss has been observed as an adverse event in 
studies with tesofensine [392], prompting further research for the indication of obesity.  

In conclusion, tolerability profiles of the antidepressant or combination of antidepressants should be 
considered when making treatment choices. The decision to use such combinations must be tempered 

by and weighed in conjunction with the knowledge that specific side effects are expected. It  seems 
that  the  lack of research studies on the role of adjunctive treatments in the management of 
antidepressant-induced side effects favors monotherapy over polytherapies [387]. In this prospect, 
further efforts to evaluate the safety, efficacy, and place for antidepressant medication combinations are 
called for. 
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