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Abstract. In this paper we introduce a low-latency monaural source
separation framework using a Convolutional Neural Network (CNN).
We use a CNN to estimate time-frequency soft masks which are applied
for source separation. We evaluate the performance of the neural net-
work on a database comprising of musical mixtures of three instruments:
voice, drums, bass as well as other instruments which vary from song
to song. The proposed architecture is compared to a Multilayer Percep-
tron (MLP), achieving on-par results and a significant improvement in
processing time. The algorithm was submitted to source separation eval-
uation campaigns to test efficiency, and achieved competitive results.
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1 Introduction

Monoaural audio source separation has drawn the attention of many researchers
in the past few years, with approaches varying from using timbre models such as
those proposed by [4], to those exploiting the repetitive nature of music such as
[13]. While being an interesting problem in itself, the separation of sources from
a mixture can serve as a intermediary step for other tasks such as automatic
speech recognition, [9] and fundamental frequency estimation, [5]. Some appli-
cations, such as speech enhancement for cochlear implant users, [9] [7], require
low-latency processing, which we will focus on in this paper.

Techniques using Non-Negative Matrix Factorization (NMF) have histori-
cally been the most prominent in this field, as seen in [4]. While effective, these
approaches have a high processing time and are difficult to adapt for real-time
applications.

Approaches directly using deep neural networks for separation have been pro-
posed recently. A deep architecture for estimating Ideal Binary Masks (IBMs)
to separate speech signals from a noisy mixture was proposed by [I8]. Nugraha
et al. [12] adapt deep neural networks for multichannel source separation, using
both phase and magnitude information. With respect to monaural source sep-
aration, Huang et al. [§] propose a method using deep neural networks, which
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takes a single frame of the magnitude spectrogram of a mixture as an input
feature to learn single-frame timbre features for each source. Temporal evolu-
tion is then modeled using a recurrent layer. Uhlich et al. [I6] propose another
method which takes multiple frames of the magnitude spectrogram of a mix-
ture as input and consists of only fully connected layers. This method models
timbre features across multiple time frames. While these approaches work well,
they do not exploit completely local time-frequency features. Instead, they rely
on global features across the entire frequency spectrum, over a longer period of
time. Convolutional neural networks (CNNs), as seen in [10], take advantage of
small scale features present in data. CNNs require less memory and resources
than regular fully connected neural networks, allowing for a faster, more effi-
cient model. CNNs have recently been used by [15] for extracting vocals from a
musical mixture.

CNNs have proved to be successful in image processing for tasks such as im-
age super-resolution [3] and semantic segmentation of images as proposed by [11].
In the image processing field, CNNs take as input a two-dimensional vector of
pixel intensities across the spatial dimension and exploit the local spatial correla-
tion among input neurons to learn localized features. A similar two-dimensional
representation is used in our model for audio mixtures, using the Short-Time
Fourier Transform (STFT), which has frequency and time dimensions. Unlike
2D images, the STFT does not have symmetry across both axis, but a local
symmetry can be found along each single axes. Therefore, the filters used in
CNNs need to be adapted to the STFT representation of audio. To this end,
a network architecture is proposed in Section 2. In Section 3 we evaluate the
proposed model on the DSD100 dataset for the separation of four sources from
a mix and compare the results with a Multilayer Perceptron architecture.

2 Proposed framework

Figure|l|shows the block diagram for the proposed source separation framework.
The STFT is computed on a segment of time context 7' of the mixture audio.
The resulting magnitude spectrogram is then passed through the network, which
outputs an estimate for each of the separated sources. The estimate is used to
compute time-frequency soft masks, which are applied to the magnitude spec-
trogram of the mixture to compute final magnitude estimates for the separated
sources. These estimates, along with the phase of the mixture, are used to obtain
the audio signals corresponding to the separated sources.

Magnitude
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Phase
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2.1 Model Architecture

State-of-the-art deep learning frameworks model source separation as a regres-
sion problem, where the network yields full resolution output for all the sources.
This elicits a high numbers of parameters, which increase the processing time of
the network. We take advantage of the parameter reduction property of a CNN
architecture to alleviate this problem. In order to keep the multi-scale reasoning
used in classification problems, we use a CNN which functions as a variation
of an autoencoder architecture, as used by [I4]. The network is able to learn
an end-to-end model for the separated sources by finding a compressed repre-
sentation for the training data. The model proposed in this paper is shown in
Figure 2| It uses a CNN with two stages, a convolution or encoding stage and
the inverse operation, the deconvolution or decoding stage. We use vertical and
horizontal convolutions, which have been successfully used in automatic speech
recognition [6] [1].

Encoding Stage. This part of the network consists of two convolution lay-
ers and a fully connected dense layer, which acts as a bottleneck to compress
information.

1. Vertical Convolution Layer: This convolution layer has the shape (1, f1),
spanning across t; time frame and taking into account f; frequency bins. This
layer tries to capture local timbre information, allowing the model to learn
timbre features, similar to the approach used in NMF algorithms for source
separation. These features are shared among the sources to be separated,
contrary to the NMF approach, where specific basis and activation gains are
derived for each source. Therefore, the timbre features learned by this layer
need to be robust enough to separate the required source across songs of
different genres, where the type of instruments and singers might vary. Ny
filters were used in this layer.

2. Horizontal Convolution layer: This layer models temporal evolution for differ-
ent instruments from the features learned in the Vertical Convolution Layer.
This is particularly useful for modeling time-frequency characteristics of the
different instruments present in the sources to be separated. The filter shape
of this layer is (t2, f2) and Ny filters were used.

3. Fully Connected Layer: The output of the Horizontal Convolution Layer is
connected to a fully connected Rectified Linear Unit (ReLU) layer which acts
as a bottleneck, achieving dimensional reduction [I4]. This layer consists of
a non-linear combination of the features learned from the previous layers,
with a ReLU non-linearity. The layer is chosen to have fewer elements to
reduce the total parameters of the network and to ensure that the network
is able to produce a robust representation of the input data. The number of
nodes in this layer is represented as NN.

Decoding Stage The output of the first fully connected layer is passed to
another fully connected layer, with a ReLU non-linearity and the same size as
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Fig. 2. Network Architecture for Source Separation, Using Vertical And Hori-
zontal Convolutions, Showing The Encoding And Decoding Stages

the output of the second convolution layer. Thereafter, this layer is reshaped
to the same dimensions as the horizontal convolution layer and passed through
successive deconvolution layers, the inverse operations to the convolution stage.
This approach is similar to the one proposed by [11] and is repeated to compute
estimates, ¥, for each of the sources, y,.

2.2 Time-frequency masking

As advocated in [I8][8], it is desirable to integrate the computation of a soft
mask for each of the sources into the network. From the output of the network
In(f), we can compute a soft mask, m,(f) as follows:

19:(f)|
SN 1 (f)]

where §,(f) represents the output of the network for the n'* source and N is
the total number of sources to be estimated.

mn(f) = (1)

The estimated mask is then applied to the input mixture signal to estimate
the sources y,.

Where z(f) is the spectrogram of the input mixture signal.
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2.3 Parameter learning

The neural network is trained to optimize parameters using a Stochastic Gradi-
ent Descent with AdaDelta algorithm, as proposed by [19], in order to minimize
the squared error between the estimate and the original source ,,.

N
Log =Y I3 — ynl® (3)
=1

3 Evaluation

3.1 Dataset

We consider the Demizing Secrets Dataset 100 (DSD100) for training and testing
our proposed architecture. This dataset consist of 100 professionally produced
full track songs from The Mixing Secrets Free Multitrack Download Library and
is designed to evaluate signal source separation methods from music recordings.
The dataset contains separate tracks for drums, bass, vocals and other instru-
ments for each song in the set, present as stereo wav files with a sample rate of
44.1 KHz. The four source tracks are mixed using a professional Digital Audio
Workstation to create the mixture track for each song. The dataset is divided
into a dev set, used for training the network and a test set, which is used for
testing the network. Both of these sets consist of 50 songs each.

3.2 Adjustments To Learning Objective

After some initial experimentation, we observed that an additional loss term,
Lgify, representing the difference between the estimated sources, as used by
[8], improved the performance of the system. In addition, we observed that,
while voice, bass and drums were consistently present across songs, the other
instruments varied a lot. Thus, the network was not able to efficiently learn a
representation for this category as it tries to learn a general timbre class instead
of particularities of the different instruments to be separated. We overcame this
by modifying L, to Lsy and incorporating an additional loss term, Lother. Lsg
excludes the source corresponding to other instruments, while L,;pe- €encourages
differences between sources such as 'vocals’ and ’other’, 'bass’ and ’other’, and
"drums’ and ’other’.

Also, we noted that the ’other’ source comprised of harmonic instruments
such as guitars and synths, which were similar to the ’'vocals’ source. To em-
phasize the difference between these two sources in the separation stage, a
Lothervocals 10ss element, which represents the difference between the estimated
vocals and the other stem, was introduced.

N-—1
qu/ = Z ”gn - yn||2 (4)
=1
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N-1 —1
Ldlff = Z ||gn_gﬁ;£n”2 Lothervocals = ||171_yN||2 Lother = Z ||gn_yN||2
n=2

n=1
(5)
The total cost is then written as:

Ltotal = qu’ - aLdiff - BLother - ﬂvocalsLothervocals (6)

y1 represents the source corresponding to vocals and yy represents that cor-
responding to other instruments.

3.3 Evaluation setup

During the training phase, the input mixture and the individual sources com-
prising the mixture were split into 20 seconds segments, and the STFT for each
of these segments was computed. We used a Hanning window of length 1024
samples, which, at a sampling rate of 44.1 KHz corresponds to 23 milliseconds
(ms), and a hopsize of 256 samples (5.8 ms), leading to an overlap of 75% across
frames.

The frames generated from this procedure were grouped into batches of T’
frames, representing the maximum time context that the network tries to model.
Batches were also generated using a 50% overlap to generate more data for
training. These batches were shuffled to avoid over-fitting and fed to the model
for training, with 30 batches being fed at each round. Thus, each batch consists of
T frames of 513 frequency bins. A complete pass over the entire set is considered
as one training epoch and the network is trained for 30 epochs, an experimentally
determined variable. Lasagne, a framework for neural networks built on top
of Theaundﬂ7 was used for data flow and network training on a computer with
GeForce GTX TITAN X GPU, Intel Core i7-5820K 3.3GHz 6-Core Processor,
X99 gaming 5 x99 ATX DDR44 motherboard.

For evaluation, the measures proposed by [I7] were used. These include:
Source to Distortion Ratio (SDR), Source to Interference Ratio (SIR), Source
to Artifacts Ratio (SAR), and Image to Spatial distortion Ratio (ISR). These
measures are averaged for overlapping 30 second frames of each song in both the
development and the test set.

3.4 Experiments

The number of parameters of the network is directly proportional to the pro-
cessing time required by the network. Since our aim was to design a low-latency
source separation algorithm, we tried to minimize the parameters of the network,
by adjusting the variables, Time context T' in frames, Filter shapes (1, f1) and
(t2, f2), the number of filters, N1 and Ny and the number of nodes in the bottle-
neck, NN, while not compromising on performance. These variables were deter-
mined to be 25 (290 ms), (1,513), (12,1), 50, 30 and 128 respectively. For more

!http://lasagne.readthedocs.io/en/latest/Lasagne and http://deeplearning.
net/software/theano/Theano
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Fig. 3. Comparison between the output of the Multilayer Perceptron (MLP) and
the Convolutional Neural Network (CONV) in terms of (a) SDR and (b) SAR

details on these experiments, please refer to [2]. The parameters «, 5 and Byocals
were also experimentally determined to be 0.001, 0.01 and 0.03 respectively. [2]

The evaluation of the CNN model and an MLP with similar training crite-
rion is shown in Table [I| for each of the four aforementioned sources plus the
accompaniment (Acc.), which refers to the entire mix minus the vocals. More-
over, in order to asses low-latency capabilities, the total number of parameters
to be optimized and the processing time for a batch of T time frames for each
model are also reported. The processing time reported was calculated on the
CPU,without the use of the GPU.

HModel Details [Measure[Bass [Drums [Vocals [Others [Acc. H

Multilayer Perceptron (MLP) [SDR 1.2+2.7 |2.0£2.1|1.5£2.7|1.4£1.4|4.1£0.9
SIR 3.7+4.2 16.5+4.1]6.6+3.7(4.7+4.2{15.0+£3.7
Processing Time = 654.3 ms|SAR 7.242.3 |7.742.6/6.842.5|2.942.2|14.443.0
6617704+ N x 1654426 params. |ISR 11.4+3.8|8.5+2.4|7.8+£3.0|3.7£1.5|6.2+1.3
Convolution With Horizontal |SDR 0.942.7 [2.4+2.0{1.3+2.4|0.8+1.5|3.7+0.8
And Vertical Filters (CONV) |SIR 4.6+4.4 9.1+4.3|7.24+3.6|3.844.0{14.7+3.5
Processing Time = 160.8 ms|SAR 6.9+2.3 |7.0£2.8]5.3£2.9|2.84£2.4(14.0£3.4
97698+ N x 54181 params. ISR 11.5+3.4|8.5+£2.2|7.3+£3.0{4.4+1.7|6.1£1.3

Table 1. Evaluation Results. Values in the table are presented in Decibels:
Mean 4 Standard Deviation. N represents the number of sources to be separated.
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Table [1] and Figure [3] show that the performance of the MLP and CNN
architectures was similar. However, a significant increase in the number of pa-
rameters, up to 26z, involved in the network was observed when using an MLP
architecture. The processing time required by the MLP on the computer system
used was 42 higher than the processing time required for the CNN. For an input
time from of 290 ms, the CNN took just 161 ms to process, whereas the MLP
took an average of 654 ms. This shows that for low-latency requirements, it is
preferable to use convolution networks with horizontal and vertical layers over
a simple MLP architecture.

Comparison with state-of-the-art The algorithm was submitted to the
MIREX?2016 singing voice separation task and achieved results on-par with the
best algorithms in the challenge, both in terms of runtime and evaluation met-
rics. These results can be found at http://www.music-ir.org/mirex/wiki/
2016:Singing_Voice_Separation_Results. The framework was also submit-
ted to SiISEC 2016, for comparison with other state-of-the-art algorithms for
source separation. The evaluation results for this campaign can be found at
https://sisec.inria.fr/.

Sound examples of applying the model to real-world mp3 songs can be found
at https://www.youtube.com/watch?v=71WwHyNaDfE, demonstrating the ro-
bustness of the model. Source code for the framework can be found on GitHub
at https://github.com/MTG/DeepConvSep.

4 Conclusions And Future Work

We designed a low-latency monoaural audio source separation algorithm using
a deep convolutional neural network. It was noted that the use of convolutional
filters specifically designed for audio data allowed a significant gain in processing
time over a simple multilayer perceptron. Dimensional reduction in the fully
connected layer allows the model the learn a more compact representation of
the input data from which the sources can be separated. Contrary to other
approaches, which try to model both the target instrument and other background
instruments, the presented algorithm solely models the target sources while the
stems of the other instruments are used primarily to increase their dissimilarity
with the targets.

We plan to explore the potential use of the algorithm for low-latency applica-
tions such as remixing for cochlear implants. We believe that the performance of
the framework can be improved by providing additional input information such
as fundamental frequency of the harmonic sources to be separated or indeed,
midi information related to the various sources.
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