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Abstract 

The coronavirus disease 2019 (COVID‑19) pandemic is an exceptional public health crisis that demands the timely 
creation of new therapeutics and viral detection. Owing to their high specificity and reliability, monoclonal antibodies 
(mAbs) have emerged as powerful tools to treat and detect numerous diseases. Hence, many researchers have begun 
to urgently develop Ab‑based kits for the detection of severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) 
and Ab drugs for use as COVID‑19 therapeutic agents. The detailed structure of the SARS‑CoV‑2 spike protein is 
known, and since this protein is key for viral infection, its receptor‑binding domain (RBD) has become a major target 
for therapeutic Ab development. Because SARS‑CoV‑2 is an RNA virus with a high mutation rate, especially under 
the selective pressure of aggressively deployed prophylactic vaccines and neutralizing Abs, the use of Ab cocktails is 
expected to be an important strategy for effective COVID‑19 treatment. Moreover, SARS‑CoV‑2 infection may stimu‑
late an overactive immune response, resulting in a cytokine storm that drives severe disease progression. Abs to 
combat cytokine storms have also been under intense development as treatments for COVID‑19. In addition to their 
use as drugs, Abs are currently being utilized in SARS‑CoV‑2 detection tests, including antigen and immunoglobulin 
tests. Such Ab‑based detection tests are crucial surveillance tools that can be used to prevent the spread of COVID‑
19. Herein, we highlight some key points regarding mAb‑based detection tests and treatments for the COVID‑19 
pandemic.
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Introduction
The coronavirus disease 2019 (COVID-19) pandemic is 
the result of widespread infection with severe acute res-
piratory syndrome coronavirus 2 (SARS-CoV-2). Com-
pared to other highly transmissible viruses, SARS-CoV-2 
is associated with high rates of morbidity and mortality, 
and it represents an unprecedented challenge to global 
public health [1]. Most people infected with SARS-CoV-2 

experience mild to moderate respiratory illness similar to 
influenza or other virus infections, with symptoms such 
as fever, dry cough, and dyspnea. However, a consider-
able number of infected people develop pneumonia and 
acute lung injury or acute respiratory distress syndrome 
(ARDS); these conditions are closely associated with the 
relatively high mortality rate of COVID-19 [2]. Some 
patients also exhibit pulmonary alveolitis, bronchiolitis, 
accumulation of mucus and edema fluid, and different 
degrees of inflammation marked by infiltration of various 
immune cells into the pulmonary interstitium [3, 4].

The tissue distribution of the virus-targeted recep-
tor protein, angiotensin converting enzyme II (ACE2), 

Open Access

*Correspondence:  hcw0928@gate.sinica.edu.tw
†Yu‑Chyi Hwang and Ruei‑Min Lu authors contributed equally
1 Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, 
Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-4133-1060
http://orcid.org/0000-0003-3792-5499
http://orcid.org/0000-0002-5185-1169
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12929-021-00784-w&domain=pdf


Page 2 of 50Hwang et al. Journal of Biomedical Science            (2022) 29:1 

determines which organs will be attacked by SARS‐
CoV‐2; lung, the immune system, heart, kidney, esopha-
gus and small intestine all have high expression of ACE2 
[5–8]. Based on this set of target tissues, SARS-CoV-2 
can cause non‐respiratory clinical symptoms, such as 
diarrhea, sore throat, muscle aches, headache and vom-
iting, in a minority of patients [8, 9]. Moreover, patients 
with severe disease suffer from respiratory and lung 
function failure, and some even require extracorporeal 
membrane oxygenation (ECMO) and intensive care due 
to multiple organ failure and septic shock [6, 10]. There-
fore, a pressing global need exists to develop vaccines and 
therapeutics that can mitigate the COVID-19 pandemic 
and cure infected patients.

Over the past year, extraordinary biomedical and 
financial resources have been devoted to the rapid devel-
opment of diagnostic, prophylactic and therapeutic 
measures for this single disease. Due to their high speci-
ficity and versatility, monoclonal antibodies (mAbs) are 
at the fore of all three of these battlefronts in the fight 
against COVID-19. Recently, therapeutic mAbs have 
become essential tools to defeat various diseases, includ-
ing virus infections, based on their abilities to prevent 
disease progression immediately after administration and 
to speed up recovery, regardless of whether the patient 
has fully developed immunity [11].

SARS-CoV-2 is a single-stranded RNA virus belonging 
to the betacoronavirus genus. As with other viruses in 
this genus, several critical points in the life cycle of SARS-
CoV-2 can potentially be targeted and blocked by mAbs, 
making mAbs promising prophylactic and therapeutic 
agents for COVID-19. The first critical point is when 
the virus S protein binds to a host cell receptor, such as 
ACE2 [12] or cluster of differentiation 147 (CD147) [13]. 
After the initial binding event, host proteases, such as 
furin, transmembrane serine protease 2 (TMPRSS2) and 
cathepsin L, cleave the head of S protein, transforming 
it into a spring-like structure; this action allows the viral 
membrane to fuse with the host membrane and enables 
direct cell surface entry or via endosome by endocytosis 
[14, 15]. Once the virus enters the host cell, its RNA is 
translated and the innate immune response is immedi-
ately induced via host expression of type I/III interferon, 
chemokines and cytokines, such as tumor necrosis fac-
tor (TNF), interleukin 1 beta (IL-1β), interleukin 6 (IL-6), 
and granulocyte-macrophage colony-stimulating factor 
(GM-CSF) [6, 16, 17]. Upon continued viral replication, 
the cytokine levels may keep rising, leading to severe 
tissue damage and cytokine release syndrome (CRS) in 
some patients [18]. Thus, therapeutic Abs that inhibit the 
biological activities of cytokines may alleviate the harm-
ful effects of over-stimulated host immune response and 
serve as treatments for COVID-19 [19–23].

More than half of all people with SARS-CoV-2 infec-
tion have no symptoms; however, they may still be 
contagious in the asymptomatic state [24–26]. Four 
SARS-CoV-2 variants of concern that emerged in the 
United Kingdom (Alpha, B.1.1.7), South Africa (Beta, 
B.1.351), Brazil (Gamma, P.1) and India (Delta, B.1.617.2), 
have rapidly become dominant around the world and 
appear to display enhanced transmissibility and higher 
in-hospital mortality rates [27]. Moreover, B.1.1.529 
was recently named Omicron and designated as a fifth 
variant of concern and by WHO after its emergence in 
South Africa [28]. Even more distressing, some other new 
SARS-CoV-2 variants that originally appeared in Califor-
nia (Epsilon, B.1.427 and B.1.429), Nigeria (Eta, B.1.525), 
New York (Iota, B.1.526), and India (Kappa, B.1.617.1 
and Delta, B.1.617.2) are not only more transmissible but 
also exhibit reduced neutralization by convalescent and 
post-vaccination sera [29]. Thus, in addition to vaccines 
and therapeutic Abs, effective and rapid diagnostic tests 
for SARS-CoV-2 variants are necessary for timely medi-
cal and public health decisions, such as who should be 
placed in quarantine or hospitalized to reduce uncon-
trolled transmission. Molecular tests based on viral anti-
gens can be used to identify individuals with acute phase 
SARS-CoV-2 infection, as well as control transmission 
when used in contact tracing, and allow for repeat test-
ing in disease screening. Tests using Ab-antigen-format-
ted immunocomplexes are perhaps the most promising 
tools to accomplish this type of wide surveillance and 
control outbreaks of COVID-19. In this review, we sum-
marize current knowledge about the use of neutralizing 
mAbs for prophylaxis, treatment and viral detection for 
COVID-19, especially focusing on those mAbs that are 
prime clinical candidates and have received emergency 
use authorization (EUA). We also describe how antibod-
ies (Abs) can neutralize the virus in terms of S protein 
binding and structure. Finally, we propose strategies to 
combat the SARS-CoV-2 pandemic using therapeutic 
antibodies to overcome possible resistance of currently 
identified and potential mutants. The summarized infor-
mation also provides insights into how therapeutic anti-
bodies may be used against variants of SARS-CoV-2 in 
potential future pandemics.

Therapeutic Abs
Currently, the global effects of COVID-19 continue to 
grow, and the disastrous pandemic requires fast devel-
opment and implementation of countermeasures. To 
address these needs, researchers around the world are 
racing to develop therapies and vaccines. Among the 
technologies under intensive development, neutralizing 
mAbs are expected to be especially useful in prophylactic 
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and therapeutic applications, based on the success of pre-
viously developed mAb drugs [30–33].

Neutralizing Abs targeting spike (S) protein
The SARS-CoV-2 S protein is a trimeric complex that is 
cleaved into S1 and S2 subunits (Fig. 1a). S1 is responsi-
ble for receptor binding, while S2 is responsible for mem-
brane fusion. On human cells, the S protein targets ACE2, 
a key regulator of the renin-angiotensin system, which 
acts as the cell entry receptor for the virus. S1 protein 
contains an N-terminal domain (NTD) and a receptor 
binding domain (RBD), which interacts with the pepti-
dase domain of ACE2 through a receptor-binding motif 
(RBM). Although the role of the NTD is not entirely 
clear, it may be responsible for the recognition of specific 
sugar moieties upon initial attachment; such recognition 
could facilitate the transition of S protein from a prefu-
sion state to a postfusion conformation. Abs binding to 
certain epitopes on the NTD have been shown to inhibit 
SARS-CoV-2 infection [34, 35]. Moreover, SARS-CoV-2 
infectivity may also be enhanced by specific antibodies 
against the NTD, and infectivity-enhancing antibodies 
have been detected in severe COVID-19 patients [36]. 
Neutralization of S protein function has drawn consider-
able attention as a means to disrupt viral entry, making 
the S protein the most common target for new vaccines 
and drugs against SARS-CoV-2.

An abundance of new SARS-CoV-2 S protein-specific 
mAbs have been reported by different researchers [32, 
33, 37] and many bind to the RBD (Fig. 2, Table 1). The 
major strategy used for rapid isolation of high-efficacy 
nAbs is reverse transcriptase-polymerase chain reac-
tion (RT-PCR) from single human B cells [38, 39]. In 
this approach, the SARS-CoV-2 S or RBD protein-spe-
cific memory B cells from convalescent or acute-phase 
COVID-19 patients are sorted by flow cytometry, and 
single-cell RT-PCR for immunoglobulin genes is per-
formed. Alternatively, nAbs have also been generated 

using human Ab transgenic mice [40–43], phage dis-
play library screening [44–48], yeast surface display 
library screening [49] or hybridoma and Ab engineer-
ing technology [50].

In order to screen Ab candidates for neutralizing 
capability in vitro, most groups test Abs against authen-
tic living SARS-CoV-2, while some use pseudovirus 
with reporter readouts. A few methods have been used 
to quantify inhibitory concentrations, such as plaque 
reduction neutralization test (PRNT), focus reduction 
neutralization assay (FRNT), cytopathic effect (CPE), 
luciferase luminescence quantification, immunofluo-
rescence assay (IFA), and virus mRNA quantification 
by quantitative polymerase change reaction (qPCR). 
The use of such a wide variety of in vitro assay methods 
makes it difficult to directly compare Abs from different 
publications (Table  1). To bring nAbs one step closer 
to clinical trials, a handful of publications also include 
data from in  vivo animal models, which demonstrate 
the efficacy of the Ab as a treatment or prophylactic 
agent. Mice are not affected by SARS-CoV-2, presum-
ably due to differences in ACE2 amino acid sequence 
compared to humans. Hence, mouse models for testing 
SARS-CoV-2 neutralizing capability must be generated 
by introducing human ACE2 into the lung cells of mice, 
either by the use of transgenic methods or by infect-
ing normal mice with adenovirus encoding the human 
ACE2 gene for transient expression. As an alternative to 
mice, Shi et al. performed animal experiments in a rhe-
sus macaque model; in this model, nAbs administered 
in both protection and treatment contexts caused clear 
reductions in viral load and lung damage [51]. Moreo-
ver, hamsters develop severe and easily observed signs 
of illness after infection with SARS-CoV-2, including 
rapid weight loss, a very high viral load in the lungs, 
and severe lung pathology [52]. Therefore, hamsters 
have become a commonly used model to evaluate the 
prophylactic and therapeutic efficacy of Abs (Table 1).

(See figure on next page.)
Fig. 1 SARS‑CoV‑2 Spike protein. a Structure SARS‑CoV‑2 spike protein. Different domains of the SARS‑CoV‑2 spike protein: N‑terminal domain 
(NTD), receptor‑binding domain (RBD), receptor‑binding motif (RBM), subdomain 1 and 2, protease cleavage sites (S1/S2/S2′), fusion peptide (FP), 
internal fusion peptide (IFP), fusion peptide proximal region (FPPR), and transmembrane region (TM). HV69/70, Y144, and KSF241‑243 are frequently 
deleted residues in the NTD of SARS‑CoV‑2 variants of concern. K417, E452, E484, T478, N501 and D614 are the most frequently mutated residues 
in the RBD of SARS‑CoV‑2 variants of concern. Key residues of the receptor‑binding motif in the S protein of SARS‑CoV‑2 that interact with ACE2 
are shown (lower left). The SARS‑CoV‑2 S protein trimeric complex is shown in a “one‑up” RBD conformation. The two RBD‑down protomers are 
depicted in light and dark gray. The RBD‑up protomer is colored according to its domains; RBM in red, non‑RBM RBD in light blue, NTD in green, S2 
in orange, FP and IFP in pink, and FPPR in purple. The dashed circle indicates the RBD site of an RBD‑down conformation protomer. Inter‑atomic 
contacts between aspartate 614 (yellow) in a reference S monomer (dark blue) and five residues (purple) in its adjacent S protein monomer chain 
(dark gray) within 5 Å. These five contacts might be destabilizing and create a hydrophilic‑hydrophobic repulsion that is lost upon replacement 
of aspartate by glycine in the D614G mutation (lower right). b RBD sequences of SARS‑CoV (GeneBank: AAP30030.1), SARS‑CoV‑2 (GeneBank: 
QVW76257.1), and SARS‑CoV‑2 variants of concern, including B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), B.1.617.2 (Delta), and B.1.1.529 (Omicron). 
The amino acids encoded by SARS‑CoV‑2 that are altered in comparison to SARS‑CoV are colored blue (RBD) or red (RBM). The amino acid inserted 
in SARS‑CoV‑2 is denoted by a light blue background. The amino acids substituted in variants of concern are denoted by a yellow background. The 
residues 438–508 comprise the RBM of SARS‑CoV‑2 and are shown with grey background



Page 4 of 50Hwang et al. Journal of Biomedical Science            (2022) 29:1 

Fig. 1 (See legend on previous page.)
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Next, we introduce prominent nAbs that bind to the 
RBD or non-RBD sites on the S protein, focusing on Abs 
that have received EUA from the U.S. FDA [53–58].

Neutralizing Abs targeting the S protein RBD
The RBD of the S protein is a target of multiple nAbs that 
inhibit SARS-CoV-2 infection by disrupting the inter-
action between the RBD and ACE2. Notably, the RBD 
sequence of SARS-CoV-2 S protein shares 73% amino 
acid identity with that of SARS-CoV (Fig.  1b), and the 
two viruses both possess a conserved epitope in the RBD 
that allows for possible Ab cross-reactivity. However, 
most SARS-CoV-nAbs do not bind the SARS-CoV-2 
RBD, nor do they neutralize SARS-CoV-2 [59]. Only a 
few Abs have been shown to bind both SARS-CoV and 
SARS-CoV-2 [40, 60–62]. Researchers have used cryo-
genic electron microscopy (cryo-EM) to reveal that the 
structure of the SARS-CoV-2 S protein is an asymmetric 
trimer, with two conformations for the RBD (“open” and 
“closed”) [63, 64]. This dynamic conformation of the RBD 
may be a key factor affecting the neutralizing potency of 
anti-RBD Abs.

H014 Abs against the SARS-CoV-2 RBD were identi-
fied by screening a phage-display single-chain fragment 
variable (scFv) library generated from spleen mRNA of 
mice immunized with recombinant SARS-CoV RBD [46]. 
Among the hits from this screen, a potent nAb, H014, was 
found to bind the RBDs of SARS-CoV-2 and SARS-CoV 
with extremely high affinities (sub-nM concentrations). 

Cryo-EM reconstruction showed that H014 recognizes a 
conformational epitope on one side of the open (up) RBD, 
distinct from the RBM, whereas the closed RBD is inac-
cessible to H014. The authors had previously established 
human ACE2 knock-in mice using CRISPR/Cas9 tech-
nology as a model for SARS-CoV-2 infection [65]. The 
hACE2-humanized mice were infected with 5 ×  105 PFU 
of SARS-CoV-2 intranasally and then treated by intraperi-
toneal injection of H014 at 50 mg/kg. In therapeutic and 
prophylactic plus therapeutic groups, H014 treatment 
reduced viral titers in the lungs at day 5 by approximately 
tenfold and 100-fold, respectively. These results indicated 
a potential therapeutic use for H014 in treating COVID-
19.

2‑15 Dr. David D. Ho’s group reported a collection of 
61 SARS-CoV-2-nAbs from five infected patients with 
high plasma virus-neutralizing titers [66]. Their strat-
egy for isolating Abs included sorting of SARS-CoV-2 
S-specific memory B cells by flow cytometry and sin-
gle-cell sequencing. Nineteen of the reported Abs could 
neutralize SARS-CoV-2 in  vitro, with nine exhibiting 
high potency. Epitope mapping showed that about half 
of the 19 Abs are directed against the RBD, while the 
other half target the NTD, the top region of S protein. 
The RBD-directed Abs were shown to neutralize authen-
tic SARS-CoV-2 virus with  IC50 values of 0.7 to 209 ng/
ml; the most potent Abs were 2-15, 2-7, 1-57 and 1-20. 
The NTD-directed Abs showed similar neutralizing 
activities, with the most potent being 2-17, 5-24 and 4-8 

Fig. 2  Epitopes of anti‑spike and anti‑RBD nAbs mapped to a surface model of SARS‑CoV‑2 spike trimer. The identified epitope regions are 
depicted as surface regions (PDB: 6VSB). Some of the shown anti‑spike nAbs have known exact epitopes; for others the exact epitopes are 
unknown. Ab names are color‑coded by the domains they recognized: N‑terminal domain (NTD), light green; receptor binding motif (RBM), red; and 
receptor binding domain (RBD) but not RBM, cyan
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Table 1 Summary of published SARS‑CoV‑2‑neutralizing Abs until October, 2021

Ab name*/epitope Source Method for structure In vitro neutralization In vivo experiment References

1 B38/RBM B cell, COVID‑19 patient X‑ray crystallography AV,  CPE50 = 177.0 ng/ml hACE2 mice,
Treatment, 25 mg/kg, ↓3.3 log

[72]

2 47D11/RBD Hybridoma mice, SARS‑
CoV

Cryo‑EM AV,  PRNT50 = 570.0 ng/ml Hamsters,
Prophylactic,
3 mg/1 mL or 500 μL human 
convalescent plasma,  TCID50 
(Lung) ↓ 1–2 log

[40, 67, 246]

3 S309 (VIR‑7831, Sotrovimab)/
RBD

Human patient, SARS‑CoV, 
and Single B cell

Cryo‑EM AV,  FRNT50 = 79.0 ng/ml Hamsters,
Prophylactic, 5 mg/kg, viral 
load↓3 log

[96, 97]

4 311mab‑31B5/RBD
311mab‑32D4/RBD

B cell, COVID‑19 patient N.D PSV,
311mab‑31B5, 
 IC50 = 33.8 ng/
ml. 311mab‑32D4, 
 IC50 = 69.8 ng/ml

N.D [100]

5 BD‑23/RBM and N165 glycan 
of the neighboring “down” 
RBD

B cell, COVID‑19 patient Cryo‑EM AV,  PRNT50 = 15.0 ng/ml hACE2 mice,
Prophylactic, 20 mg/kg, viral 
load, ↓ 7 log
Treatment, 20 mg/kg, viral 
load, ↓ 4 log

[194]

6 2B04/RBD
1B07/RBD

Immunized Mouse single 
B cell

N.D AV,
2B04,  FRNT50 = 1.46 ng/ml
1B07,  FRNT50 = 37.0 ng/ml

hACE2 mice, Prophylactic,
10 mg/kg, RNA  107 →  106

[247]

7 REGN10933(Casirivimab)/RBM
REGN10987 (Imdevimab)/RBD

REGN10933/Humanized 
mice
REGN10987/Patient single 
B cell

HDX‑MS
Cryo‑EM

AV,
REGN10933, 
 PRNT50 = 5.6 ng/ml
REGN10987, 
 PRNT50 = 6.3 ng/ml

REGN10933 + REGN10987,
Rhesus macaques, Prophy‑
lactic,
25 mg/kg, subgenomic RNA, 
↓ 2 log
Hamsters,
Prophylactic, 50, 5, or 0.5 mg/
kg,
subgenomic RNA, ↓ 3, 2, 1 log
Treatment, 50, 5, or 0.5 mg/kg,
subgenomic RNA, ↓ 4, 4, 2 log

[41, 82]

8 4A8/NTD B cell, COVID‑19 patient Cryo‑EM AV, virus RNA by qPCR
IC50 = 390 ng/ml

N.D [74]

9 COVA1‑22/NTD
COVA1‑18/RBD
COVA2‑15/RBM

B cell, COVID‑19 patient Negative stain EM PSV,
COVA1‑18,  IC50 = 8.0 ng/
ml
COVA2‑15,  IC50 = 8.0 ng/
ml
AV, VeroE6 cells staining,
COVA1‑18,  IC50 = 7.0 ng/
ml
COVA2‑15,  IC50 = 9.0 ng/
ml

hACE2 mice,
Prophylactic, 10 mg/kg, viral 
load, ↓ 4 log
Treatment, 10 mg/kg, viral 
load, ↓ 4 log
Hamsters,
Treatment, 10 mg/kg, Viral titer, 
↓ 3 log
Cynomolgus macaques, 
Prophylactic,
10 mg/kg, absence of detect‑
able sgRNA subgenomic RNA

[71, 248]

10 CV30/RBM B cell, COVID‑19 patient N.D PSV,  IC50 = 30 ng/ml N.D [70, 249]

11 P2B‑2F6/RBD B cell, COVID‑19 patient X‑ray crystallography AV,
P2B‑2F6,  PRNT50 = 50 ng/
ml
P2B‑1F11,  PRNT50 = 30 ng/
ml

N.D [250]

12 C121/RBD C135/RBD C144/
RBD

B cell, COVID‑19 patient Negative stain EM, X‑ray 
crystallography, and 
Cryo‑EM

AV, VeroE6 cells infection 
(IFA)
C121,  IC50 = 1.64 ng/ml
C135,  IC50 = 2.98 ng/ml
C144,  IC50 = 2.55 ng/ml

N.D [197, 251]
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Table 1 (continued)

Ab name*/epitope Source Method for structure In vitro neutralization In vivo experiment References

13 COV2‑2130 (Cilgavimab)/RBM
COV2‑2196 (Tixagevimab)/
RBM

B cell, COVID‑19 patient Negative stain EM AV, FRNT
COV2‑2130,  IC50 = 107 ng/
ml
COV2‑2196,  IC50 = 15 ng/
ml
PSV,
COV2‑2130,  IC50 = 1.6 ng/
ml
COV2‑2196,  IC50 = 0.7 ng/
ml

hACE2 mice, 10 mg/kg
Prophylactic, lung plaque assay 
(PFU)
COV2‑2130, ↓ 3 log
COV2‑2196, ↓ 3 log
COV2‑2130 + COV2‑2196, ↓ 
3 log
Rhesus macaques, 50 mg/kg
Prophylactic, subgenomic 
viral RNA
COV2‑2196, ↓ 3 log
BALB/c mice, 20 mg/kg
Treatment, lung plaque assay 
(PFU)
COV2‑2130, ↓ 1 log
COV2‑2196, ↓ 4 log
COV2‑2130 + COV2‑2196, ↓ 
4 log

[100, 101]

14 IgG1 ab1/RBD Fab, scFv,  VH phage display 
libraries

N.D PSV, Luciferase reporter 
virus
IC50 = 200 ng/ml

hACE2 mice, 3 mg/kg
Prophylactic, lung plaque assay 
(PFU)
104.5 →  101

[39]

15 rRBD‑15/RBD Phage display N.D PSV,  IC50 = 1830 ng/ml N.D [252]

16 HbnC3t1p1_C6/RBD B cell, COVID‑19 patient N.D AV, CPE,  IC100 = 40 ng/ml N.D [253]

17 2–15/RBM
2–7/RBD

B cell, COVID‑19 patient Cryo‑EM AV, CPE
2–15,  IC50 = 0.7 ng/ml
2–7,  IC50 = 3.0 ng/ml
PSV, CPE
2–15,  IC50 = 5.0 ng/ml
2–7,  IC50 = 10.0 ng/ml

Hamsters, 0.3 ~ 1.5 mg/kg
2–15, Prophylactic,
RNA copy  106 →  102, ↓ 4 log

[66, 254]

18 S2H13/RBM B cell, COVID‑19 patient Cryo‑EM PSV,  IC50 = 500 ng/ml N.D [255]

19 S2M11/RBD S2E12/RBM B cell, COVID‑19 patient Cryo‑EM PSV,
S2M11,  IC50 = 2.1 ng/ml
S2E12,  IC50 = 2.3 ng/ml
AV, Focus‑forming assay
S2M11,  IC50 = 1.2 ng/ml
S2E12,  IC50 = 4.2 ng/ml

Hamsters, 1 mg/kg, Prophy‑
lactic,
S2M11,  TCID50  105 →  101, ↓ 
4 log
S2E12,  TCID50  105 →  101, ↓ 
4 log
S2M11 + S2E12,  TCID50 
 105 →  101, ↓ 4 log
0.5 mg/kg, Prophylactic,
S2M11 + S2E12,  TCID50 
 105 →  103, ↓ 2 log

[256]

20 CV07‑209/N.D. CV07‑250/RBM B cell, COVID‑19 patient X‑ray crystallography AV,
CV07‑209, 
 PRNT50 = 3.1 ng/ml
CV07‑250, 
 PRNT50 = 3.5 ng/ml

Hamsters, CV07‑209, 18 mg/kg
Prophylactic, ↓ 4 ~ 5 log,
Treatment, ↓ 3 ~ 4 log

[257]

21 P008_056/NTD B cell, COVID‑19 patient Cryo‑EM and X‑ray crystal‑
lography

AV,  CPE50 = 30 ng/ml N.D [258]

22 58G6/RBM
13G9/RBM

B cell, COVID‑19 patient Cryo‑EM AV,
58G6,  PRNT50 = 6.0 ng/ml
13G9,  PRNT50 = 9.2 ng/ml
PSV,
58G6,  IC50 = 4.0 ng/ml
13G9,  IC50 = 5.9 ng/ml

hACE2 mice, 10 mg/kg,
Prophylactic,  PRNT50 ↓ 3 log

[207]

23 S1D7/RBD
S3D8/RBD

Immunised Mouse N.D AV, VeroE6 cells infection 
(IFA)
S1D7,  IC50 = 405 ng/ml
S3D8,  IC50 = 139 ng/ml
S1D7 + S3D8, IC = 200 ng/
ml

N.D [259]
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Table 1 (continued)

Ab name*/epitope Source Method for structure In vitro neutralization In vivo experiment References

24 Wang‑C387/RBD
Wang‑C437/RBD

B cell, COVID‑19 patient N.D AV, VeroE6 cells infection 
(IFA)
Wang‑C387,  IC50 = 8.4 ng/
ml
Wang‑C437,  IC50 = 2.0 ng/
ml
PSV,
Wang‑C387, 
 IC50 = 10.6 ng/ml
Wang‑C437,  IC50 = 4.9 ng/
ml

N.D [260]

25 S2‑X333/NTD B cell, COVID‑19 patient Cryo‑EM AV,
S2‑X333,  IC50 = 2.0 ng/ml

Hamsters, viral challenge
Viral RNA copies/mg lung:
4 mg/kg,  106 →  103, ↓ 3 log
TCID50/mg lung:
1 mg/kg,  104 →  101, ↓ 3 log
4 mg/kg,  104 →  101, ↓ 3 log

[34]

26 C601/RBD B cell, COVID‑19 patient Cryo‑EM PSV, Luciferase assay
IC50 = 2.0 ng/ml

N.D [191]

27 LY‑CoV555 (Bamlanivimab)/
RBD

B cell, COVID‑19 patient Cryo‑EM and
X‑ray crystallography

AV,
PRNT50 = 20 ng/ml (WA 
isolate)
PRNT50 = 49 ng/ml (Italy 
isolate)
PSV, stably transfected 
ACE2
IC50 = 12 ng/ml

Rhesus macaques, 2.5 mg/kg
Prophylactic,
BAL viral replication (Day3): 
↓ > 1 log RNA copies/ml
BAL viral replication (Day6): 
↓ > 2 log RNA copies/ml
Lung viral replication (Day6): 
↓ > 3 log RNA copies/ml

[89]

28 XG003/RBD B cell, COVID‑19 patient N.D AV,
XG005,  IC50 =  ~ 100 ng/ml
XG014,  IC50 = 5.1 ng/ml
PSV, Luciferase assay
XG005,  IC50 = 6.1 ng/ml
XG014,  IC50 = 14.4 ng/ml

N.D [261]

29 CM17/NTD B cell, COVID‑19 patient Cryo‑EM AV,  IC50 = 30 ng/ml MA10 mice, virus titer (PFU), 
 105 to  103, ↓ 2 log
(MA10 mice: BALB/c mouse 
model, a pathogenic mouse 
ACE2‑adapted SARS‑CoV‑2 
variant)

[262]

30 ABP18/RBD Phage Display (Ab, human, 
non‑immune)

N.D PSV, Luciferase assay
IC50 = 60 ng/ml

N.D [263]

31 ION‑360/RBD B cell, COVID‑19 patient X‑ray crystallography PSV, Luciferase assay
IC50 = 25.5 ng/ml

N.D [264]

32 STE90‑C11/RBD Phage Display Library 
(Antibody, human, 
immune—CoV2)

X‑ray crystallography AV,  PRNT50 = 84 ng/ml N.D [48]

33 FC05/NTD Phage Display Library 
(Antibody, human, 
immune—CoV2)

Cryo‑EM N.D N.D [265]

34 P17/RBD Phage Display (Ab, human, 
non‑immune)

Cryo‑EM PSV,  IC50 = 24.8 ng/ml,
AV,  PRNT50 = 29.2 ng/ml

hACE mice, 20 mg/kg
Prophylactic + Treatment, ↓ 
1.93 log RNA copies/g, > 2 log 
PFU/ml (lung)
Treatment, ↓ 1 log RNA 
copies/g, > 2 log PFU/ml (lung)

[266]

35 HB27/RBD Humanized from Immu‑
nised Mouse

Cryo‑EM PSV,  IC50 = 6 ng/ml
AV,  PRNT50 = 33 ng/ml

hACE mice, 20 mg/kg
Prophylactic,
Day3 (lung): ↓ 5 log RNA 
copies/g, > 3 log PFU/ml
Day5 (lung): ↓ 3 log RNA 
copies/g, > 1 log PFU/ml
Therapeutic treatment:
Day3 (lung): ↓ 4 log RNA 
copies/g, > 3 log PFU/ml
Day5 (lung): ↓ 3 log RNA 
copies/g, > 1 log PFU/ml

[267]
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Table 1 (continued)

Ab name*/epitope Source Method for structure In vitro neutralization In vivo experiment References

36 6D3/S1‑S2 cleavage Site Mouse Hybridoma X‑ray crystallography N.D N.D [268]

37 P4A1/RBD B cell, COVID‑19 patient X‑ray crystallography PSV,  IC50 = 975 ng/ml Cynomolgus monkeys, 10 mg/
kg,
Day7 (lung): ↓ 3–4 log viral 
load (copies/g)

[43]

38 P5A‑1B9/RBM B cell, COVID‑19 patient Cryo‑EM AV,  IC50 = 16.5 ng/ml
PSV,  IC50 = 12.0 ng/ml

N.D [269]

39 TAU‑1109/RBD B cell, COVID‑19 patient N.D PSV, pseudo‑typed GFP 
SARS‑CoV‑2
IC50 = 45 ng/ml

N.D [270]

40 58G6/RBD B cell, COVID‑19 patient N.D AV, RT‑qPCR
IC50 = 9.98 ng/ml

N.D [271]

41 H014/RBD Immunized Humanized 
(hACE2) Mouse

Cryo‑EM AV,  PRNT50 = 5725.5 ng/ml hACE2 mice, 50 mg/kg, Viral 
load,
Treatment ↓ 1 log,
Prophylactic + therapeutic 
treatment ↓2 log

[46]

42 BD‑368–2/RBM B cell, COVID‑19 patient Cryo‑EM AV,  IC50 = 15 ng/ml:
PSV,  IC50 = 1.2 ng/ml

hACE2 mice, 20 mg/kg,
Prophylactic, Viral load ↓6 log
Treatment, Viral load ↓3 log

[194, 272]

43 CnC2t1p1_B4/RBD B cell, COVID‑19 patient N.D AV,  IC100 =  ~ 10,000 ng/ml N.D [253]

44 413–2/non‑RBD B cell, COVID‑19 patient N.D AV,  IC50 =  ~ 7500 ng/ml
PSV,  IC50 = 8198 ng/ml

N.D [273]

45 EY6A/RBD B cell, COVID‑19 patient X‑ray crystallography AV,  PRNT50 ~ 10,800 ng/ml N.D [60]

46 Fab1‑20/RBD B cell, COVID‑19 patient N.D PSV,  IC50 = 8 ng/ml N.D [66]

47 MD65/RBD Phage Display Library 
(Antibody, human, 
immune—CoV2)

N.D AV,  PRNT50 = 220 ng/ml N.D [73]

48 CC12.1/RBD B cell, COVID‑19 patient X‑ray crystallography PSV,
HeLa‑ACE2,  IC50 = 46 ng/
ml
VER0‑6,  IC50 = 120 ng/ml

Hamsters, Prophylactic, 
16.5 ~ 4.2 mg/kg
Viral RNA, ↓2.5 log

[39, 274]

49 CA521/RBD Transgenic Mouse Cryo‑EM AV,  PRNT50 = 0.73 ng/ml
PSV,  IC50 = 0.1 ng/ml

C57BL/6 mice, 20 mg/kg,
Prophylactic, Viral RNA ↓2–4 
log

[275]

50 BG10‑19/RBD B cell, COVID‑19 patient Cryo‑EM and X‑ray crystal‑
lography

PSV,
D614G,  IC50 = 2.0 ng/ml
B.1.1.7,  IC50 = 1.0 ng/ml
B.1.351,  IC50 = 4.0 ng/ml

N.D [276]

51 COV2‑2531/S2 B cell, COVID‑19 patient Negative stain EM PSV,  IC50 = 1.6 ng/ml hACE2 mice, 10 mg/kg,
Viral RNA ↓2 log

[207]
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Table 1 (continued)

Ab name*/epitope Source Method for structure In vitro neutralization In vivo experiment References

52 RBD‑chAb‑15/RBM
RBD‑chAb‑25/RBM
RBD‑chAb‑45/RBM

Hybridoma screening and 
humanized

Cryo‑EM AV,
WT,
RBD‑chAb‑15, 
 PRNT50 = 30.3 ng/ml
RBD‑chAb‑25, 
 PRNT50 = 15.8 ng/ml
RBD‑chAb‑45, 
 PRNT50 = 9.9 ng/ml
B.1.617.2,
RBD‑chAb‑15, 
 PRNT50 = 37.8 ng/ml
RBD‑chAb‑45, 
 PRNT50 = 18.0 ng/ml
RBD‑chAb‑15 + 45, 
 PRNT50 = 37.5 ng/ml
PSV,
WT,
RBD‑chAb‑15, 
 IC50 = 52.3 ng/ml
RBD‑chAb‑25, 
 IC50 = 25.44 ng/ml
RBD‑chAb‑45, 
 IC50 = 2.3 ng/ml
B.1.617.2,
RBD‑chAb‑15, 
 PRNT50 = 103.6 ng/ml
RBD‑chAb‑45, 
 PRNT50 = 15.5 ng/ml
RBD‑chAb‑15 + 45, 
 PRNT50 = 25.7 ng/ml

Hamsters, Prophylactic,
WT, 3 mg/kg
RBD‑chAb‑15:  TCID50 ↓ 1 log
RBD‑chAb‑45:  TCID50 ↓ 3.5 log
RBD‑chAb‑15 + 45:  TCID50 ↓ 
4 log
WT, 4.5 mg/kg
RBD‑chAb25:  TCID50 ↓ 2 log
RBD‑chAb45:  TCID50 ↓ 2 log
RBD‑chAb25 + 45:  TCID50 ↓ 
4 log
AAV‑hACE2 mice, Treatment, 
WT, 3 mg/kg
RBD‑chAb25 + 45:  TCID50 ↓ 
1.5 log
Hamsters, Treatment,
WT, 3 mg/kg
RBD‑chAb‑15 + 45:  TCID50 ↓ 
4 log
RBD‑chAb25 + 45:  TCID50 ↓ 
4 log
B.1.617.2, 6 mg/kg
RBD‑chAb‑45:  TCID50 ↓ 3 log
RBD‑chAb‑15 + 45:  TCID50 ↓ 
3.5 log

[50, 75, 76]

53 CT‑P59 B cell, COVID‑19 patient X‑ray crystallography AV,  PRNT50 = 8.4 ng/ml Ferrets, Treatment, 30 mg/kg
TCID50 (Lung) ↓ 1 log
Hamsters, Treatment, 30 mg/kg
TCID50 (Lung) ↓ 7 log
Rhesus monkeys, Treatment, 
45 mg/kg
TCID50 (Lung) unchanged

[47]

54 LY‑CoV016 (Etesevimab, CB6 
JS016,)/RBM

B cell, COVID‑19 patient X‑ray crystallography AV,  CPE50 = 36 ng/ml
PSV,  CPE50 = 23 ng/ml

Rhesus monkeys, Prophylactic, 
50 mg/kg
Day3 (lung): ↓ 4 log RNA
Rhesus monkeys, Treatment, 
50 mg/kg
Day3 (lung): ↓ 2 log RNA

[51]

55 2C08/RBD B‑cell; SARS‑CoV‑2 Vac‑
cinee

Cryo‑EM AV,  FRNT50 = 5 ng/ml Hamsters, 2 mg/animal
Prophylactic, viral RNA ↓ 3–4 
log

[277]

56 S2X259/RBD B cell, COVID‑19 patient Cryo‑EM AV,
S2X259, 
 PRNT50 = 144.2 ng/ml
PSV,  IC50 = 212.3 ng/ml

Hamsters, B.1.351 viral chal‑
lenge
TCID50/mg lung:
1 mg/kg,  104 →  103, ↓ 1 log
4 mg/kg,  104 →  101, ↓ 3 log
1 + 1 mg/kg with S309, 
 104 →  101, ↓ 3 log

[61]

57 A23‑58–1/RBD B cell, COVID‑19 patient Cryo‑EM and
Negative stain EM

AV, CPE,
USA‑WA1,  IC50 = 2.0 ng/ml
PSV, Luciferase assay
D614G,  IC50 = 1.8 ng/ml
B.1.1.7,  IC50 < 0.6 ng/ml
B.1.351,  IC50 = 1.6 ng/ml

N.D [278]

58 COV107‑23/RBD B‑cells; SARS‑CoV‑2 
Human patient

X‑ray crystallography N.D N.D [279]

59 910–30/RBD B‑cells; SARS‑CoV‑2 
Human patient

Cryo‑EM AV, CPE,  IC50 = 183 ng/ml
PSV, Luciferase assay
IC50 = 66 ng/ml

N.D [280]
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Table 1 (continued)

Ab name*/epitope Source Method for structure In vitro neutralization In vivo experiment References

60 DH1043/RBD
DH1052/NTD

B‑cells; SARS‑CoV‑2 
Human patient

Cryo‑EM
and Negative stain EM

PSV, Luciferase assay
DH1043,  IC50 = 34 ng/ml
DH1050, 
 IC50 > 100,000 ng/ml

BALB/c mice, 30 mg/kg, 
Prophylactic, DH1052, viral 
RNA, ↓ 1 log
Macaque, Prophylactic, 10 mg/
kg
lung subgenomic RNA
DH1043, ↓ 5 log
DH1052 ↓ < 1 log

[281]

61 C1A‑B3/RBD B‑cells; SARS‑CoV‑2 
Human patient

X‑ray crystallography AV,  PRNT50 = 62 ng/ml
PSV, Lentivirus pseudo‑
type
D614G,  IC50 = 81 ng/ml

N.D [282]

62 S2H97/RBD B‑cells; SARS‑CoV‑2 
Human patient

X‑ray crystallography and 
Cryo‑EM

AV,  PRNT50 = 794 g/ml
PSV,  PRNT50 = 338 ng/ml

Hamsters, 25 mg/animal
Prophylactic, viral RNA ↓ 4 log

[62]

63 47D1/RBD B‑cells; SARS‑CoV‑2 
Human patient

X‑ray crystallography AV,  PRNT50 = 12.7 ng/ml
PSV, Luciferase assay
IC50 = 6.0 ng/ml

Hamsters, Prophylactic,
100, 25, or 6.25 mg/kg, lung 
viral RNA ↓ 1 log
1.6, or 0.4 mg/kg, lung viral 
RNA without difference

[283]

64 S2P6/S2 B‑cells; SARS‑CoV‑2 
Human patient

X‑ray crystallography and 
Cryo‑EM

PSV, Luciferase assay
D614G,  IC50 ~ 10,000 ng/
ml
P.1,  IC50 ~ 10,000 ng/ml
B.1.1.7,  IC50 ~ 100,000 ng/
ml
B.1.351,  IC50 ~ 100,000 ng/
ml
B.1.617.1,  IC50 ~ 20,000 ng/
ml

Hamsters, Prophylactic,
Prototypic SARS‑CoV‑2
20 mg/kg,  TCID50 (Lung) ↓ 
2 log
2 mg/kg,  TCID50 (Lung) < 1 log
B.1.351 SARS‑CoV‑2
20 mg/kg,  TCID50 (Lung) ↓ 
1.5 log

[284]

65 P5A‑3C8/RBD B‑cells; SARS‑CoV‑2 
Human patient

X‑ray crystallography AV,  FRNT50 = 11.2 ng/ml
PSV, Luciferase assay
IC50 = 20.6 ng/ml

Hamsters, Prophylactic,
5 mg/kg, lung viral RNA ↓ 1 log

[285]

66 5A6/RBD Phage Display (Ab, human, 
non‑immune)

Cryo‑EM AV, CPE,  IC50 = 140.7 ng/ml
PSV, Luciferase assay
IC50 = 75.5 ng/ml

N.D [286]

67 BLN12/NTD Phage Display (Ab, human, 
immune [SARS‑CoV‑2])

N.D AV,  PRNT50 = 8.0 ng/ml hACE2 mice, Prophylactic
5 mg/kg, 100% protection of 
death
0.5 mg/kg, 80% protection 
of death

[287]

68 N12‑11/NTD B‑cells; SARS‑CoV‑2 
Human patient

Cryo‑EM PSV, Luciferase assay
IC50 ~ 490 ng/ml

N.D [288]

69 2B11/RBD Phage Display (Ab, human, 
immune [SARS‑CoV‑2])

X‑ray crystallography AV,  PRNT50 = 1.0 ng/ml
PSV, Luciferase assay
IC50 = 6.0 ng/ml
B.1.1.7,  IC50 = 12.2 ng/ml
B.1.351,  IC50 = 5091 ng/ml
P.1,  IC50 = 2527 ng/ml

hACE2 mice, 25 or 75 mg/kg,
Prophylactic, lung viral RNA 
↓ 2 log
Treatment, lung viral RNA ↓ 
1 log

[289]

70 mAb40/RBD B‑cells; SARS‑CoV‑2 
Human patient

N.D AV,
B.1.167.2,  FRNT50 = 29 ng/
ml
PSV, Luciferase assay
B.1.167.1,  IC50 = 24 ng/ml
B.1.167.2,  IC50 = 24 ng/m
B.1.1.519,  IC50 = 17 ng/ml l
B.1.429,  IC50 = 11 ng/ml

N.D [216]

71 C549/RBD B‑cells; SARS‑CoV‑2 
Human patient

N.D PSV, Luciferase assay
WT,  IC50 = 10.95 ng/ml
Q493R,  IC50 = 2.35 ng/m
E484G,  IC50 = 2.29 ng/ml
R346S,  IC50 = 8.33 ng/ml

N.D [220]

72 SARS2‑38/RBD Immunised Mouse Cryo‑EM AV,  FRNT50 = 5.0 ng/ml
PSV,  FRNT50 = 6.0 ng/ml

hACE2 mice, 5 mg/kg Ab,
Treatment, viral RNA, ↓ 3 log
Hamsters, 10 mg/kg,
Treatment, viral RNA, ↓ 2 log

[290]



Page 12 of 50Hwang et al. Journal of Biomedical Science            (2022) 29:1 

Table 1 (continued)

Ab name*/epitope Source Method for structure In vitro neutralization In vivo experiment References

73 54,042–4/RBD B‑cells; SARS‑CoV‑2 
Human patient

Cryo‑EM PSV, Real‑time cell analysis 
assay
IC50 = 9.0 ng/ml
AV, ELISA
B.1.1.7,  IC50 = 5.5 ng/ml
B.1.351,  IC50 = 9.7 ng/ml
B.1.617.2,  IC50 = 1.5 ng/ml
P.1,  IC50 = 3.7 ng/ml

N.D [291]

74 MA1/RBD Immunised Mouse Cryo‑EM AV, Luciferase assay
IC50 ~ 10 ng/ml
PSV, Luciferase assay
IC50 ~ 10 ng/ml

N.D [292]

75 C12A2/RBD C12C9/NTD B‑cells; SARS‑CoV‑2 
Human patient

Cryo‑EM AV, CPE
USA‑WA1
C12A2,  IC50 = 2 ng/ml
C12C9,  IC50 = 43 ng/ml
B.1.1.7,
C12A2,  IC50 = 8 ng/ml
C12C9,  IC50 = 6 ng/ml
B.1.351,
C12A2,  IC50 > 50 ng/ml
C12C9,  IC50 > 500 ng/ml

N.D [293]

76 TRES6/RBD Transgenic Mouse N.D AV,
CoV‑2‑ER1 (D614G) TRES6, 
 IC50 = 102 ng/ml
TRES6hu,  IC50 = 33 ng/ml

hACE2 mice, viral challenge
5.25 mg/kg Ab,
Log10 viral load (RNA copies) 
reduction:
4 days post, lung 30x, BAL 40x
10 days post, lung 100x, BAL 
400x
Prevented body weight loss,
Reduced clinical symptoms

[294]

77 C1027/RBD B‑cells; SARS‑CoV‑2 
Human patient

N.D PSV, after 12 month
WT,  IC50 = 20.8 ng/ml
K417N,  IC50 = 4.1 ng/m
E484K,  IC50 = 3.4 ng/ml
N501Y,  IC50 = 16.8 ng/ml
AV, after 12 month
WA1/2020,  IC50 = 9.35 ng/
ml
B.1.351,  IC50 = 6.08 ng/ml

N.D [295]

78 NT‑193/RBD Immunised mouse (TC‑
mAb)

X‑ray crystallography PSV, WT
IgG1,  IC50 =  ~ 5.0 ng/ml
IgG3,  IC50 =  ~ 1.0 ng/ml
AV,
WT,
IgG1,  TCID50 =  ~ 600 ng/
ml
IgG3,  TCID50 =  ~ 600 ng/
ml
D614G,
IgG1,  TCID50 =  ~ 250 ng/
ml
IgG3,  TCID50 =  ~ 150 ng/
ml

Hamsters, IgG3,
Viral RNA copies/mg lung:
Prophylactic,
1.25 mg/kg,  106 →  105, ↓ 1 log
5 mg/kg,  TCID50  106 →  105, 
↓ 1 log
Treatment,
1.25 mg/kg,  106 →  105, ↓ 1 log
5 mg/kg,  TCID50  106 →  104, 
↓ 2 log

[296]

79 7B8/RBD Immunised mouse 
(RenMab)

Cryo‑EM PSV,
D614G,  IC50 =  ~ 100 ng/ml
B.1.1.7,  IC50 =  ~ 100 ng/ml
N501Y,  IC50 =  ~ 100 ng/ml

N.D [297]

80 CC40.1/RBD B‑cells; SARS‑CoV‑2 
Human patient

X‑ray crystallography PSV,
IC50 < 100 ng/ml

N.D [298]

81 STE73‑2E9/RBD Phage Display Library 
(Antibody, human, 
immune‑CoV2)

N.D AV,  TCID50 = 61.5 ng/ml N.D [48]

82 Fab‑324/RBD Phage Display Library 
(Antibody, human, non‑
immune)

Cryo‑EM PSV,
Multabody,  IC50 = 24 ng/
ml
IgG,  IC50 = 21,000 ng/ml

N.D [299]
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Abs. Cryo-EM structures were determined for several 
of the mAbs in complex with the S trimer to clarify Ab 
epitopes. The 2-4 Ab targeted the RBD and lock it into 
a “down” conformation, also obstructing the interaction 
with ACE2. The 4-8 Ab recognized the tip of the NTD, 
and 2-43 Ab recognized the top of the RBD, bridging 
two separate RBDs. In a study to evaluate prophylaxis 
in SARS-CoV-2-infected hamster models, a dosage of 
1.5  mg/kg 2-15 showed protective efficacy, as it could 
reduce virus titer by more than four orders of magni-
tude. Thus, a relatively modest dose of this Ab almost 
completely prevented infection of SARS-CoV-2 in vivo.

Unfortunately, SARS-CoV-2 variants B.1.1.7 (Alpha) 
and B.1.351 (Beta) are resistant to neutralization by 
most NTD-targeting Abs, including 2-17, 5-24, and 
4-8 [53]. However, both 5-24, and 4-8 retain the abil-
ity to inhibit the P.1 (Gamma) variant from Brazil [54]. 
Anti-RBD Abs (i.e., 2-15, 1-20 and 2-43) have impaired 
function against B.1.1.7 (Alpha), and the neutralizing 

potency against B.1.351 (Beta) is fully lost. The activ-
ity of anti-RBD Ab 1-57 is diminished by 1.5-fold 
against B.1.1.7 (Alpha) and 5.2-fold against B.1.351 
(Beta). Meanwhile, the activity of 2-7 is unaffected by 
the variations in B.1.1.7 (Alpha), B.1.351 (Beta) and P.1 
(Gamma), but its  IC50 is reduced 3.4-fold when used 
against the E484K-single mutation pseudovirus [53, 
54].

47D11 Wang et al. characterized a human mAb, 47D11, 
which is capable of neutralizing both SARS-CoV and 
SARS-CoV-2 in  vitro [40]. This Ab was generated from 
H2L2 human Ab transgenic mice, which were immunized 
with the S ectodomain of HCoV-OC43, SARS-CoV, and 
MERS-CoV. Cryo-EM structures showed that 47D11 
binds specifically to the closed conformation of the RBD, 
distal to the ACE2 binding site [67]. Interestingly, 47D11 
preferentially recognizes the partially open conformation 
of the SARS-CoV-2 S protein, suggesting that it could be 

Table 1 (continued)

Ab name*/epitope Source Method for structure In vitro neutralization In vivo experiment References

83 P5C3/RBD B‑cells; SARS‑CoV‑2 
Human patient

Cryo‑EM PSV,
WT,  IC50 = 4.0 ng/ml
D614G,  IC50 = 14.0 ng/ml
E484K/N501Y, 
 IC50 = 4.0 ng/ml
K417N/E484K/N501Y, 
 IC50 = 13.0 ng/ml
AV, CPE
WT,  IC50 = 5.0 ng/ml
D614G,  IC50 = 11.0 ng/ml
B.1.1.7,  IC50 = 8.0 ng/ml
B.1.351,  IC50 = 3.0 ng/ml

Hamsters,
Prophylactic, 5.0, 1.0, or 
0.5 mg/kg
Lung viral RNA, all  105 →  102, 
↓ 3 log

[300]

84 PDI‑222/RBD,
WCSL‑119/RBD

PDI‑222: B‑cells; SARS‑
CoV‑2 Human patient
WCSL‑119: Semi‑synthetic 
Human Fab Library

Cryo‑EM AV,
PDI‑222,
WT,  PRNT50 = 5.0 ng/ml
D614G, PRNT 50 = 11.0 ng/
ml
WCSL‑119,
WT,  PRNT50 = 22.0 ng/ml
D614G, PRNT 50 = 25.0 ng/
ml

B57BL mice, SARS‑CoV‑2 
(D614G N501Y)
Prophylactic, 5, 1, or 0.2 mg/kg
PDI‑222,  TCID50 all ↓ 2 log
WCSL‑119,
5 or 1 mg/kg,  TCID50 ↓ 2 log
0.2 mg/kg,  TCID50 no change
Hamsters, PDI‑222, Prophy‑
lactic
5 mg/kg,  TCID50 ↓ 5 log
0.25 mg/kg,  TCID50 ↓ < 1 log

[301]

85 C1207/RBD B‑cells (Human Naïve, 
mRNA vaccination)

N.D PSV, after 5 months vac‑
cination
WT,  IC50 = 17.8 ng/ml
K417N,  IC50 = 7.2 ng/m
N501Y,  IC50 = 10.0 ng/ml
E484K/R683G, 
 IC50 = 3.3 ng/ml
L525R/E484K/R683G, 
 IC50 = 2.4 ng/ml

N.D [302]

Note 1: In vitro neutralization experiment refers to authentic (AV) or pseudotyped (PSV) SARS-CoV-2 neutralization assay as indicated

Note 2: In vivo experiment refers to the animal type, Ab injected amount, and observed prophylactic or treatment efficacy as indicated

↓, decrease after compared to the control group; ~ , roughly estimated; n-log, n × 10 times; AV authentic SARS-CoV-2 virus, CPE cytopathic effect, IC50 half-maximal 
inhibitory concentrations, IC100 100% inhibitory concentration, IFA immunofluorescence assays, N.D. not determined, NTD N-terminal domain, PFU plaque-forming 
unit, PSV SARS-CoV-2 pseudovirus, PRNT50 50% reduction of plaque neutralization test, qPCR real-quantitative polymerase change reaction, RBD receptor binding 
domain, RBM receptor binding motif, scFv single-chain fragment variable, TCID50 median tissue culture infectious dose; *Only listed representative Abs in indicated 
published papers
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used effectively in combination with other Abs that target 
the exposed RBM. AbbVie has a license for this Ab from 
Harbour BioMed and completed a phase I clinical trial for 
the prevention and treatment of COVID-19 [68, 69].

CV30 Hurlburt et  al. isolated a potent neutralizing 
mAb, CV30, from a patient infected with SARS-CoV-2 
[70]. CV30 binds the RBD, neutralizes pseudovirus with 
an  IC50 of 0.03 μg/ml, and competes for binding sites with 
ACE2. The X-ray crystal structure revealed that CV30 
almost exclusively binds to the RBM in the RBD. Nota-
bly, CV30 has minimal somatic mutations compared to 
the germline sequence; it has only a two-residue change in 
heavy chain of variable domain and no change in the light 
chain of variable domain.

COVA2‑15 Brouwer et al. isolated 19 nAbs from three 
convalescent COVID-19 patients using a stabilized pre-
fusion SARS-CoV-2 S protein [71]. These Abs target a 
diverse range of epitopes on the S protein, and two showed 
picomolar neutralizing activities against authentic SARS-
CoV-2 virus. EM was used to reveal the structures of six 
RBD antigen-binding fragments (Fabs). Four interacted 
with a stoichiometry of one Fab per trimer, with RBDs in 
the up state. COVA2-15 was able to bind RBD domains in 
both the up and down states.

B38 and H4 Wu et al. isolated four nAbs from a conva-
lescent COVID-19 patient. Two of the Abs, B38 and H4, 
blocked RBD binding to ACE2 [72]. The Kd for B38 bind-
ing to the RBD was measured using surface plasmon reso-
nance (SPR) at 70.1 nM, while that of H4 was 4.48 nM. 
The abilities of B38 and H4 Abs to protect against SARS-
CoV-2 in vivo were also explored. hACE2 transgenic mice 
were treated with a single dose of 25 mg/kg B38 or H4 Abs 
12 h after viral challenge. The RNA copies of virus in both 
the B38-treated and H4-treated groups were significantly 
reduced (by 3.3 and 2.7 orders of magnitude, respectively). 
A competition assay indicated the B38 and H4 epitopes 
on the RBD are different, and a cocktail of both Abs exhib-
ited synergistic neutralizing ability in Vero-E6 cells. This 
pair of Abs could therefore potentially be used together to 
prevent immune escape in clinical applications.

MD65 Phage display is a powerful technique that ena-
bles rapid, efficient, and high-throughput selection of 
Abs (scFv or Fab) against antigens in  vitro [48]. Several 
human Ab drugs derived from phage display libraries 
have been approved and are currently on the market. 
Noy-Porat et al. constructed a phage display scFv library 
using peripheral circulatory lymphocytes collected from 
patients in the acute phase of disease [73]. The phage scFv 
library complexity was 9.2 ×  106, and the library was used 

for affinity selection of Abs against RBD-human fragment 
crystallizable (Fc). Eight fully human, SARS-CoV-2-nAbs 
were isolated and characterized. These Abs target four 
distinct epitopes on the S protein RBD. Evaluation of the 
Ab affinities toward S1 by biolayer interferometry (BLI) 
revealed Kd values of these human Abs ranging from 0.4 
to 5.8 nM. The neutralization potencies of the Abs were 
then evaluated by PRNT using VeroE6 cells infected with 
the SARS-CoV-2. MD65 displayed the highest neutraliza-
tion potency with a  PRNT50 concentration of 0.22 μg/ml.

4A8 Chi et al. identified three neutralizing mAbs from 
10 convalescent COVID-19 patients [74]. Among these 
mAbs, 4A8 exhibits high neutralization potency against 
authentic SARS-CoV-2. Interestingly, however, 4A8 
does not bind the RBD. Cryo-EM was used to deter-
mine the structure of 4A8 in complex with the S pro-
tein, revealing that its epitope is located in the NTD of S 
protein, and that the Ab binds to S1 with Kd of 92.7 nM. 
4A8 exhibits moderate neutralizing capacity, with an 
 EC50 of 0.61  μg/ml, but it does not block the binding 
of S protein to the ACE2 receptor. Thus, 4A8 functions 
via a mechanism that is independent of receptor binding 
inhibition. According to the structure of the complex, 
the mechanisms of neutralization may involve restrain-
ing conformational changes in S protein.

RBD‑chAb‑1, 15, 25, 28, 45 and  51 In a recent 
study, a panel of Abs against the SARS-CoV-2 RBD 
were generated from mouse hybridoma Ab screen-
ing and were engineered into human immunoglobu-
lin G (IgG)1 chimeric Abs [50]. Among these Abs, 
six potent nAbs, RBD-chAb-1, 15, 25, 28, 45, and 
51, were found to bind the RBD of SARS-CoV-2 with 
high affinities  (KD values lower than 6.5 ×  10–9  M) 
and high neutralizing activities  (PRNT50 values lower 
than 10  ng/ml). Experiments using site-directed 
mutagenesis and competition-binding assays further 
indicated that these six chAbs bind to three distinct 
epitopes within the RBM. Cryo-EM reconstruction 
was then used to show that the epitopes of two highly 
potent Abs, RBD-chAb-25 and 45, are on one side of 
the open (up) RBD. This structural analysis suggested 
that RBD-chAb-25 and 45 can simultaneously bind 
to the same RBD, and the simultaneous binding was 
confirmed by size-exclusion chromatography. Impor-
tantly, the prophylactic effects of these Abs were 
demonstrated in an AAV-hACE2 mouse model and 
a hamster model, and the cocktail of RBD-chAb-25 
and 45 showed highly promising therapeutic effects 
[50]. Notably, several antibody cocktails showed low 
 IC50 values (3.35–27.06  ng/ml) against the SARS-
CoV-2 variant pseudoviruses including Alpha, Beta, 
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Gamma, Epsilon, Iota, Kappa and Delta variants [75]. 
Furthermore, the therapeutic treatment with an anti-
body cocktail of RBD-chAb-15 and 45 effectively pro-
tected hamsters from infection with the Delta SARS-
CoV-2 variant [75].

Yang et  al. further identified a unique salt bridge 
switch involving the B.1.1.7 (Alpha)-specific A570D 
mutation. The RBD-up state is stabilized by a double 
salt bridge involving A570D-K854 and D571-K964. 
Thus, introduction of the A570D mutation to S protein 
with D614G should lead to increased sensitivity of the 
virus to three RBD-up-specific Abs. Furthermore, the 
combined use of RBD-chAb-15 and 45, which simulta-
neously bind to distinct regions of the RBD, is also an 
attractive strategy for a prophylactic cocktail to prevent 
mutational viral escape [76].

EUA anti‑SARS‑CoV‑2 therapeutic Abs
As of December 2021, the number of mAbs targeting 
S protein that were under evaluation in clinical trials 
was 25 (Table  2). At least 27 countries and 274 compa-
nies/institutions are developing Ab therapeutics [77], 
and these Abs have been comprehensively described 
in several review papers [33, 55, 56, 77–80]. Up to now, 
only seven Abs, including bamlanivimab, etesevimab, 
casirivimab, imdevimab, sotrovimab, cilgavimab and 
tixagevimab have been approved or received EUAs from 
the U.S. FDA (Table 2). In the following paragraphs, we 
introduce and update information regarding the develop-
ment of these Ab treatments.

REGN‑COV2 (casirivimab and  imdevimab) REGN-
COV2 is a cocktail of the human Abs, casirivimab 
and imdevimab (formerly known as REGN10933 and 
REGN10987, respectively), which both target the S pro-
tein RBD but were identified by different methods [41]. 
Casirivimab was identified from VelocImmune hAb 
transgenic mice immunized with a DNA plasmid encod-
ing SARS-CoV-2 S protein, followed by a booster of 
injected recombinant S protein. Meanwhile, imdevimab 
was identified from isolated PBMCs of three human 
donors previously infected with SARS-CoV-2. In both 
cases, the murine or human single B cells bound to S pro-
tein were sorted by FACS. The Kd values of casirivimab 
and imdevimab for S protein are both about 0.04 nM by 
measurement with Biacore T200. The  PRNT50 of casiriv-
imab and imdevimab are 0.0374 and 0.0421 nM, respec-
tively. Novel S gene mutants rapidly appeared when virus 
was passaged in the presence of individual Abs, resulting 
in loss of neutralization. However, treatment of casiriv-
imab and imdevimab together can prevent the selec-
tion of escape mutants in  vitro since they comprise a 
non-competing Ab cocktail [81]. In  vivo efficacy of this 

Ab cocktail has been evaluated in both rhesus macaques 
(used to model mild disease) and golden hamsters (model 
for more severe disease) [82]. In the rhesus macaques, 
REGN-COV2 greatly reduced virus load in the lower and 
upper airways and decreased virus-induced pathological 
sequelae when administered prophylactically (50  mg/kg 
dosage) or therapeutically (25  mg/kg dosage). Adminis-
tration in hamsters (5 mg/kg dosage) inhibited weight loss 
and reduced viral titers in the lung.

Four separate large clinical trials are ongoing for 
REGN-COV2. One of the trials is a phase I–III adap-
tive, randomized, placebo-controlled, double-blind 
trial (NCT04425629) on non-hospitalized patients with 
COVID-19, aiming to reduce the risk of treatment-
resistant mutant virus emergence [55]. Seven hundred 
ninety-nine patients were randomly assigned (1:1:1) 
to receive placebo, 2.4  g of REGN-COV2, or 8.0  g of 
REGN-COV2. The interim analysis showed that REGN-
COV2 can indeed reduce viral load in patients. Safety 
outcomes were similar in the combined REGN-COV2 
dose groups and the placebo group. The above results 
supported the EUA designation for the casirivimab and 
imdevimab cocktail, which was granted by the U.S. FDA 
on November 20, 2020 for COVID-19 therapy. Under the 
EUA, the recommended dose is 1.2 g of casirivimab and 
1.2 g of imdevimab (2.4 g total), administered as a single 
intravenous infusion. The phase III data showed that the 
combined casirivimab and imdevimab treatment could 
reduce the risk of COVID-19-related hospitalization and 
death by 70% COVID-19 in non-hospitalized patients, 
and the median time of symptom duration was reduced 
from 14 to 10 days.

In April 2021, new data from a phase III treatment trial 
in recently infected asymptomatic COVID-19 patients 
demonstrated that subcutaneous injection of a 1.2  g 
total dose of REGN-COV2 (1:1, casirivimab:imdevimab) 
reduced the risk of progression to symptomatic COVID-
19 by 31%, and the risk was reduced by 76% after the 
third day. Furthermore, another positive result from 
a phase III COVID-19 prevention trial in uninfected 
household contacts of SARS-CoV-2 infected individuals 
showed that the 1.2 g total dose of REGN-COV2 reduced 
the risk of symptomatic infections by 81% [83]. REGN-
COV2 was granted an EUA by the U.S. FDA in Decem-
ber 2020 and gained full approval from Japan’s Ministry 
of Health, Labour and Welfare in July 2021 for the treat-
ment of patients with mild to moderate COVID-19 [84].

As casirivimab and imdevimab were designed against 
the SARS-CoV-2 strains that were being transmitted at 
the beginning of the pandemic in 2020 [41, 81], there is 
some question as to the protective and therapeutic ability 
against newly emerged variant strains; however, the treat-
ment remains effective or at least does not cause concern 
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when used against new variants. Most recently, it has 
been reported that B.1.1.7 (Alpha) is not refractory to the 
neutralizing activity of casirivimab and imdevimab [53]. 
Notably, the B.1.351 (Beta) and P.1 (Gamma) variants are 
fully resistant to casirivimab and slightly resistant to the 
neutralization by imdevimab [53, 54]. However, the com-
bination of casirivimab and imdevimab show prophylac-
tic and therapeutic efficacy against SARS-CoV-2 variants 
including viruses with B.1.1.7 (Alpha), B.1.351 (Beta), or 
P.1 (Gamma) in animals [85]. With regard to the newly 
emerged B.1.617.2 (Delta) variant, casirivimab also exhib-
its reduced neutralizing ability; however, imdevimab 
and the cocktail of casirivimab and imdevimab can still 
efficiently block virus S protein entry into the host cell 
[86]. Moreover, according to the REGN-COV2 fact sheet 
authorized by the U.S. FDA, pseudovirus assays showed 
that the neutralizing activity of REGN-COV2 was not 
changed with regard to currently circulating variants, 
including B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), 
B.1.429 (Epsilon), and B.1.526 (Iota). On August 10, 2021, 
the U.S. FDA authorized REGN-COV2 for both treat-
ment and post-exposure prophylaxis (prevention) of 
COVID-19; the approved dosage is 600 mg of casirivimab 
and 600 mg of imdevimab administered together [87].

In January 2021, the US government signed a contract 
to purchase 1.25 million doses of REGN-COV2, and is 
expected to pay US$2.625 billion to Regeneron ($2,100/
dose). The company anticipates being able to provide 
at least 1 million doses by June 30, 2021 if the EUA is 
updated to the lower 1,200 mg dose. The European Medi-
cines Agency (EMA) also approved the use of REGN-
COV2 and stated that clinical results show that the use of 
REGN-COV2 treatment can reduce the amount of virus 
in the nose and throat of patients, thereby reducing the 
number of patient visits to health care providers. In Janu-
ary 2021, the German government purchased 200,000 
doses at a price of US$488 million ($2,440/dose). In Feb-
ruary 2021, the French government announced that it 
had distributed thousands of doses of REGN-COV2 to 
various hospitals for clinical treatment of patients. In 
May 2021, the governments of Belgium and Switzerland 
approved clinical use of REGN-COV2. Also in May, Japan 
completed an agreement with Roche to purchase REGN-
COV2. Total sales for the first half of 2021 consisted of 
$4.156 billion for REGN-COV2 [88]

Bamlanivimab (LY‑CoV555) Bamlanivimab is a human 
IgG1 targeting the RBD of S protein. It was discovered 
by Eli-Lilly and AbCellera via a high-throughput micro-
fluidic screen of antigen-specific B cells from the first 
U.S. patient to recover from COVID-19 [89]. In a rhesus 
macaque challenge model, prophylactic doses as low as 
2.5 mg/kg reduced viral replication in the upper and lower 

respiratory tract. On May 28, 2020, a clinical trial for 
bamlanivimab was initiated on hospitalized patients with 
COVID-19, and the Ab became the world’s first SARS-
CoV-2-specific Ab to be used for COVID-19 therapy.

In the phase II trial of Blocking Viral Attachment and 
Cell Entry with SARS-CoV-2 Neutralizing Antibodies 
(BLAZE-1; NCT04427501), 452 patients with mild to 
moderate COVID-19 were randomly assigned to receive 
a single intravenous infusion of bamlanivimab at one 
of three doses (700  mg, 2800  mg, or 7000  mg) or pla-
cebo; patients were evaluated for quantitative virologic 
endpoints and clinical outcomes [57]. Those patients 
treated with bamlanivimab showed reduced viral load 
and lower rates of symptoms and hospitalization. Based 
on data from the BLAZE-1 study, the U.S. FDA granted 
an EUA for a single infusion of 700 mg bamlanivimab for 
the treatment of mild to moderate COVID-19 in adults 
and pediatric patients on November 9, 2020 [56]. Thus, 
bamlanivimab was the first SARS-CoV-2-nAb author-
ized for clinical use. Eli Lilly has an agreement with the 
U.S. government to supply 300,000 vials of 700 mg doses 
of bamlanivimab for US$375 million ($1250/dose) [90]. 
According to Eli Lilly, the company plans to donate 
COVID-19 therapies to Direct Relief for use in low- and 
lower-middle-income countries, which have been heavily 
impacted by the pandemic.

There is some concern that while bamlanivimab activ-
ity is unaffected against the B.1.1.7 (Alpha) variant strain, 
its protective efficacy is lost against the B.1.351 (Beta), P.1 
(Gamma), and B.1.617.2 (Delta) variants, due to the E484 
mutation [53, 54, 85, 86]. The use of a yeast display library 
to comprehensively map mutations in the RBD that allow 
SARS-CoV-2 to escape Ab binding [91] revealed that the 
L452R mutation in the B.1.429 (Epsilon) lineage allows 
escape from bamlanivimab [92]. Because emerging data 
shows that common SARS-CoV-2 viral variants are 
resistant to bamlanivimab alone, the U.S. FDA revoked 
the EUA that allowed for bamlanivimab to be used as a 
monotherapy of COVID-19 patients on April 9, 2021.

Combination of  bamlanivimab with  etesevimab Etese-
vimab (CB6, JS016, LY-CoV016) was identified by screen-
ing single B cells from a convalescent patient [51]. X-ray 
crystallography revealed that its epitope on SARS-CoV-2 
RBD largely overlaps with ACE2 binding residues. To 
reduce the potential risk of an Ab-dependent enhance-
ment (ADE) [93] and effector functions, the Fc of ete-
sevimab was modified by two leucine-to-alanine sub-
stitutions at residues 234 and 235 (known as the LALA 
mutation), which abolished its affinity for the Fcγ recep-
tor. In rhesus monkey models, treatment with etesevimab 
inhibited viral titers and reduced lung damage under 
both prophylactic and therapeutic usages. Etesevimab 
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Table 2 Clinical studies evaluating anti‑SARS‑CoV‑2 mAbs

No. Name Start date Latest Status Developer Country References

1 LY‑CoV555 (Bamlanivimab) 5/28/2020 EUA (11/09/2020)
EUA revoked
(4/9/2021)

Eli Lilly/AbCellera Canada/USA NCT04411628, NCT04427501,
NCT04497987, NCT04501978,
NCT04518410
[89]

2 LY‑CoV555 (Bam‑
lanivimab) + LY‑CoV016 
(Etesevimab)

6/17/2020 EUA (2/09/2021) Eli Lilly/AbCellera/
Junshi

Canada/USA NCT04427501, NCT04497987
[94]

3 REGN‑COV2
(REGN10933/Casiriv‑
imab + REGN10987/
Imdevimab)

6/10/2020 EUA (11/21/2020)
Approved 
(8/10/2021)

Regeneron USA NCT04425629, NCT04426695, 
NCT04452318
[41, 55, 81, 82]

4 S309
(VIR‑7831, Sotrovimab)

8/27/2020 EUA
(5/26/2021)

Vir biotechnology/ 
GlaxoSmithKline

USA/UK NCT04501978, NCT04545060
[96]

5 AZD7442
(COV2‑2130/Cil‑
gavimab + COV2‑2196/
Tixagevimab)

8/17/2020 EUA (12/08/2021) AstraZeneca/Van‑
derbilt University 
Medical Center

UK/USA NCT04501978, NCT04507256, 
NCT04625725, NCT04625972

6 TY027 6/09/2020 Phase III Tychan Pte. LTD Singapore NCT04429529, NCT04649515
[303]

7 BRII‑196 + BRII‑198 7/12/2020 Phase III Brii Bio/TSB Thera‑
peutics/Tsinghua 
University

China/USA NCT04518410, NCT04501978
[250]

8 CT‑P59 (Regdanvimab) 7/18/2020 Phase II/III
EUA (South Korea)

Celltrion South Korea NCT04525079, NCT04593641, 
NCT04602000
[47]

9 BI 767551 (DZIF‑10c) 11/23/2020 Phase II/III University of 
Cologne/he German 
Center for Infection 
Research/Boehringer 
Ingelheim

Germany NCT04631705, NCT04631666, 
NCT04822701
[253]

10 SCTA01 7/24/2020 Phase II/III Sinocelltech Ltd/
Chinese Academy of 
Sciences

China NCT04483375, NCT04644185
[46]

11 ADG20 4/26/2021 Phase II/III Adagio Therapeutics USA NCT04805671, NCT04859517

12 MAD0004J08 3/1/2021 Phase II/III Toscana Life Sciences 
Sviluppo s.r.l

Italia NCT04932850, NCT04952805

13 MW33 8/7/2020 Phase II Mabwell (Shanghai) 
Bioscience

China NCT04533048

14 DXP593 8/31/2020 Phase II Beigene China NCT04532294, NCT04551898
[194]

15 COVI‑AMG (STI‑2020) 2/2/2021 Phase II Sorrento Therapeu‑
tics

USA NCT04734860

16 LY‑CoV1404 + 
LY‑CoV555 (Bam‑
lanivimab) + LY‑CoV016 
(Etesevimab)

11/18/2020 Phase II Eli Lilly/AbCellera/ 
Junshi

USA NCT04634409

17 XVR011 5/12/2021 Phase I/II Exevir Bio BV Belgium NCT05017168

18 LY‑CoV016
(JS016, Etesevimab)

6/5/2020 Phase I Junshi Biosciences/ 
Chinese Academy of 
Sciences/Eli Lilly

China/USA NCT04441918, NCT04441931, 
NCT04427501
[51]

19 47D11 11/25/2020 Phase I Utrecht University/
Abbvie/Erasmus MC/
Harbor BioMed

Netherlands/
China/USA

NCT0464412
[40]

20 ADM03820 12/4/2020 Phase II/III Ology Bioservices USA NCT04592549, NCT05142527

21 DXP604 12/15/2020 Phase I Beigene China NCT04669262

22 C144‑LS and C‑135‑LS 1/11/2021 Phase II/III Bristol‑Myers Squibb, 
Rockefeller University

USA NCT04700163, NCT04518410
[98]



Page 18 of 50Hwang et al. Journal of Biomedical Science            (2022) 29:1 

has been evaluated in a completed phase I clinical trial 
(NCT04441931) and a phase II/III study in combination 
with bamlanivimab (NCT04427501).

On January 26, 2021, Eli Lilly announced that the com-
bination of bamlanivimab (2.8 g) and etesevimab (2.8 g) 
significantly reduced hospitalizations and deaths in high-
risk patients recently diagnosed with COVID-19, reach-
ing the primary endpoint of the Phase III BLAZE-1 trial 
(NCT04427501). In the 1035 patients enrolled in this 
trail, the treatment reduced hospitalizations and death by 
70%. There were 10 deaths in total, all of which occurred 
in patients taking placebo, and no deaths were recorded 
in patients taking bamlanivimab and etesevimab together. 
The Phase III BLAZE-1 trial showed additional results 
to demonstrate combination of bamlanivimab 700  mg 
and etesevimab 1400 mg reduced the risk of COVID-19 
related hospitalizations and deaths by 87% in high-risk 
patients aged 12 and older and recently diagnosed with 
the virus. The data were from 769 high-risk patients with 
mild to moderate COVID-19. Of those patients, 511 
were randomly assigned to treatment with Ab cocktail, 
and the other 258 were assigned to placebo. The primary 
endpoint was percentage of participants who experience 
COVID-related hospitalizations or death from any cause 
by day 29.

Based on the BLAZE-1 trial, the U.S. FDA issued an 
EUA for combined bamlanivimab (700  mg) and etese-
vimab (1400 mg) for the treatment of mild to moderate 
COVID-19 in patients of at least 12 years old who weigh 
at least 40 kg and are at high risk of progressing to severe 
disease and/or hospitalization. This combination therapy 
is expected to reduce the risk of selecting for resistant 
viruses when compared to bamlanivimab administered 
alone [94]. While the combination of bamlanivimab and 
etesevimab can neutralize B.1.1.7 (Alpha), it is not pro-
tective against B.1.351 (Beta) and P.1 (Gamma) variants 
because of the K417N/T mutation [53, 54]. Regarding the 
newly emerged B.1.617.2 (Delta) variant, bamlanivimab 
loses neutralizing ability due to the E484Q mutation, 
whereas etesevimab is not influenced by this muta-
tion and still retains neutralizing ability. Therefore, the 
cocktail of bamlanivimab and etesevimab has partially 
reduced ability to inhibit B.1.617.2 (Delta) variant [86].

The U.S. government agreed to purchase up to 
1.2 million doses of bamlanivimab and etesevimab 
together by November 2021. One hundred thousand 
doses have been ordered for shipment by March 31 at 
a value of US$210 million ($2,100 USD/dose). Accord-
ing to Eli Lilly’s financial report for the first quarter of 
2021, bamlanivimab and etesevimab had global sales of 
US$810 million, ranking first among all product lines. 
In May 2021, Eli Lilly plans to provide bamlanivimab 
and etesevimab to low- and middle-income countries 

free of charge. Bamlanivimab and etesevimab has 
begun to be used in India, and the first Indian patient 
treated with this Ab cocktail was discharged from the 
hospital in Haryana on May 26, 2021. The Medanta 
hospital in India reported that the cocktail is also effec-
tive against B.1.617.2 (Delta) variant and that the price 
of each dose is US$815. Lilly reported that total sales 
for the first half of 2021 consisted of $959.1 million for 
bamlanivimab and etesevimab administered together 
[88]. However, results from in  vitro assays show that 
bamlanivimab and etesevimab administered together 
are not active against either the P.1 (Gamma) or B.1.351 
(Beta) variants. Therefore, the U.S. Department of 
Health and Human Services paused all distribution of 
etesevimab alone, and bamlanivimab and etesevimab 
together on June 25, 2021 [95].

Sotrovimab (VIR‑7831, S309) Sotrovimab is a deriva-
tive of the S309 mAb, which was engineered with an 
extended half-life and potentially improved biodistribu-
tion in the lungs by the introduction of a LS mutation in 
the Fc [96]. S309 was originally identified from memory 
B  cells of an individual with SARS-CoV infection in 
2003; this Ab was found to potently cross-neutralize 
authentic SARS-CoV-2 [97]. Cryo-EM analysis revealed 
that S309 can bind to the “up” and “down” states of the 
RBD in a single S trimer. However, the Fab engages an 
epitope distinct from the RBM and does not compete 
with ACE2 upon binding to S glycoprotein. It was pro-
posed that the mechanism of S309-mediated neutrali-
zation may be the induction of S trimer cross-linking, 
steric hindrance, or aggregation of virions. S309 also 
showed strong Ab-dependent cell cytotoxicity and Ab-
dependent cellular phagocytosis effector functions. The 
Fc-effector function was demonstrated to contribute 
to the neutralization of SARS-CoV-2 in mouse models 
[98].

A phase III COVID-19 mAb Efficacy Trial (COMET-
ICE) evaluated sotrovimab (0.5 g, intravenous injection) 
as a monotherapy for the early treatment of COVID-19 
in adults at high risk of hospitalization. The study was 
stopped early in March 2021 due to clear evidence of 
clinical efficacy. Interim study results demonstrated an 
85% reduction in the primary endpoint of hospitaliza-
tions (more than 24 h) or death for those receiving sotro-
vimab (n = 291) compared to placebo (n = 292). On May 
26, 2021, the U.S. FDA issued an EUA for the 0.5 g single-
dose of sotrovimab for the treatment of mild-to-mod-
erate COVID-19 in pediatric patients (12  years of age 
and older) who are at high risk for progression to severe 
COVID-19. In  vitro testing showed that sotrovimab 
retains activity against currently circulating variants, 
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including P.1 (Gamma), B.1.429 (Epsilon), B.1.526 (Iota) 
and B.1.617.2 (Delta) [53, 54, 99].

AZD7442 (tixagevimab and  cilgavimab) AZD7442 is 
the combination of two human mAbs initially isolated 
from convalescent patients after SARS-CoV-2 infection 
and later engineered to be long-acting IgG molecules. The 
mAbs, COV2-2130 (AZD1061/cilgavimab) and COV2-
2196 (AZD8895/tixagevimab), recognize and simulta-
neously bind to two distinct non-overlapping epitopes 
on the virus RBD in the “up” configuration [100, 101]. 
COV2-2130 and COV2-2196 both have neutralizing abili-
ties, with  IC50 values of 1.6 ng/mL and 0.7 ng/mL in pseu-
dovirus assays, and  IC50 values of 107 ng/mL and 15 ng/
mL in FRNT, respectively (Table 1). Furthermore, a dose 
of 50 mg/kg showed a major protective effect in Rhesus 
macaques, with no subgenomic viral RNA detected in the 
treated group. By contrast, the isotype control mAb group 
had high levels of subgenomic viral RNA after exposure 
to SARS-CoV-2. In a mouse experiment to evaluate the 
therapeutic effects of the combination, 80% of treated 
mice had undetectable levels of infectious virus in lung 
after receiving the most effective dose of approximately 
20  mg/kg [100]. AstraZeneca licensed the combination 
in June 2020, and the mAbs were then further optimized 
by modifying amino acid residues in the Fc region [102]. 
First, L234F/L235E/P331S substitutions in the Fc region 
mitigate the potential risk of FcγR and complement bind-
ing [103]. Second, M252Y/S254T/T256E substitutions 
were made to increase the affinity for human FcRn at 
low endosomal pH, extending the half-lives of the mAbs 
[104]. After optimization, a single dose of AZD7442 was 
shown to provide protection against COVID-19 for 6 to 
12 months [102].

On 15 June 2021, AstraZeneca announced results from 
a phase III trial (STORM CHASER) assessing the safety 
and efficacy of AZD7442 for the prevention of sympto-
matic COVID-19 in participants recently exposed to the 
SARS-CoV-2. AZD7442 reduced the risk of developing 
symptomatic COVID-19 by 33% compared to placebo, 
which did not meet the primary endpoint. However, 
other phase III trials PROVENT and TACKLE are still 
ongoing and will evaluate the respective efficacies of 
AZD7442 for pre-exposure prevention and prevent-
ing severe disease. Most recently, it has been reported 
that the combination of COV2-2130 and COV2-2196 
can neutralize SARS-CoV-2 variants, including B.1.1.7 
(Alpha), B.1.351 (Beta), P.1 (Gamma), B.1429 (Epsilon), 
B.1617.1, or B.1526 (Iota), in vitro. From the analysis of 
prophylactic and therapeutic efficacies against B.1.1.7 
(Alpha), B.1.351 (Beta), or P.1 (Gamma) in animals, 
AZD7442 showed promising results [105]. In November 
2021, new data from two phase III trials testing AZD7442 

for prophylaxis and post-exposure prophylaxis were 
released (Table  2). The 6-month follow-up of the pre-
vention trial showed that one 300 mg IM (intramuscular 
injection) dose of AZD7442 reduced risk of symptomatic 
COVID-19 by 83%, with no severe disease or deaths 
observed. The separate treatment trial showed 88% 
reduced risk of severe COVID-19 or death when treat-
ments were given within three days of symptom onset 
[106]. Based on this progress, AstraZeneca has already 
signed an agreement with the U.S. government to sup-
ply up to 500,000 doses of AZD7442 for US$205 million 
($410/dose), contingent on AZD7442 receiving EUA in 
post-exposure prophylaxis [107].

Antibodies to control the cytokine storm syndrome (CSS)
Cytokine storm syndrome (CSS) or CRS is an uncon-
trolled systemic inflammatory response associated 
with highly increased levels of inflammatory cytokines 
responding to different triggers, including therapies, 
pathogens or autoimmune disease. Critical COVID-19 
patients often exhibit CSS-like syndromes, such as high 
fever, severe pneumonia leading to ARDS, multiple organ 
failure, or even death. Therefore, it is reasonable to sus-
pect that the direct effects of CSS, triggered by exag-
gerated levels of inflammatory cytokines, are at least 
partially responsible for severe COVID-19 syndrome 
[108]. Although the role of these inflammatory factors in 
treatment of COVID-19 remains unclear, effectively neu-
tralizing the overproduced inflammatory factors in CSS 
is essential to reduce mortality in patients with COVID-
19 [109–111]. Here, we summarize the current clinical-
stage therapeutic mAbs that can target cytokines to 
relieve CSS in COVID-19 patients (Table 3).

Abs targeting interleukin‑6 (IL‑6)
The consistent observation of high IL-6 levels in CSS 
patients suggests that this cytokine is a key mediator 
of CSS, although the mechanisms of such action have 
not yet been fully elucidated [112]. IL-6 is known to be 
essential for the adaptive immune response in which T 
cells and B cells are recruited to the infected site. There 
are two main pathways of IL-6 signaling transduction, 
referred to as classic cis or trans signaling. In classic cis 
signaling, IL-6 and gp130 form a complex with mem-
brane-bound IL-6 receptor (mIL-6R), while in the trans 
pathway, they bind to the soluble form of IL-6 receptor 
(sIL-6R). In either case, the IL-6 receptor (IL-6R) sign-
aling complex activates intercellular signaling involved 
in a wide range of biological functions, such as immune 
regulation through downstream JAK-STAT3 signaling 
[113]. Importantly, elevated IL-6 level has been tightly 
associated with ARDS and high mortality of COVID-
19 patients; therefore, IL-6 is thought to be a promising 
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therapeutic target to reduce hyper inflammation and pre-
vent the high mortalities of COVID-19 [112, 114–116]. 
According to the key role of IL-6 in CSS, several mAb 
drugs have been considered for the treatment of severe 
COVID-19, including sarilumab (Kevzara), tocilizumab 
(Actemra) and levilimab, which target IL-6R, as well as 
clazakizumab, siltuximab and olokizumab, which target 
IL-6 [19, 20, 117, 118].

These Abs specifically bind to both mIL-6R and sIL-6R 
and inhibit both cis and trans signal transduction. Several 
reports suggested that critically ill patients with COVID-
19 who received tocilizumab or sarilumab had improved 
outcomes and lower rates of mortality [119, 120]. How-
ever, other studies on the efficacy of tocilizumab or sari-
lumab have shown conflicting results, as the drugs failed 
to reduce the risk of intubation or death in patients 
with COVID-19 in several clinical trials [118, 121–124]. 
Despite these inconclusive results, the U.S. FDA granted 
authorization for the emergency use of tocilizumab to 
treat patients hospitalized with COVID19 on June 24, 
2021; the decision was based on the findings from a large 
clinical trial on tocilizumab [125, 126]. The EUA is spe-
cifically for treating certain hospitalized patients who 
are already receiving corticosteroids and need breathing 
support, but the drug is not approved as a general treat-
ment for COVID-19. In the clinical trials on critically ill 
patients with COVID-19 in the intensive care unit, both 
tocilizumab and sarilumab improved survival [119, 127]. 
Furthermore, in clinical trials on hospitalized patients, 
tocilizumab used for the treatment of COVID-19 
reduced the risk of death within 28 days by an absolute 
difference of 4% compared with usual care; this result was 
from patients with COVID-19 who required oxygen and 
had evidence of inflammation. Tocilizumab also reduced 
the time that patients remained in the hospital, and the 
probability of patient discharge within 28 days was raised 
from 50 to 57% (p < 0.0001) [125]. This trial provided 
the most definitive evidence that treatment with tocili-
zumab benefits hospitalized COVID-19 patients [120]. In 
addition, the WHO has recommended the use of tocili-
zumab and sarilumab plus corticosteroids to treat severe 
COVID-19 [127].

Targeting TNF
TNF is an important cytokine in many inflammatory 
diseases, and it is known to regulate IL-6 expression. In 
contrast to anti-IL-6 therapy, anti-TNF therapy has been 
shown to downregulate several inflammatory cytokines 
including IL-1, IL-6, and GM-CSF [128, 129]. Moreo-
ver, elevated levels of TNF in the blood and tissues of 
patients with COVID-19 have been indicated in previous 
reports [130]. Since blocking IL-6 met with limited suc-
cess in COVID-19 patients, anti-TNF therapy has been 

recently considered as a means of reducing inflammation 
in COVID-19 [21, 131]. Early observations from clini-
cal data support the idea that anti-TNF Abs, such as inf-
liximab or adalimumab may reduce the mortality rate in 
patients with COVID-19 [132, 133]. Up to now, there have 
been four clinical trials on infliximab (NCT04344249, 
NCT04425538, NCT04593940, NCT04734678) and one 
on adalimumab (NCT04705844), all of which seek to 
evaluate their therapeutic potential in COVID-19.

Targeting IL‑1β
There are three important cytokines in the IL-1 fam-
ily that are especially relevant to cytokine storms: IL-1β, 
IL-18, and IL-33; among these cytokines, blocking IL-1β 
has great potential to counteract cytokine storms [22]. 
The IL-1 family members play different pro-inflamma-
tory roles in patients with COVID-19, and these individ-
ual cytokines may be important mediators of many CSS 
symptoms, including fever, edema, and finally, organ dys-
function or death. Thus, blocking their function may pos-
sibly reverse the cytokine storm. Though the exact roles 
of IL-1 cytokines in the pathogenesis of CSS are unclear, 
it seems that IL-1 receptor blockade may help to main-
tain better control of inflammatory processes. Canaki-
numab is a human mAb that neutralizes IL-1β bioactivity 
by competing for IL-1RI binding; it is approved for the 
treatment of cryopyrin-associated periodic syndromes 
and several serious auto-inflammatory diseases [134, 
135]. Clinical studies have been performed to examine 
the efficacy and safety of canakinumab in patients with 
COVID-19 [136, 137].

Others
Besides IL-1β, IL-6, and TNF, several cytokine storm-
related factors are potential therapeutic targets for the 
treatment of severe COVID-19 patients. For exam-
ple, GM-CSF is often found at a high level in COVID-
19 patients. GM-CSF binding to GM-CSF receptor-α 
(GM-CSFR-α) stimulates IL-1, IL-6, and TNF produc-
tion, promoting downstream Janus kinase 2 (JAK2) sig-
nal transduction [138]. Mavrilimumab is a human mAb 
targeted to GM‐CSFR-α that has been used as an inves-
tigational drug for the treatment of rheumatoid arthritis 
[139]. Recently, clinical data suggest that the condition of 
COVID-19 patients with pneumonia and systemic hyper 
inflammation can be improved by treatment of mavrili-
mumab and lenzilumab [23, 140, 141]. These results 
showed that therapeutic antibodies against GM-CSF can 
improve the clinical outcomes for COVID-19 patients 
with CSS.

In addition to GM-CSF, the complement system may 
be a valuable target for COVID-19 therapy, as it is an 
integral component of the innate immune response to 
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virus infection. Complement signaling comprises three 
known axes, including the classical complement, alterna-
tive complement, and lectin pathways. All three pathways 
converge on the main component C3 of the complement 
pathway and result in the production of proinflamma-
tory anaphylatoxins, C3a and C5a, and the formation of 
the terminal membrane attack complex (MAC) [142]. 
Patients with severe COVID-19 showed complement 
activation and high concentrations of C5a and MAC, 
suggesting that dysregulation of the complement pathway 
may participate in CSS and severe COVID-19 complica-
tions [143–147]. Notably, mechanistic studies showed the 
S or nucleocapsid protein of SARS-CoV-2 can activate 
the complement pathway [148, 149]. Based on the appar-
ent involvement of complement in COVID-19, clinical 
studies have been initiated for several Abs, including 
avdoralimab, eculizumab, and vilobelimab (Table 3). Ecu-
lizumab is a humanized mAb with a high affinity to C5 

that inhibits the generation of C5a and C5b proteins and 
prevents the formation of the inflammatory anaphyla-
toxin and the MAC [150].  In addition, avdoralimab and 
vilobelimab are mAbs targeting C5aR or C5a that prevent 
binding of C5a to C5aR and block the formation of the 
inflammatory anaphylatoxin associated with pulmonary 
pathology of ARDS in COVID-19 [145, 151]. Conceiv-
ably, these therapeutic antibodies could be effective treat-
ments for severe COVID-19 with CSS.

Antibody‑based SARS‑CoV‑2 detection
As the number of patients with COVID-19 continues to 
grow around the world, a major issue is monitoring and 
evaluating patients with diagnostic tests that can dis-
tinguish SARS-CoV-2 from other viruses causing com-
mon cold symptoms [152]. Tests for viral nucleic acids 
and antigens can specifically indicate the presence of the 
virus in patients during the acute phase of virus infection 

Table 3 Clinical trials of therapeutic antibodies for COVID‑19

Target & mAb drug ClinicalTrials.gov identification Type Phase

Anti‑IL‑6
Clazakizumab NCT04348500, 6 trials Humanized rabbit IgG1 mAb II

Siltuximab NCT04329650, 3 trials Chimeric IgGκ mAb II/III

Olokizumab NCT04452474, 2 trials Humanized IgG4 mAb II/III

Anti‑IL‑6R
Levilimab NCT04397562 Human mAb III

Sarilumab NCT04661527, 9 trials Human IgG1 mAb I/II/III

Sirukumab NCT04380961 Human IgG1κ mAb II

Tocilizumab NCT04372186, 56 trials Humanized mouse IgG1 mAb EUA

Anti‑IL‑1β
Canakinumab NCT04362813, 5 trials Human IgG1κ mAb III

Anti‑TNF
Infliximab NCT04425538, 4 trials Chimeric IgG1 mAb II

Adalimumab NCT04705844 Human mAb III

Anti‑GM‑CSF
Lenzilumab NCT04351152 Human IgG1 mAb III

Otilimab NCT04376684 Human IgG1 mAb II

TJ003234 NCT04341116 Human IgG1 mAb II/III

Anti‑GM‑CSFR
Gimsilumab NCT04351243 Human IgG1 mAb II

Anti‑GM‑CSFR‑α
Mavrilimumab NCT04447469, 5 trials Human IgG4 mAb II/III

Anti‑C5
Eculizumab NCT04346797, 4 trials Humanized mouse IgG2/4κ mAb II

Anti‑C5a
Vilobelimab NCT04333420 Chimeric IgG4 mAb II/III

Anti‑C5aR
Avdoralimab NCT04371367, 2 trials Human IgG1 mAb II

Anti‑PD‑1
Nivolumab NCT04356508, 3 trials Human IgG4 mAb II
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[153]. Moreover, the diagnostic sensitivity of each test 
varies depending on the duration of disease, viral load, 
and quality of specimen collection, in addition to the col-
lection site [154]. Because SARS-CoV-2 mainly replicates 
in the respiratory tract, the U.S. Centers for Disease Con-
trol and Prevention (CDC) recommends collecting and 
analyzing patient specimens from the upper and lower 
respiratory tract [155]. The nucleic acid detection assays 
show better sensitivity when used on specimens from the 
lower respiratory tract, including bronchoalveolar lav-
age fluid and sputum, than for specimens from the upper 
respiratory tract [156]. Among upper respiratory speci-
mens, swabs collected from the nasal cavity yield a higher 
detection rate than oropharyngeal swabs [157].

In one of the main nucleic acid amplification tests, RT-
PCR is used to amplify a unique viral genome sequence 
with specific primers; this assay offers a high accuracy 
and was the first method developed for SARS-CoV-2 
detection, making it the gold standard [158]. The CDCs 
from several different countries have provided RT-PCR 
protocols using oligonucleotide primers and probes that 
are complementary to several regions of the SARS-CoV-2 
genome, including N, E, replicase ORF1a and ORF1b 
[159]. However, RT-PCR is time-consuming and requires 
trained personnel with specialized equipment in the lab-
oratory. Therefore, rapid and sensitive point-of-care test-
ing (POCT) assays have been developed, including many 
based on lateral flow immunoassay (LFIA).

In contrast to detection of the virus, COVID-19 serol-
ogy tests detect Abs that are produced as part of the 
human immune response to antigen from the patho-
gen. Seroconversion for immunoglobulin M (IgM) and 
IgG may occur simultaneously or sequentially [160]. For 
COVID-19, seroconversion of IgM and IgG are observed 
an average of 13  days after onset of symptoms [160]. 
Serology tests using whole blood, plasma, or serum-con-
taining abundant immunoglobulins can reveal a patient’s 
medical history after infection, which is useful for dem-
onstrating Ab kinetics or assessing vaccine effectiveness 
[161]. One study analyzed millions of individuals diag-
nosed with COVID-19, showing that people aged 65 or 
older had higher rates of reinfection with SARS-CoV-2 
[162]. Especially with regard to such vulnerable popu-
lations, serology tests can be applied to identify pre-
asymptomatic individuals with SARS-CoV-2 reinfection, 
control transmission when used in contact tracing, and 
allow for repeat testing in disease screening.

Immunoassays based on antigen-Ab interactions 
include enzyme-linked immunosorbent assay (ELISA), 
chemiluminescence immunoassay (CLIA), and LFIA; 
these assays are widely applied for detection of specific 
antigens or Abs related to infectious agents [163]. The 
major antigens used for serology tests are purified N 

and S proteins, which can be applied alone or in com-
bination to generate immunoassays that broadly detect 
different isotypes of Ab (Table  4). The nucleoprotein 
(NP) binds and packs the viral RNA genome into a heli-
cal nucleocapsid for viral replication [164]. Meanwhile, 
the S protein plays a significant role in viral fusion 
and entry into host cells and is composed of S1 RBD 
at N-terminus and S2 subunits at C-terminus [165]. 
Previous reports indicated that both NP and S protein 
are immunogenic, as Abs against NP and the RBD of 
S protein as well as their B cell epitopes were read-
ily detected upon early seroconversion in COVID-19 
patients [166–169]. ELISAs using NP and RBD of S 
protein show high specificity and no cross-reactivity 
with non-CoV, HCoV, MERS-CoV, or SARS-CoV [170, 
171]. Furthermore, a meta-analysis identified 38 stud-
ies that showed the use of RBD as an antigen provides 
higher sensitivity than NP [172]. In addition, the pres-
ence of RBD-specific Abs is also highly associated with 
COVID-19 nAb response [173–176].

In the next section, we will introduce prominent 
immunoassays, including ELISAs, CLIAs, and LFIAs, 
and comprehensively list the applications that have 
been granted EUA by the U.S. FDA for use as diagnos-
tics for detection of SARS-CoV-2 and serology tests 
(Tables 4 and 5).

Enzyme‑linked immunosorbent assay (ELISA)
The four main types of immunoassays include direct, 
indirect, sandwich, and competitive methods [177]. 
Most EUAs granted for Ab-based detection tests uti-
lize the indirect ELISA strategy and probe for different 
human isotype immunoglobulins, such as IgG, IgM, 
and IgA. For example, some tests to detect virus in 
human serum or plasma consist of microplates coated 
with recombinant viral S1 protein. The interaction of 
antigen and Ab creates an immune-complex, which can 
be detected using horseradish peroxidase-conjugated 
Ab and tetramethylbenzidine substrate in a colorimet-
ric reaction [178].

Chemiluminescence immunoassay (CLIA)
Indirect CLIAs use recombinant antigen-coated mag-
netic beads as a solid phase, which is incubated with liq-
uid samples containing Ab to create immune-complexes. 
After the immune-complexes are formed, an enzyme-
labelled anti-human Ab is added with the substrate to 
initiate a chemiluminescence reaction. The result is 
measured in relative light units and allows for quantifica-
tion of Abs in the sample. CLIAs are conceptually similar 
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to ELISAs but have a faster average time-to-result, i.e., 
1–2 h for CLIA versus 3–5 h for ELISA [179]. In addition, 
Bastos et al. argued that CLIAs are generally more accu-
rate than traditional ELISAs, according to a systematic 
review and meta-analysis [180].

Point‑of‑care rapid tests (POCTs) using lateral flow 
immunoassay (LFIA)
POCTs should be easy to operate, portable, and long-last-
ing, allowing patients to receive test reports in the care 
setting, rather than days later due to the need of trans-
porting samples to a testing laboratory. POCTs LFIA can 
be conducted within 10 to 30 min, and it is measured by 
portable devices or visual observation, making it a poten-
tial application for large-scale surveys. However, LFIAs 
do not have signal amplification, resulting in low signal 
at low viral or Ab titers. Thus, in comparisons of serology 
tests, LFIAs often display lower sensitivity than ELISAs 
and CLIAs [180].

Typical LFIA formats involve capillary migration of 
sample through immunochromatography paper from a 
sample pad through a conjugation pad, where conjugated 
materials are released, and finally migrate to detection 
lines up to an absorbent pad [181]. An example LFIA 
with sandwich design for SARS-CoV-2 antigen detection 
is illustrated in Fig. 3a. NP serves as the target, and the 
conjugation pad contains capture Abs against NP, which 
are coupled to colored nanoparticles (e.g., colloidal gold 
or colored latex) [182]. Another detection Ab against a 
different epitope of NP is immobilized on the test line, 
and an anti-mouse IgG Ab is immobilized on the control 
line. When a sample containing viral NP is loaded, the 
anti-NP Ab on the conjugation pad captures the antigen, 
forming an immunocomplex. In this immunocomplex, 
the free epitope on NP is able to bind the second immo-
bilized detection Ab at the test line. Unbound Abs (not 
in the immunocomplex) will bind to immobilized Abs 
on the control line, which captures the Fc of immuno-
globulin. Several LFIA-based antigen detection tests for 
SARS-CoV-2 have been granted EUAs by the U.S. FDA 
(Table 5). In another example of a serology test (Fig. 3b), 
recombinant purified SARS-CoV-2 antigen protein (such 
as S protein) is labeled with nanoparticles and contained 
in the conjugation pad. Specific Abs from patient serum 
or plasma specimens are able to conjugate the labeled S 
protein and then bind to test lines recognizing specific 
isotype immunoglobulins, such as IgM, IgG, or IgA.

Spike (S) protein structure‑based Abs 
against SARS‑CoV‑2
The S protein of SARS-CoV-2 mediates host recogni-
tion and membrane fusion, so it has become a major 
target for the design of drugs and vaccines. S protein is 

a heavily glycosylated homo-trimeric membrane protein 
consisting of an extracellular S1 domain, an S2 domain, 
and a short cytosolic tail. The RBD is located at the top 
of the S1 domain and can fold as either an open or closed 
form [183, 184]; in the closed form, the RBM faces the 
N-terminal portion of its neighboring S1 protomer, while 
in the open form, it faces up. Consequently, the RBM of 
an open RBD can bind to the peptidase domain of ACE2, 
resulting in a trapping of the RBD in its open form and 
increased S1 subunit conformational dynamics [185]. 
Notably, the SARS-CoV-2 S trimer is much more sensi-
tive than the SARS-CoV S trimer, with regard to ACE2 
receptor-triggered transformation from the closed prefu-
sion state to the fusion-prone open state; this difference 
might potentially account for the higher infectivity of 
SARS-CoV-2 compared to SARS-CoV [183, 186].

Structural biology of S protein
Since the beginning of the pandemic, development of 
nAbs to block virus entry has included utilization of 
structural biology tools like crystallography and cryo-EM 
single particle analysis to reveal viral protein structure 
and binding epitopes. To investigate the mechanisms of 
membrane fusion, the structures of various S protein iso-
forms and conformations have been solved by cryo-EM. 
Wrapp et al. solved the extracellular domain of S protein 
by cryo-EM, overcoming low S protein yield by remov-
ing the furin cleavage site and introducing two addi-
tional proline mutations for stability [63]. Another group 
reported the cryo-EM structure of full-length S protein, 
which includes the transmembrane domain and the cyto-
solic tail [187]. Ke and colleagues used cryo-EM tomog-
raphy and single particle analysis to reconstruct the S 
structure directly from deactivated authentic SARS-
CoV-2 virus containing the D614G mutation [184]. This 
structure was then superimposed with the extracellular 
domain structure. Despite lacking the S transmembrane 
domain and cytosolic tail, the cryo-EM structure for 
the extracellular domain showed good agreement with 
the structure of the S protein from the authentic virus. 
To gain a better understanding of the molecular confor-
mation of the S protein during the infection process, Xu 
et al. solved the structure of the extracellular domain of 
S protein in complex with ACE2 [185]. Comparing the 
structure of the ACE2-S complex with the closed form of 
S and the one RBD up open form, the presence of ACE2 
induced a swing motion in the ACE2-RBD interface and 
untwisting of the S trimer; as a result of this increased 
mobility, a missing density of the neighboring protomer 
fusion peptide was noted. Such a shift from a packed 
state to a dynamic state might make the TMPRSS2 
cleavage site vulnerable to TMPRSS2 cleavage, thereby 
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Table 4 Serology tests with EUA from the U.S. FDA

Name Company Source Target Accuracy Method

Alinity i SARS‑CoV‑2 IgG Abbott IgG NP IgG Sens
0–7 days: 49.3%
8–13 days: 80.4%
 ≥ 14 days: 98.1%,
IgG Spec: 99.6%

CLIA

Architect SARS‑CoV‑2 IgG Abbott IgG NP IgG Sens
0–7 days: 49.3%
8–14 days: 82.6%
 ≥ 15 days: 98.1%,
IgG Spec: 99.6%

CLIA

AdviseDx SARS‑CoV‑2 IgM (Architect) Abbott IgM S IgM Sens
0–7 days: 42.6%
8–14 days: 79%
 ≥ 15 days: 95%,
IgM Spec: 99.6%

CLIA

Babson Diagnostics aC19G1 Babson Diagnostics, Inc IgG S IgG Sens
8–14 days: 66.7%
 ≥ 15 days: 100%
IgG Spec: 100%

CLIA

Access SARS‑CoV‑2 IgG Beckman Coulter, Inc IgG S IgG Sens
0–7 days: 75.8%
8–14 days: 95.3%
 ≥ 15 days: 96.8%,
IgG Spec: 99.6%

CLIA

Access SARS‑CoV‑2 IgM Beckman Coulter, Inc IgM S IgM Sens
0–7 days: 54.4%
8–14 days: 91.7%
 ≥ 15 days: 98.3%,
IgM Spec: 99.9%

CLIA

SARS‑CoV‑2 IgG and IgM Combo Test BioCheck, Inc IgM, IgG S IgM Sens
0–7 days: 100%
8–14 days: 93.8%
 ≥ 15 days: 88.9%,
IgM Spec: 97.2%
IgG Sens
0–7 days: 100%
8–14 days: 100%
 ≥ 15 days: 100%,
IgG Spec: 100%

CLIA

SARS‑CoV‑2 IgG Antibody Test Kit BioCheck, Inc IgG S IgG Sens
0–7 days: 100%
8–14 days: 100%
 ≥ 15 days: 100%,
IgG Spec: 100%

CLIA

SARS‑CoV‑2 IgM Antibody Test Kit BioCheck, Inc IgM S IgM Sens
0–7 days: 100%
8–14 days: 93.8%
 ≥ 15 days: 88.9%,
IgM Spec: 97.2%

CLIA

LIAISON SARS‑CoV‑2 IgM Assay DiaSorin, Inc IgM S IgM Sens
0–7 days: 64.4%
8–14 days: 90.2%
 ≥ 15 days: 92.6%,
IgM Spec: 99.3%

CLIA

LIAISON SARS‑CoV‑2 S1/S2 IgG DiaSorin, Inc IgG S IgG Sens
0–5 days: 25%
6–14 days: 89.8%
 ≥ 15 days: 97.55%,
IgG Spec: 99.3%

CLIA
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Table 4 (continued)

Name Company Source Target Accuracy Method

LIAISON SARS‑CoV‑2 TrimericS IgG DiaSorin, Inc IgG S IgG Sens
0–7 days: 21.4%
8–14 days: 70.8%
 ≥ 15 days: 96.9%,
IgG Spec: 99.5%

CLIA

DZ‑Lite SARS‑CoV‑2 IgG CLIA Kit Diazyme Laboratories, Inc IgG S, NP IgG Sens
0–7 days: 43.5%
8–14 days: 91.7%
 ≥ 15 days: 100%,
IgG Spec: 97.4%

CLIA

DZ‑Lite SARS‑CoV‑2 IgM CLIA Kit Diazyme Laboratories, Inc IgM S, NP IgG Sens
0–7 days: 26.1%
8–14 days: 83.8%
 ≥ 15 days: 94.4%,
IgG Spec: 98.3%

CLIA

QUANTA Flash SARS‑CoV‑2 IgG Inova Diagnostics, Inc IgG S, NP IgG Sens
0–7 days: 66.7%
8–14 days: 61.5%
 ≥ 15 days: 100%,
IgG Spec: 99.9%

CLIA

VITROS Anti‑SARS‑CoV‑2 IgG test Ortho‑Clinical Diagnostics, Inc IgG S IgG Sens
12–15 days: 83.3%
 ≥ 16 days: 90%,
IgG Spec: 100%

CLIA

VITROS Immunodiagnostic Products Anti‑
SARS‑CoV‑2 Total Reagent

Ortho‑Clinical Diagnostics, Inc Pan‑Ig S Pan‑Ig Sens
0–7 days: 80%
 ≥ 8 days: 100%,
Pan‑Ig Spec: 100%

CLIA

Q‑Plex SARS‑CoV‑2 Human IgG (4 Plex) Quansys Biosciences, Inc IgG S IgG Sens
0–7 days: 100%
8–14 days: 100%
 ≥ 15 days: 95.2%,
IgG Spec: 99.7%

CLIA

MAGLUMI 2019‑nCoV IgM/IgG Shenzhen New Industries Biomedical Engi‑
neering Co., Ltd

IgM, IgG S, NP IgM Sens
0–7 days: 43.8%
8–14 days: 78.3%
 ≥ 15 days: 77.5%,
IgM Spec: 99.6%
IgG Sens
0–7 days: 31.3%
8–14 days: 90.6%
 ≥ 15 days: 100%,
IgG Spec: 99.1%

CLIA

ADVIA Centaur SARS‑CoV‑2 IgG (COV2G) Siemens Healthcare Diagnostics IgG S IgG Sens
0–6 days: 53.5%
7–13 days: 93.4%
 ≥ 14 days: 100%,
IgG Spec: 99.9%

CLIA

ADVIA Centaur SARS‑CoV‑2 Total (COV2T) Siemens Healthcare Diagnostics Pan‑Ig S IgG Sens
0–6 days: 61.1%
7–13 days: 97.5%
 ≥ 14 days: 100%,
IgG Spec: 99.8%

CLIA

Atellica IM SARS‑CoV‑2 IgG (COV2G) Siemens Healthcare Diagnostics IgG S IgG Sens
0–6 days: 56%
7–13 days: 92.2%
 ≥ 14 days: 100%,
IgG Spec: 99.9%

CLIA
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Table 4 (continued)

Name Company Source Target Accuracy Method

Atellica IM SARS‑CoV‑2 Total (COV2T) Siemens Healthcare Diagnostics Pan‑Ig S Pan‑Ig Sens
0–6 days: 60.7%
7–13 days: 97.5%
 ≥ 14 days: 100%,
Pan‑Ig Spec: 99.8%

CLIA

Vibrant COVID‑19 Ab Assay Vibrant America Clinical Labs Pan‑Ig S, NP IgG/IgM Sens: 98.1%,
IgG/IgM Spec: 98.6%

CLIA

WANTAI SARS‑CoV‑2 Ab ELISA Beijing Wantai Biological Pharmacy Enterprise 
Co., Ltd

Pan‑Ig S Pan‑Ig Sens
0–7 days: 55.4%
8–14 days: 84.8%
 ≥ 15 days: 98.7%,
Pan‑Ig Spec: 97.5%

ELISA

Platelia SARS‑CoV‑2 Total Ab Bio‑Rad Laboratories, Inc Pan‑Ig NP Pan‑Ig Sens
0–7 days: 100%
8–14 days: 96%
 ≥ 15 days: 100%,
Pan‑Ig Spec: 99.3%

ELISA

SARS‑CoV‑2 RBD IgG test Emory Medical Laboratories IgG S IgG Sens
0–7 days: 73%
8–14 days: 100%
 ≥ 15 days: 100%,
IgG Spec: 97.7%

ELISA

SARS‑CoV‑2 ELISA (IgG) EUROIMMUN IgG S IgG Sens
0–4 days: 21.7%
5–10 days: 69.4%
 ≥ 11 days: 81.1%,
IgG Spec: 100%

ELISA

cPass SARS‑CoV‑2 Neutralization Antibody 
Detection Kit

GenScript USA Inc Pan‑Ig S Pan‑Ig Sens: 100%,
Pan‑Ig Spec: 100%

ELISA

SCoV‑2 Detect IgG ELISA InBios International, Inc IgG S IgG Sens
8–14 days: 100%
 ≥ 15 days: 95.5%,
IgG Spec: 100%

ELISA

SCoV‑2 Detect IgM ELISA InBios International, Inc IgM S IgM Sens
0–7 days: 66.7%
8–14 days: 91.4%
 ≥ 15 days: 93.8%,
IgM Spec: 98.8%

ELISA

COVID‑SeroKlir, Kantaro Semi‑Quantitative 
SARS‑CoV‑2 IgG Antibody Kit

Kantaro Biosciences, LLC IgG S IgG Sens
0–7 days: 100%
8–14 days: 100%
 ≥ 15 days: 93%,
IgG Spec: 99.6%

ELISA

Mt. Sinai Laboratory COVID‑19 ELISA Antibody 
Test

Mount Sinai Hospital Clinical Laboratory IgM, IgG S Combined Sens: 92.5%,
Combined Spec: 100%

ELISA

Simoa Semi‑Quantitative SARS‑CoV‑2 IgG 
Antibody Test

Quanterix Corporation IgG S IgG Sens
0–7 days: 45.2%
8–14 days: 87.5%
 ≥ 15 days: 100%,
IgG Spec: 99.2%

ELISA

Dimension Vista SARS‑CoV‑2 Total Ab assay 
(COV2T)

Siemens Healthcare Diagnostics Pan‑Ig S Pan‑Ig Sens
0–6 days: 66.7%
7–13 days: 97.4%
 ≥ 14 days: 100%,
Pan‑Ig Spec: 99.8%

ELISA

Dimension EXL SARS‑CoV‑2 Total Ab assay 
(CV2T)

Siemens Healthcare Diagnostics Pan‑Ig S Pan‑Ig Sens
0–6 days: 68.8%
7–13 days: 97.4%
 ≥ 14 days: 100%,
Pan‑Ig Spec: 99.9%

ELISA
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Table 4 (continued)

Name Company Source Target Accuracy Method

COVID‑19 self‑collected Ab test system Symbiotica, Inc IgG S IgG Sens
8–14 days: 100%
 ≥ 15 days: 100%,
Pan‑Ig Spec: 98.04%

ELISA

OmniPATH COVID‑19 Total Antibody ELISA Test Thermo Fisher Scientific Pan‑Ig S Pan‑Ig Sens
0–7 days: 19%
8–14 days: 76.7%
 ≥ 15 days: 100%,
Pan‑Ig Spec: 100%

ELISA

COVID‑19 ELISA pan‑Ig Antibody Test University of Arizona Genetics Core for Clinical 
Services

Pan‑Ig S Pan‑Ig Sens
 ≥ 15 days: 97.5%,
Pan‑Ig Spec: 99.1%

ELISA

ZEUS ELISA SARS‑CoV‑2 Total Test ZEUS Scientific, Inc Pan‑Ig S Pan‑Ig Sens: 93.3%,
Pan‑Ig Spec: 100%

ELISA

ZEUS ELISA SARS‑CoV‑2 IgG Test System ZEUS Scientific, Inc IgG S IgG Sens
0–7 days: 100%
8–14 days: 100%
 ≥ 15 days: 100%,
IgG Spec: 99.1%

ELISA

CareStart COVID‑19 IgM/IgG Access Bio, Inc IgM, IgG S, NP IgM Sens
8–14 days: 100%
 ≥ 15 days: 88.7%,
IgM Spec: 99.5%
IgG Sens
8–14 days: 100%
 ≥ 15 days: 96.8%,
IgG Spec: 99.5%

LFIA

Assure COVID‑19 IgG/IgM Rapid Test Device Assure Tech IgM, IgG S, NP IgG/IgM Sens
0–7 days: 100%
8–14 days: 83.3%
 ≥ 15 days: 89.3%,
IgG/IgM Spec: 100%

LFIA

ACON SARS‑CoV‑2 IgG/IgM Rapid Test ACON Laboratories, Inc IgM, IgG S, NP IgG/IgM Sens
0–7 days: 100%
8–14 days: 100%
 ≥ 15 days: 100%,
IgG/IgM Spec: 95.9%

LFIA

RapCov Rapid COVID‑19 Test ADVAITE, Inc IgG NP IgG Sens
 ≥ 15 days: 93.3%,
IgG Spec: 99.5%

LFIA

WANTAI SARS‑CoV‑2 Ab Rapid Test Beijing Wantai Biological Pharmacy Enterprise 
Co., Ltd

Pan‑Ig S Pan‑Ig Sens: 100%,
Pan‑Ig Spec: 98.8%

LFIA

Tell Me Fast Novel Coronavirus (COVID‑19) IgG/
IgM Antibody Test

Biocan Diagnostics Inc IgM, IgG S, NP IgM Sens
8–14 days: 88.9%
 ≥ 15 days: 85.2%,
IgM Spec: 98.7%
IgG Sens
8–14 days: 100%
 ≥ 15 days: 100%,
IgG Spec: 96.2%

LFIA

Biohit SARS‑CoV‑2 IgM/IgG Antibody Test Kit Biohit Healthcare (Hefei) IgM, IgG NP IgM Sens
0–7 days: 33.3%
8–14 days: 83%
 ≥ 15 days: 97.7%,
IgM Spec: 99.5%
IgG Sens
8–14 days: 56.6%
 ≥ 15 days: 96.2%,
IgG Spec: 100%

LFIA

qSARS‑CoV‑2 IgG/IgM Rapid Test Cellex, Inc IgM, IgG S, NP Combined Sens: 93.8%,
Combined Spec: 96%

LFIA
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Table 4 (continued)

Name Company Source Target Accuracy Method

COvAb SARS‑CoV‑2 Ab Test Diabetomics, Inc Pan‑Ig S Pan‑Ig Sens
0–7 days: 41.6%
8–14 days: 84.2%
 ≥ 15 days: 97.6%,
Pan‑Ig Spec: 98.78%

LFIA

RightSign COVID‑19 IgG/IgM Rapid Test Cas‑
sette

Hangzhou Biotest Biotech IgM, IgG S IgG/IgM Sens
0–7 days: 66.7%
8–14 days: 100%
 ≥ 15 days: 88.9%,
IgG/IgM Spec: 100%

LFIA

LYHER Novel Coronavirus (2019‑nCoV) IgM/IgG 
Antibody Combo

Hangzhou Laihe Biotech IgM, IgG S IgM Sens
0–6 days: 100%
7–14 days: 85.7%
 ≥ 15 days: 99.3%,
IgM Spec: 99.4%
IgG Sens
7–14 days: 76.2%
 ≥ 15 days: 98.5%,
IgG Spec: 99.4%

LFIA

COVID‑19 IgG/IgM Rapid Test Cassette Healgen Scientific, LLC IgM, IgG S IgM Sens: 100%,
IgM Spec: 100%
IgG Sens: 96.7%,
IgG Spec: 97.5%
Combined Sens: 100%,
Combined Spec: 97.5%

LFIA

Innovita 2019‑nCoV Ab Test (Colloidal Gold) Innovita (Tangshan) Biological Technology 
Co., Ltd

IgM, IgG S, NP IgG/IgM Sens
0–7 days: 87.9%
8–14 days: 96.6%
 ≥ 15 days: 100%,
IgG/IgM Spec: 98%

LFIA

SCoV‑2 Detect IgG Rapid Test InBios International, Inc IgG S IgG Sens
0–7 days: 92.9%
8–14 days: 81.8%
 ≥ 15 days: 100%,
IgG Spec: 97.7%

LFIA

Orawell IgM/IgG Rapid Test Jiangsu Well Biotech IgM, IgG S IgG/IgM Sens
8–14 days: 98.2%
 ≥ 15 days: 100%,
IgG/IgM Spec: 98%

LFIA

Rapid COVID‑19 IgM/IgG Combo Test Kit Megna Health, Inc IgM, IgG NP IgM Sens
0–7 days: 66.7%
8–14 days: 77.1%
 ≥ 15 days: 90.9%,
IgM Spec: 99.6%
IgG Sens
0–7 days: 62.3%
8–14 days: 85.7%
 ≥ 15 days: 90.9%,
IgG Spec: 99.3%

LFIA

Nirmidas COVID‑19 (SARS‑CoV‑2) IgM/IgG 
Antibody Detection Kit

Nirmidas Biotech, Inc IgM, IgG S IgG Sens
0–7 days: 27.8%
8–14 days: 76.5%
 ≥ 15 days: 100%,
IgM Sens
0–7 days: 27.8%
8–14 days: 82.4%
 ≥ 15 days: 97%,
IgM/IgG Spec: 84.8%

LFIA

ADEXUSDx COVID‑19 Test NOWDiagnostics, Inc Pan‑Ig S Pan‑Ig Sens: 93.3%,
Pan‑Ig Spec: 100%

LFIA

QIAreach Anti‑SARS‑CoV‑2 Total Test QIAGEN, GmbH Pan‑Ig S Pan‑Ig Sens: 100%
Pan‑Ig Spec: 97.5%

LFIA
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Table 4 (continued)

Name Company Source Target Accuracy Method

Sienna‑Clarity COVIBLOCK COVID‑19 IgG/IgM 
Rapid Test Cassette

Salofa Oy IgM, IgG S IgM Sens: 90%,
IgM Spec: 100%
IgG Sens: 93.3%,
IgG Spec: 98.8%
Combined Sens: 93.3%,
Combined Spec: 98.8%

LFIA

SGTi‑flex COVID‑19 IgG Sugentech, Inc IgG S, NP IgG Sens
0–7 days: 41.2%
8–14 days: 91.7%
 ≥ 15 days: 98.6%,
IgG Spec: 100%

LFIA

TBG SARS‑CoV‑2 IgG/IgM Rapid Test Kit TBG Biotechnology Corp IgM, IgG S, NP IgM/IgG Sens
 ≥ 15 days: 96.4%,
IgM/IgG Spec: 99.8%

LFIA

BIOTIME SARS‑CoV‑2 IgG/IgM Rapid Qualita‑
tive Test

Xiamen Biotime Biotechnology Co., Ltd IgM, IgG S IgM Sens
0–7 days: 55.1%
8–14 days: 94.1%
 ≥ 15 days: 100%,
IgG Sens
0–7 days: 46.4%
8–14 days: 67.7%
 ≥ 15 days: 100%,
IgM/IgG Spec: 98.5%

LFIA

VIDAS SARS‑CoV‑2 IgG BioMérieux SA IgG S IgG Sens
0–7 days: 47.9%
8–14 days: 100%
 ≥ 15 days: 100%,
IgG Spec: 99.9%

ELFA

VIDAS SARS‑CoV‑2 IgM BioMérieux SA IgM S IgM Sens
0–7 days: 53.8%
8–14 days: 100%
 ≥ 15 days: 100%,
IgG Spec: 99.4%

ELFA

Maverick SARS‑CoV‑2 Multi‑Antigen Serology 
Panel v2

Genalyte, Inc Pan‑Ig S, NP Ig Sen
0–7 days: 66.7%
8–14 days: 90.9%
 ≥ 15 days: 96.1%,
Ig Spec: 97.7%

PRI

xMAP SARS‑CoV‑2 Multi‑Antigen IgG Assay Luminex Corporation IgG S, NP IgG Sens
0–7 days: 71.1%
8–14 days: 71.4%
 ≥ 15 days: 96.2%,
IgG Spec: 100%

FMIA

BioPlex 2200 SARS‑CoV‑2 IgG Bio‑Rad Laboratories IgG S IgG Sens
0–7 days: 81.3%
8–14 days: 96.3%
 ≥ 15 days: 93.9%,
IgG Spec: 99.9%

FIA

FREND COVID‑19 total Ab NanoEntek America, Inc IgM, IgG NP Combined Sens: 96.7%,
Combined Spec: 98.8%

FIA

MosaiQ COVID‑19 Antibody Magazine Quotient Suisse SA Pan‑Ig S Ig Sens
0–7 days: 100%
8–14 days: 100%
 ≥ 15 days: 93%,
Ig Spec: 99.8%

PIA

Elecsys Anti‑SARS‑CoV‑2 Roche Diagnostics, Inc Pan‑Ig NP Ig Sens
0–6 days: 60.2%
7–13 days: 85.3%
 ≥ 14 days: 99.5%,
Ig Spec.: 99.7%

ECLIA
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initiating the transition to postfusion and host membrane 
fusion [14].

Crystal structure of ACE2‑RBD complex
The crystal structure of the RBD in complex with ACE2 
suggests a molecular mechanism for the initial step of 
SARS-CoV-2 infection [188]. Between the antiparallel 
beta-sheet β4 and β7 of the RBD, there is an extended 
insertion that plays an important role influencing the res-
idues of SARS-CoV-2 S protein that bind to ACE2; these 
residues are defined as the RBM and include: K417, Y453, 
Q474, F486, Q498, T500, and N501 (Fig. 1a). The RBDs of 
SARS-CoV-2 and SARS-CoV share 73% sequence similar-
ity (Fig. 1b), and both viruses bind to ACE2 in an essen-
tially identical manner [189, 190]. However, the RBM of 
SARS-CoV only shares 49% and 47% sequence similari-
ties with wild-type and Delta SARS-CoV-2, respectively 
(Fig.  1b). These differences in the RBM sequence mark-
edly increase the ACE2 binding affinity and infectivity 
of SARS-CoV-2 [53, 191–193]. Additionally, previous 
studies have shown that nAbs with overlapping epitopes 
can abolish binding between the RBD and ACE2 [41, 
50, 72, 194]. Because the S protein on the SARS-CoV-2 
membrane is the key viral component mediating recep-
tor-binding and viral-host cell fusion, nAbs that specifi-
cally target the RBD or the RBM have garnered major 
attention as promising tools to block the fusion between 
SARS-CoV-2 and host cells.

Structure of nAb‑S/RBD complexes
To summarize the recently published SARS-CoV-2-nAbs 
(Table 1), we defined three groups based on epitope map-
ping: Abs that (1) directly bind the RBM, (2) bind the 
RBD outside the RBM, or (3) bind S protein outside the 
RBD (Fig. 2). Among the reported structures for Abs in 

complex with SARS-CoV-2 S protein, most show S pro-
tein with 3-RBD down/closed, or 1-RBD up/open and 
2-RBD down/closed. Only after stabilizing S protein with 
mutations do researchers see purified soluble S protein 
trimers with a 2-RBD up/open or all-RBD up/open con-
formation that could possibly lead to a more lethal SARS-
CoV-2 infection [195]. Additionally, the S protein can 
display either RBD upward or downward conformations 
depending on pH. Under physiological conditions (pH 
7.4), about 70% of the S protein RBDs have an upward 
conformation [196]. By lifting the RBD upward, a larger 
binding surface is made available to nAbs.

Using our classification system, the third group of 
nAbs may be effectively used in therapeutic combina-
tions with Abs from the first or second groups. However, 
structural analyses predicting whether nAbs have over-
lapping epitopes showed that S protein has a dynamic 
nature, with movement of the NTD, RBD, S2 domain, 
and the stalk domain in different conformations. Thus, 
it may be insufficient to only examine Ab-RBD struc-
tures or even static images of the S trimer; one must also 
consider and test for possible simultaneous engagement 
of nAbs on S proteins with different combinations of up 
and down RBDs [184, 197]. With these data, researchers 
may sufficiently understand the SARS-CoV-2 S protein-
Ab complexes and proceed to develop novel therapeutic 
measures against SARS-CoV-2.

S protein mutations
As an RNA virus, SARS-CoV-2 has a higher mutation 
rate than typical DNA viruses. Up to now, more than 
4.45 million viral genomes have been sequenced from 
COVID-19-positive patients and uploaded to GISAID 
database (covidcg.org), and hundreds of mutations have 
been identified in S protein (Fig. 4a). Certain amino acid 

Table 4 (continued)

Name Company Source Target Accuracy Method

Elecsys Anti‑SARS‑CoV‑2 S Roche Diagnostics, Inc Pan‑Ig S Ig Sens
0–7 days: 90.6%
8–14 days: 87%
 ≥ 15 days: 96.6%,
Ig Spec.: 100%

ECLIA

New York SARS‑CoV Microsphere Immunoas‑
say for Antibody

Wadsworth Center, New York State Depart‑
ment of Health

Pan‑Ig NP Ig Sens
0–6 days: 17.9%
7–10 days: 31.3%
11–15 days: 48.9%
16–20 days: 49.2%
 > 20 days: 79.3%,
Ig Spec: 99.6%

MIA

CLIA chemiluminescence immunoassay, ECLIA enzyme-enhanced chemiluminescence immunoassay, ELFA enzyme-linked fluorescence assay, FMIA fluorescent 
microsphere immunoassay, FIA fluorescence immunoassay, LFIA lateral flow immunoassay, MIA: magnetic immunoassay, NP nucleoprotein, PIA photometric 
immunoassay, PRI photonic ring immunoassay, S spike protein, Sens sensitivity (positive percent agreement), Spec specificity (negative percent agreement). The 
commercial kits granted EUA are updated based on the FDA. For each type of method, the products are listed in alphabetical order of the company names
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Table 5 Antigen lateral flow assays with EUA from U.S. FDA

LoD limit of detection, NP nucleoprotein, np nasopharyngeal, ns nasal, Sens sensitivity (positive percent agreement), Spec specificity (negative percent agreement). The 
commercial kits granted with EUA are updated on the FDA and FIND websites. The assays are listed in alphabetical order of the company names

Test name Company LoD  (TCID50/ml) Target Device SARS‑CoV‑2 
accuracy 
information

Type of sample

BinaxNOW COVID‑19 Ag 
Card Home Test

Abbott Diagnostics Scar‑
borough, Inc

140.6 NP NAVICA™ Mobile App Sens: 91.7%
Spec: 100%

ns

BinaxNOW COVID‑19 Ag 
Card

Abbott Diagnostics Scar‑
borough, Inc

140.6 NP N/A Sens: 97.1%
Spec: 98.5%

ns

CareStart COVID‑19 Anti‑
gen test

Access Bio, Inc 800 NP N/A Sens: 88.4%
Spec: 100%

np

NIDS® COVID‑19 Antigen 
Rapid Test Kit

ANP Technologies, Inc 311 NP N/A Sens: 95.1%
Spec: 97%

ns

BD Veritor System for 
Rapid Detection of SARS‑
CoV‑2

Becton Dickinson & 
Company

140.0 NP BD Veritor Plus Analyzer Sens: 84%
Spec: 100%

ns

BD Veritor™ At‑Home 
COVID‑19 Test

Becton Dickinson & 
Company

187 NP Scanwell Health App Sens: 84.6%
Spec: 99.8%

ns

CelltrionDiaTrust™ COVID‑
19 Ag Rapid Test

Celltrion USA, Inc 32 NP, RBD N/A Sens: 93.3%
Spec: 99.0%

np

Ellume COVID‑19 Home 
Test

Ellume Limited 6309 NP Ellume COVID‑19 Home 
Test App

Sens: 95%
Spec: 97%

ns

GenBody COVID‑19 Ag GenBody Inc 111 NP N/A Sens: 91.1%
Spec: 100%

np

SCoV‑2 Ag Detect Rapid 
Test

InBios International, Inc 6300 NP N/A Sens: 86.7%
Spec: 100%

ns

iHealth COVID‑19 Antigen 
Rapid Test

iHealth Labs, Inc 20,000 NP N/A Sens: 94.3%
Spec: 98.1%

ns

Clip COVID Rapid Antigen 
Test

Luminostics, Inc 88 NP Clip COVID Rapid Antigen 
Test

Sens: 96.9%
Spec: 100%

ns

InteliSwab COVID‑19 
Rapid Test

OraSure Technologies, Inc 250 NP N/A Sens: 84%
Spec: 98%

ns

InteliSwab COVID‑19 
Rapid Test Pro

OraSure Technologies, Inc 250 NP N/A Sens: 84%
Spec: 98%

ns

Status COVID‑19/Flu Princeton BioMeditech 
Corp

2700 NP N/A Sens: 93.9%
Spec: 100%

np

INDICAID COVID‑19 Rapid 
Antigen Test

PHASE Scientific Interna‑
tional, Ltd

2800 NP N/A Sens: 84.4%
Spec: 96.3%

ns

QIAreach COVID‑19 Rapid 
Antigen

QIAGEN GmbH 50,000 NP QIAreach eHub NP:
Sens: 80.7%
Spec: 98.3%
NS:
Sens: 85%
Spec: 99.1%

np, ns

Sofia 2 SARS Antigen FIA Quidel Corporation 113 NP Sofia 2 Sens: 96.7%
Spec: 100%

np, ns

Sofia 2 Flu + SARS Antigen 
FIA

Quidel Corporation 91.7 NP Sofia 2 Sens: 95.2%
Spec: 100%

np, ns

QuickVue SARS Antigen 
Test

Quidel Corporation 7570 NP N/A Sens: 96.6%
Spec: 99.3%

ns

QuickVue At‑Home 
COVID‑19 Test

Quidel Corporation 19,100 NP N/A Sens: 84.8%
Spec: 99.1%

ns

Sienna‑Clarity COVID‑19 
Antigen Rapid Test Cas‑
sette

Salofa Oy 1250 NP N/A Sens: 87.5%
Spec: 98.9%

np
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Fig. 3  Example of COVID‑19 lateral flow immunoassays (LFIA). a For antigen detection, a sample containing viral antigens is dropped on the 
sample pad and flows by capillary action up to the absorbent pad. The sample with viral N protein (NP) directly binds to the anti‑NP Ab conjugated 
with nanoparticles, such as colloidal gold particles or latex nanocomposites. Then, the nanoparticle‑conjugated immunocomplexes are released 
from the conjugation pad. The free epitope of NP is captured to the second anti‑NP Ab in the test line. Unbound conjugated Abs will be recognized 
by immobilized anti‑mouse IgG in the control line. b For Ab detection, patient serum or plasma specimens are dropped on the sample pad. The 
sample fluid flows through the conjugation pad which contains nanoparticle‑conjugated SARS‑CoV‑2 spike (S) or N proteins to form antigen‑Ab 
immunocomplexes. The immunocomplexes flow to the test line and are then captured by specific isotype immunoglobulins such as IgM and IgG. 
Unbound control nanoparticle‑conjugated mouse IgG is captured by anti‑mouse IgG at the control line
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replacements might change the folding structure or con-
formation of a protein, potentially leading to increased 
virulence or evolutionary advantage. Among S protein 
mutants, those with the D614G point mutation are the 
most frequently identified in patient samples (Fig.  4a, 
Table 6), and this mutant has become the one of the dom-
inant mutations of all new emerging SARS-CoV-2 vari-
ants worldwide (Fig. 4b). The mutated residue is located 
within the S1 domain, situated near the fusion peptide 
of the neighboring protomer (Fig. 1a). Cryo-EM analysis 
of D614G mutant S protein revealed a looser packing of 
the trimer structure and a more open form RBD [195]. 
Compared to the original SARS-CoV-2 S protein, the 
D614G mutation renders the S protein more stable and 
reduces the tendency for premature shape change [186]. 
Although this mutation causes weaker binding between S 
and the ACE2 receptor, the stability afforded by less fre-
quent premature conformation changes makes the virus 
more infectious. Another mutation in S protein, A222V, 
occurred in the dominant D614G strain, and frequently 
appeared in patients from the recent second wave of the 
pandemic in Europe [198]. Currently, no structural analy-
sis or patient data suggests that the protein structure of 
the D614G A222V S protein is different from D614G 
alone, nor is there evidence that the addition of the 
A222V mutation further increases infectivity.

At the beginning of 2021, SARS-CoV-2 lineage B.1.1.7 
(Alpha) received much attention because it is not only 
more transmissible than previous variants, but it also 
leads to increased mortality [199, 200]. Compared to 
patients with the original virus, B.1.1.7 (Alpha)-infected 
patients have higher viral loads and show less effec-
tive clearance by their immune responses [201]. It was 
found that this strain contains multiple mutations in the 
S1 NTD: deletion 69–70, deletion 144; RBM: N501Y; 
CTD: A570D, D614G, P681H; S2 domain: T716I, S982A, 
D1118H [202]. As one of the key residues of the RBD that 
interacts with ACE2 and nAbs (Fig. 4b) [203], mutation 
of N501 has been shown to increase ACE2 receptor affin-
ity [91]. In particular, tyrosine substitution of asparagine 
(N501Y) was shown to not only enhance the binding 
affinity between S protein and ACE2, but it also increases 
virulence in mice [204–206]. In addition, amino acids 
69 and 70 are commonly deleted from the NTD, often 
in combination with other mutations [207, 208], and the 
deletions may allosterically change the S protein confor-
mation [63]. These deletions have been found to decrease 
the viral neutralization by serum from SARS-CoV-2 con-
valescent patients but not by serum from mRNA-1273 
(Moderna)-vaccinated individuals [208, 209]. Another 
important site is the proline at position 681 (P681), 
within the furin cleavage site of S protein that exists 
between the receptor-binding and fusion domains [14]. 

Although it has not been shown to influence viral entry 
or transmission, the P681H mutation causes S protein 
cleavage to occur more efficiently [210].

Additionally, the South Africa lineage (B.1.351, Beta) 
includes three mutations in the RBD: K417N, E484K, and 
N501Y (two are in the RBM: E484K and N501Y); one in 
S1 NTD: D80A; one in S1 CTD: D614G and on in the 
S2 domain: A701V (Fig.  4b) [211]. This variant became 
dominant in the South African populations over the 
course of just a few weeks. Recently, a French research 
group found that the B.1.351 (Beta) variant has a signifi-
cant transmission advantage over B.1.1.7 (Alpha) in some 
European regions [212]. Another variant of concern, 
the P.1 (Gamma) lineage, arose in Brazil and carries 17 
unique amino acid changes, including five mutations in 
the S1 NTD: L18F, T20N, P26S, D138Y, R190S; three in 
the RBD: K417N, E484K, and N501Y (E484K and N501Y 
are in the RBM); one in S1 CTD: D614G; and two in the 
S2 domain: H655Y, T1027I (Fig. 4b) [211]. Both B.1.351 
(Beta) and P.1 (Gamma) variants contain similar muta-
tions in the RBM or RBD of S protein (K417N or K417T, 
E484K, N501Y), which may cause important conforma-
tional changes. The N501Y mutation is the same as the 
B.1.1.7 (Alpha) variant in terms of enhancing S protein 
binding to ACE2 and increasing virulence [204–206]. 
It has been found that the binding and neutralization 
effects of many SARS-CoV-2-nAbs can be abolished by 
the K417N and/or E484K mutations on S protein [206]. 
These effects may be due to structural changes in the 
receptor-binding site that prevent the interaction with 
nAbs. However, the binding sites of CR3022 and S309 are 
distant from K417 and E484, and their neutralizing abili-
ties were unaffected by mutations at these sites [206].

The highly concerning B.1.617.2 (Delta) variant that 
first emerged in India was shown to be even more trans-
missible than the B.1.1.7 (Alpha) variant of SARS-CoV-2 
(Fig. 4c) [213]. From May to July 2021, this variant spread 
to many countries at an alarming pace, not only affect-
ing areas with lower vaccination rates, such as southern 
Africa and Asia, but also causing outbreaks in locations 
with high vaccination rates, such as the United Kin-
dom and North America [213, 214]. B.1.617.2 (Delta) 
carries 11 unique amino acid changes in the S protein. 
The mutations include five in the S1 NTD (T19R, T95I, 
G142D, deletion 156/157, R158G), two in the RBM of 
RBD (L452R and T478K), two in the S1 CTD (D614G 
and P681R) close to the furin cleavage site, and one in 
the S2 domain (D950N) (Fig. 4b) [29]. It has been shown 
that B.1.617.2 (Delta) can totally or partially escape neu-
tralization by many antibodies targeting the RBD or NTD 
of SARS-CoV-2 S protein [215, 216]. Fortunately, some 
antibodies with EUAs, such as REGN10933 (casirivimab), 
REGN10987 (imdevimab), and LY-CoV016 (Etesevimab), 
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retain neutralization abilities against the B.1.617.2 (Delta) 
variant (Fig.  5). Moreover, the newly discovered potent 
Abs, RBD-chAb-1, 15, 28, 45, and 51, also retain neutral-
izing ability against the pseudovirus of B.1.1.7 (Alpha), 
B.1.351 (Beta), P.1 (Gamma), and B.1.617.2 (Delta) line-
ages of SARS-CoV-2 (Fig.  5) [50]. Therefore, the bind-
ing sites of these Abs are promising targets, as they are 
not subject to interference by SARS-CoV-2 mutations 
observed to date. Most recently, the B.1.1.529 (Omi-
cron) variant has emerged in South Africa; it is reported 
to carry a large number of mutations, some of which are 
concerning [28]. In this variant, there are 32 mutations 
in the S protein, and 10 of these are within the RBM: 
N440K, G446S, S477N, T478K, E484A, Q493K, G496S, 
Q498R, N501Y and Y505H (Fig. 4b) [217]. Based on pre-
liminary evidence that suggests an increased risk of rein-
fection with this variant, the WHO designated B.1.1.529 
as a variant of concern on 26 November 2021 [28]. At 
the time of this writing, it is still unknown how effec-
tive current vaccines and nAbs are at protecting against 
the Omicron variant, though the topic is under intense 
investigation.

With regard to nAbs, point mutations or deletions in S 
protein might result in a local or global conformational 
change that could potentially disrupt the Ab epitope. The 
structures of mutated S protein-Ab complexes may reveal 
global conformational changes caused by the mutation 
and also whether the nAb can still bind to S protein in the 
same way as it binds to wild-type S protein. Indeed, the 
cryo-EM structure of D614G mutant S protein revealed 
that the RBD is shifted to a more open form as compared 
to the S protein from the original strain. Such a change in 
the exposed S protein surface might result in resistance 
to some Abs. To overcome or postpone the development 
of drug resistance, some strategies can be considered. 
The first is to map how all amino-acid mutations in 
the RBD affect the binding of nAbs [218]. The second 
approach is to further design escape-resistant Ab cock-
tails, which would consist of Abs that compete for bind-
ing to the same RBD surface but have different escape 
mutations. Indeed, recent publications have successfully 
demonstrated synergistic actions of nAbs in vitro. Baum 
et al. reported a synergistic effect with REGN10987 and 
REGN10933 in vitro, which was one factor allowing this 
combination to enter clinical trials even without animal 
experiments [81]. Despite their use of different neutrali-
zation assays, Wu et  al. and Pinto et  al. both were able 
to show synergistic effects in  vitro for combinations of 
H4 + B38 and S304 + S309, respectively [72, 97]. Zost 
et al. further showed a synergistic effect of Abs in a mouse 
model with adenovirus-induced transient expression of 
human ACE2 in addition to their in  vitro experiments 
[100]. In addition, Su et  al., showed that the cocktail of 

RBD-chAb-25 and 45 not only exhibits synergistic neu-
tralizing ability, but it is also likely to retain therapeutic 
potential for SARS-CoV-2 mutants [50, 75]. In addition, 
some recent studies showed that the accumulation of 
somatic mutations increased the diversity and potency 
of neutralizing Abs against SARS-CoV-2 [219–222]. 
There are also two broadly neutralizing anti-coronavirus 
antibodies, S2X259 and S2H97, which can neutralize 
SARS-CoV-2 variants of several pseudoviruses, including 
B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), and B.1.429 
(Epsilon) [61, 62]. Therefore, the breadth and potency of 
nAbs may potentially be improved by using deep muta-
tional scanning to comprehensively identify RBD muta-
tions that lead to escape from binding by each Ab. Such 
improvements may help to prevent drug-resistant SARS-
CoV-2 escape mutants.

Perspective
As of December 2021, the COVID-19 global pandemic 
has infected more than 280 million people and caused 
over 5.40 million deaths [223]. It is expected that the 
virus will continue to spread and circulate around the 
world for several years. Serious illnesses and deaths have 
been reported in all age groups and demographics. How-
ever, the percentage of COVID-19 patients that become 
hospitalized is less than 10% of active cases, except for 
populations over 65  years of age or with pre-existing 
diseases [224]. Thus, the majority of individuals with 
SARS-CoV-2 infection do not require hospitalization or 
need treatment, and the treatments and policy to con-
trol COVID-19 should focus on limiting transmission to 
reduce the medical burden.

Not only has COVID-19 caused a global health cri-
sis, but it has also profoundly affected the global econ-
omy and financial markets [225]. Although more than 
8.6 billion doses of SARS-CoV-2 vaccines have been 
administered around the world, no vaccine can be 100% 
effective at preventing symptomatic cases of COVID-
19; after vaccination, some people may have no or low 
immune response [226], and others may experience vac-
cine breakthrough infection [227–229]. In addition, the 
uneven worldwide distribution of vaccinations, time-
limited effects of immunization, and the emergence of 
new SARS-CoV-2 variants limit the effectiveness of vac-
cination as a stand-alone strategy to control the pan-
demic [230]. Even after global mass vaccination has been 
achieved, some public health measures, such as testing, 
tracing and isolation of patients still need to be main-
tained. Otherwise, new waves of infection may lead to 
even more morbidity and mortality.

Despite the success of COVID-19 vaccination efforts, 
there is still a need to provide prevention and treatment 
options for certain populations, including those who 
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cannot be vaccinated or who may have an inadequate 
response to vaccination. Neutralizing Abs are likely to be 
critical tools for protecting against SARS-CoV-2 infec-
tion, and have been used successfully for this purpose 
in many animal studies (Table  1); the administration of 
passive nAbs also has preventive and therapeutic effects 
for SARS-CoV-2 infection [55, 57, 94]. To prevent work 
stoppages and alleviate work-related spread of disease, 
it would be beneficial to have reliable methods to pre-
vent COVID-19 over the course of two to three weeks. 
Such methods could be used for short-term protection of 
people who need to work in COVID-19 high-risk areas. 
These populations can potentially be injected with pre-
ventive nAbs in advance of working as usual. There are 
now four Ab-based treatments authorized for emergency 
use in adults and teens with mild or moderate symp-
toms of COVID-19. Among these treatments, bam-
lanivimab from Eli Lily and REGN-COV2 (casirivimab 
and imdevimab) were the second (US$871.2 million) and 
fifth ($185.7 million) best-selling COVID-19 vaccines 
and drugs of 2020 [231]. In the first half of 2021, bam-
lanivimab and etesevimab (Eli Lily) and REGN-COV2 
were still among the top 10 selling drugs of COVID-19, 
respectively earning US$959.1 million and $4.156 billion 
[88]. Analysts have forecasted full-year sales of about $7.0 

billion for REGN-COV2 in 2021 [88, 232]. These sales 
figures suggest that more and more people and doctors 
believe nAbs have benefits in the prevention and treat-
ment of COVID-19.

As the key determinant of host membrane fusion, 
S protein has become a major subject of research on 
SARS-CoV-2 infection mechanisms and a prime tar-
get for therapeutic Ab development. As one of only two 
exposed membrane proteins on SARS-CoV-2, it is also 
a predominant immunogen for the human immune sys-
tem. A large scale survey of COVID-19 patient serum 
samples revealed that 96% to 98% of patient Abs rec-
ognize S protein [233], and 76% recognize the RBD in 
particular [234]. However, RNA viruses exhibit high 
mutation frequencies in the human body, and an increas-
ing list of SARS-CoV-2 variants have been detected. To 
date, there have been hundreds of mutations identified in 
S protein (Fig. 4), and many are rapidly spreading in the 
population. Some of these point mutations might trigger 
local or global protein structure changes that enhance 
virulence or cause loss of efficacy for vaccines and nAbs 
[27, 53, 192, 235]. Therefore, Ab combination/cocktail 
therapies should be considered as a strategy to prevent 
the emergence of SARS-CoV-2 escape mutants. In addi-
tion to the REGN-COV2 cocktail Abs (casirivimab and 

Table 6 Top 20 identified global SARS‑CoV‑2 spike protein mutations

S1 S1 subdomain, NTD N-terminal domain, RBD receptor-binding domain, RBM receptor-binding motif, CTD C-terminal domain, S2 subdomain 2. The data for 
4,450,473 sequences from the COVID-19 started to November 22, 2021 were collected from GISAID and COVID CG

Mutant amino acid position Domain of S protein Number of sequences 
detected

Percentage in total cases 
(%)

Latest month 
increased 
(2021/10/22‑11/22)

D614G S1 CTD 4,389,691 96.47 5.0

L452R RBM 2,370,119 52.09 9.6

P681R S1 CTD 2,330,791 51.22 9.9

T478K RBM 2,315,734 50.89 9.9

T19R S1 NTD 2,311,542 50.80 9.9

D950N S2 2,230,596 49.02 10.1

EFR156G S1 NTD 2,178,419 47.87 10.3

G142D S1 NTD 1,443,479 31.72 13.7

N501Y RBM 1,103,940 24.26 0.0

P681H S1 CTD 1,038,019 22.81 0.0

HV69‑ S1 NTD 980,548 21.55 0.0

T716I S2 978,901 21.51 0.0

A570D S1 CTD 972,330 21.37 0.0

S982A S2 971,209 21.34 0.0

T95I S1 NTD 970,839 21.33 0.0

D1118H S2 970,596 21.33 1.0

Y144‑ S1 NTD 960,965 21.12 13.3

A222V S1 NTD 395,936 8.70 6.5

E484K RBM 192,337 4.23 0.0

L18F S1 NTD 190,391 4.18 0.5
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imdevimab) [81], the combination treatment of bam-
lanivimab with etesevimab also reduced SARS-CoV-2 
log viral load at day 11 in patients with mild to moder-
ate COVID-19 [94]. Although it has been reported that 
casirivimab, bamlanivimab, and etesevimab lose neutral-
izing activity against B 1.351 (Alpha), and P.1 (Gamma) 
variants of SARS-CoV-2 [53, 54], the cocktails of Abs 
with non-overlapping epitopes on the RBD have been 
shown to exhibit great efficacy for neutralizing SARS-
CoV-2 mutant escape variants [50, 76, 85, 236]. Contin-
ual development of potent nAbs against new variants of 
SARS-CoV-2 is therefore urgent and essential. Although 
no signs of ADE have been reported in human clini-
cal trials, Liu et  al. recently reported some specific Abs 
binding to the NTD of the open RBD might enhance 
virus infectivity independent of the Fc-receptor [36]. This 
observation is noteworthy because it means that infected 
or vaccinated people who generate such Abs may have a 
higher risk of future virus infection. Therefore, cocktails 
of Abs targeting multiple non-overlapping and avoiding 
infectivity-enhancing epitopes are a promising avenue for 
the development of COVID-19 therapies.

To date, enormous amounts of resources have been 
dedicated to studies focused on understanding the 
SARS-CoV-2 S protein and its RBD, to develop new tools 
to fight COVID-19. Many potent neutralizing mAbs have 
been shown to effectively inhibit virus binding to the host 
receptor, hACE2, both in vitro and in vivo. Cocktails of 
these neutralizing mAbs directed against non-compet-
ing epitopes are likely to improve the efficacy of Ab-
based treatments while also preventing the emergence 
of SARS-CoV-2 escape mutants. Along with the ongoing 
vaccination efforts, easy and cheap detection systems are 
urgently needed to control disease spread, especially to 
control the unexpectedly rapid spread of escaped mutant 
viruses [237]. Antigen and Ab detection tests are prom-
ising candidates to fill this need and are widely used in 
many countries, giving the products an enormous mar-
ket value [238]. The use of these products can represent 
a major clinical cost-saving practice, due to their low 
pricing, convenient and timely detection of infectious 
diseases with limited or no symptoms, acceleration of 
decisions regarding treatment or isolation, and reduction 
of other complications [239]. However, there has never 
been such a large-scale demand for these types of prod-
ucts, so the production and supply logistics will be key 

Fig. 5 Neutralization of SARS‑CoV‑2 variants by therapeutic mAbs. The neutralization abilities of therapeutic mAbs against wild‑type, D614G and 
newly emerged SARS‑CoV‑2 variants, including B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), B.1.427 and B.1.429 (Epsilon), B.1.526 (Iota), B.1.617.1 
(Kappa), and B.1.617.2 (Delta). Symbols and colors indicate the range of half maximal inhibitory concentration  (IC50) values toward authentic 
SARS‑CoV‑2 virus. +++ with blue,  IC50 < 10 ng/ml; ++ with light blue,  IC50 = 10–100 ng/ml; + with white,  IC50 = 100–1000 ng/ml; —,  IC50 with 
red > 1000 ng/ml; ND with grey, no determined; #, preliminary results reported on the website of Celltrion Healthcare Co., Ltd.; *, the range of 
 IC50 values toward pseudotype SARS‑CoV‑2 virus. RBD, receptor‑binding domain; RBM, receptor‑binding motif. The mutant amino acids in RBD of 
each SARS‑CoV‑2 spike protein are shown as indicated
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problems that need to be resolved. Assuredly, interna-
tional partnerships for manufacturing and distribution, 
as well as new manufacturing platforms, will be required 
to address this pressing global need.

Conclusions
The COVID-19 pandemic is an ongoing global disaster 
and one of the leading causes of death in the past year, 
a distinction that is unprecedented in recent human 
history [240]. Fortunately, collaborative efforts within 
the worldwide scientific community have allowed the 
extraordinarily rapid development and authorization 
of vaccines and nAbs against COVID-19. These suc-
cessful efforts have greatly benefited from tremendous 
financial support by the governments of developed 
countries and the solid R&D and manufacturing 
capacities of pharmaceutical companies [241–244]. 
For example, the U.S. government has pre-ordered 100 
million doses of Pfizer mRNA vaccine, BNT162b2, at a 
price of US$1.95 billion as early on July 22, 2020, and 
after one year, it has already ordered a total of 500 mil-
lion doses of Pfizer mRNA vaccine. Furthermore, the 
U.S. government also purchased 100 million doses of 
mRNA-1273 of Moderna mRNA vaccine for US$2.48 
billion as early on August 11, 2020, and up to July 2021, 
it reached to a total of 500 million doses of mRNA-
1273 ordered by the U.S. government. As of February 
2021, Sanofi with GlaxoSmithKline and Novavax had 
together received about US$2.1 billion from public and 
non-profit funding sources for vaccine development. 
Around the world, funding agencies have already paid 
over US$10 billion to vaccine developers [244]. In 
addition, the developers of therapeutic Abs, such as 
Regeneron, Eli Lilly and AstraZeneca, have received 
more than US$100 million for the production of thera-
peutic Abs against COVID-19 [90, 107, 245]. These 
extraordinary investments are one of the main reasons 
that hope for an end to the pandemic is beginning to 
shine in many countries around the world. However, 
the widespread emergence of highly communica-
ble variants, such as B.1.617.2 (Delta) and B.1.1.529 
(Omicron), and some uncontrolled outbreaks mean 
that much work remains to be done toward devel-
oping effective next-generation vaccines and medi-
cines including therapeutic Abs for COVID-19. The 
advance purchase of therapeutic Abs by governments 
will speed the progress of pharmaceutical companies 
in obtaining authorizations or licensure from the FDA. 
Then, the clinical deployment of these therapeutic 
Abs can provide crucial tools for combatting SARS-
CoV-2. As the emergence of variant lineages is now 
one of the most difficult obstacles to controlling the 
COVID-19 pandemic, the next generation of vaccines 

and therapeutic Abs must target epitopes on variants. 
It is especially important to predict and target epitopes 
with high potential to alter the transmission or infec-
tivity of the virus, including those in recent or future 
emergent variants of SARS-CoV-2.
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