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Abstract

This paper applies the framework of controlled active vision 1o the problem of monocular full
3-D robotic visual king (thres and three rotations). In paticulsr, it
d full 3-D tracking of & moving target by a monocular hand-eye system. A single
camery is used since we bel that the tracking motion of the lar hand-eye system
can be wed o creme virtual sterco images. Alimpledlpﬁveldulnlilpmpadlndtho
relative disiance of the target from the is ialhy The number of
pummrhnmunbou&uudon-hnohmhiulunhh‘hnfnﬂbhmhho
of the sch M , the strong coupling of the jonal and

jonal degrees of freed hvumdm-mmmmbnnnchn;dlhe
object. The limitations of our approsch are di d and the rosults from the spplication of
our scheme to the TROIKABOT systexn (s set of thwes PUMASS0’s manipulators) are

presented.

1. Introduction

This paper deals with the problem of 3-D robotic visual tracking of
targets whose motion consists of 3-D translational and rotaticral com-
ponents. The visual tracking is accomplished through a camera
mourtted on the robot that computer the displacements Of several
features that belong to the target. These visual measurements are fed to
an adaptive control algorithm ttet provides the inputs t0 1 cartesian
robot control scheme after each measurement Numerical issues related
to the strong coupling of the rotational and translational degrees of
freedom are treated in & way that guarantees tracking of te. object A
single camera Is used instead of a binocular system because one of our
naln objectives & to demonstrate that relatively unsophisticated off-
the-self hardware can be used to solve the 3-Dacking problem if the
proper modeling and controlissues are addressed.

The major differences of our algorithms from similar research efforts
[1,2,3,4,5] are the use of a single moving camera, the ability to
compensate for inaccurate cameraparameters and unknown depth (dis-
tance of the target with respect to the camera frame), the full 3-D
tracking ability, the Srall number of parameters that are estimated
on-lire, and the integraton OF the characteristics of the MOt detection
algorithm into the mathematical model for tracking. These differences
allow the use of the proposed algorithmsin poory calizrated spaces Or
in spaces that am difficult to calibraze, such as wderw aier, space, and
nuclear dtes. This paper extends our previous work[6, 7, 8] in
controlied active vision by allowing tracking Of full 3-D motion (trans-
lations and rotations) and by ducing the number of parameters that
should be estimated on-line. BExperimental results arc presented to
show the strengths and the weaknesses of the proposed approach The
experiments am performed on the TROIKABOT multi-robotic systam
which operates under tte CHIMERA 11 real+ime operating Systam. The
TROIKABQOT system consists of three PUMAS60’s. One PUMA
carries the camerawhile another holds the target.

The orgenization of 1S paper is as folloas: Section 2 describes the
nmatharatical framework wnder which our problem is solved. The
control, filtering, and estimation strategies are discussed in Section 3.
The experimental results are presented in Section 4. Finally, in Section
5, the papa is summarized,

2. Modeling of the 3-D Robotic Visual Tracking
Problem
This section descrites the mathematical moceling of our problem. W e
assume a pinhole camera model with a frame R, placed at the focal
point of the lens. Consider a target with a feature located a a point P
with coordinates X, ,Y,,Z) inR, Moreover, the cameramoves with a
translational veIOCity T=(T,.T, ,THT and with an angular velecity
R=(R,, R RQ with respect toLb-c camera frame R,. Since the camera
and the target are moving sinultareasly. we can write (using the
approach described in [9]) the following equations for one feature point
(d is a dalay factor (¢  {1,2, ...}), fis the focal length of the
camers, 5,5, amn the dimensions (mm/pixel) of the carera™s pixels,
(x.y) are the'image coordinates of the projection of the feature point P
0N the image plane, Tis the sampling period, ¢! & the backward shift
querator, and #, (£) and v, (k) are the components of the optical flow
induced a the tine instant & by the motion of the object):
Xkt 1) =Ap xp () +Bgp(k—d +1)uk~d+1)+E, (K)d, )

+Hp (6) vg (k) M

where” A (=Hg(®)=L, E.()=TL, x () e R?, d (k)¢ R,
u(k) € R and vg (k) € R% The matix B, (k) € R2*Sis:
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The vector xp(®)=(x(k),y®)T is the state vector,
u®=T,%),T, (k), T,(B),R (k), R ).R, (%)Y is the control input
vector, dg (k)= (u (l:).v (k))T is lhe exogenous deterministic distur-
bances vector, and vy (K)=(v,(k),v, (k)T is the white noise vector.

:‘hc measurement vector Yg (k) =(y, (k) Yy (6))T for this feature is given
y:

Yp (k) =Cpxp (k) + W (k) 0)]
where  wg (k) =(w, (6), w, &) is a white noise vector
(wp (k) ~ N(0,W)) and Cp= 12. The measurement vector is computed
using the SSD algorithm which is described in [9].

“The symbo! I, denotes the identity matrix of order 2.
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One featurs point is not enough to determine the control input vector
u (K). The reason is that the number of system outputs is less than the
number of control inputs. ThUS, we ars obliged to consider more points
in our model. In order to solve for the control input that will be sent to
the manipulator, it can be shown that at least three non-collinear feature
points arc needed. The reason for the non-collinearity requirement is
investigatedin [lO].

The state-space model forM (Mz 3) feature points can be written as:

x(kt)=A x (IBEk-d+Huk—-d+1)+E@AE+HKv(K) @)
where A =H®=L,, E®=TL,. xk e R, dk)  R®¥,
and v (k) E R*M., The matrix B (k) £ R2M*Ss;

B, (¥
B(k) =

BF(M) k)

The superscript () denotes each one of the featuwrs points
e {Q), ....00D. The vector x® =M ®&),» D), ...,
x®0 (k),y k)7 is the new state vector. and v(k)=( M @),
vY“) ®,... v¥® ,vy‘”) &) is the new white noise vector. The
new measurement vector y (k) =@, " (), yy‘" @, ...5M®,
)ry("”’ &NT forM (M2 3) feanures is given by:

y (=CX K +w (K) @
where W (k) =(w, (k),wy“) ®, ... ,wx(m (3] ,w’(‘” )7 is the new
white noise vector (w (k) =N(0,W)) and C =L ,,

We can combine quations (3)-(4) into a MIMO (Multi-Input Mult-
Output) model:

(1-2¢4¢ )y k=B k-Du(C- -B(k-d-Duk-d-1)tn) (5
where b (k) is the white noise vector, The new white noise veator o (K)
cotresponds to the measurement noise, to the modeling errors, and to
the noise introduced by inaccurate robot control. If we assume
B(k-d)y=B (k-4d-1), then (5) can be rewritten as a MIMO ARX
(AuwtoRegressive with auxiliary input) model. This model consists of
2M MISO (Multi-Input Single-Output) ARX models. In addition, the
new model's equationis:

1-2¢714¢2)y(k)=B (k—~d) Au (k~d) +n (k) ®)
where du (k - d) isdefined a5:
Aultk-d)=u(t-d) ~u(k-d-1). ()

In the next section, we present the control and estimation techniques for
the 3-Dyvisual tracking problem.

3. Control and Estimation

The control objective is to move the manipulator in a such a way that
the projections of the selected features on the image plane move to
some desired positions ar stay at their desired positions while the target
is moving. ThiS section examines the control strategies tet realize this
motion and the estimation scheme used to estimate the unknown
parameters Of the model. Some implementation issues are also dis-
cussed.

Adaptive control techniques can be used for visual servoing around a
moving object when the depth of the object is not precisely known.
Adaptive control techniques are used for the recovery of the com-
ponents of the translational and rotational velocity vectors, T (k) and
R (k), respectively, and are based on the estimated and not the actual
values of the system's parameters, This approach is called certainty
equivalence adaptive control [11]. A large number of algorithms can be
generated depending on which parameter estimation scheme is used and
which control law is chosen. The rest of this section is devoted to a
detailed description of the control and estimation schemes.

3.1. Selection of an Efficient Control Law
The control objective is to taek the motion of certain features of the
target and place their projections on the image plane at some desired
positions. The tracking of the features’ projections is realized by an
appropriate motion of the robot<amera system. A simple control law
can be derived by the minimization of a cost function that includes the
feature positional error, the control signal. and the change in the control
signal:
Jkt+D)=ly(k+d) -y (k+D QLY (k+d)~y" (k+d))
+uT (b Lu (k) +au” (L AU K) . @®

The vecter y' (k) represents the desired positions of the projections of
the M (M 2 3) features on the image plane. In our experiments, the
vector ¥° (k) is known a priori and is constant over time. By placing
waghts on the control signal. the change in the control signal, and the
error, we can choose how much emphasis the controller is to place on
minimizing each of the three quantities. Including the control signal and
the change in the control signal in the cost function described by (8)
¢causes the control input signal to be bounded and feasible. This is in
agreement With the structural and operational characteristics of the
robotic system and the vision algoritim. A robotic system cannot track
signals tek command large changes in the features' image projections
during the sampling interval T. In addition. our optical flow algorithm
cannot detect displacements larger than 28 pixels per sampling interval
T. The term Au (k)L Au (k) of the cost function (8) intreduces an
integral term in the control law. ThiS term is desirable since our
mathematical model () has a deterministic disturbances component.
Qe protlem of the introduction of an integral term in the control law is
the possible saturation of the control inputs. In order to compensate for
this problem, one should turn off the integrator whenever & saturation of
the control inputs ocours.

The control law is derived fram the minimization of the cost function
(8) by taking the derivative of J (k +d) with respect to the vector u (k)
and combining the resulting exprassion with the system model equation
(8). The resultdng control law is:

u®=-BTEQB®+L+LJI'BT® Q{ {[d+Dy®

~y ktd)-dy(k-1)) -dB (k=) uk—d)
m=d~1
+ D, Blk-muGk-m) - Lugk-1)]. O]

Feddema and L:ES] proposed a similar control law for the robotic
visual tracking problem. The main difference of our control law is that,
instead of imposing constraints on the optical flow induced by the
camera motion (imags plane space). we Impose constraints on the
components of u (k) of the required camera tracking motion (camera
frame space). In this way, we directly control the megnitudes of the
control signal and the contrel signal change. This fact results in a
control law that is more robust and feasible then the one proposed in
[3). The design parameters in our control law s the elements Of the
matrices Q,L, and L, Often, we set L or L, to zero. Inmostofthe
experiments, we set L=0and L, = 0 in order to achieve a fast and
bounded response. If the matrix B (k) is full rak then the matrix
BT () QB (k) +L +L,] is invertible. The matrix B (k) is singular when
the M feature points are collinear [3, 10). An extensive study of other
conditionswhich make B (k) singularcan be found in {5},

By selecting L, L, and Q,om can place more or less emphasis on the
control input, the control input change, and the servoing error. There is
no standard procedr= for the selection of the elements of these
matrices. One techniqueis the optimization approach [12].



If we want 1 include the noise of our model and the inaccuracy of the
B (K)matrix in oUT control Baw. the control objective (8) becomes:

Jk+d)=E(ly k +d) -y (k+DTQy k +d)-y" (k +))

+ul k) Lu k) +AuT () Ly Av () F,) 0)
where the symbol E(X) denotes the expected value of the random
variable X and F, is the sigma algebra generated by the past messure-
ments and the past contral inputs up totime & The new control lawis:

u®=-BT® QB +L+L I BT ®Q ({(d+1)y(K)

~y (k+d)-dy (k=1)) - dB k—d)u (k—2)
m=d~1
+ ; B(k-m)u(k-m) })~L,uk-1)] (11
1
where B (K)is the estimated value of the matrix B (). The matrix B®
is dependent on the esimated values of the features’ depth Z,(/)(k)

e (D, ....(M)) and the coordinates Of the features' image
projections. In particular, the matrdx B (k) is defined as follows:

Bg D)
Bk =
A
B (k)
where B£? (K) isc
R G2 A CT S ~rr-atme) yms
XA L) zm V4 7, 7
T .
S yPm LeoY%mgt -atmyUms -xAn,
R ACIE AT e, I4 a)

In the experiments. the delay factor d is 2, so the control law (11)
becomes:

w(l=—(BT W) QB W +L+L) BT () Q{ (3y W~y (& +2)
“2yk-1} - 21 (k=D v ®k-2)+B &= Huk-1)}-L, v k-1)] . (12)

3.2. Estimation of the Depth Related Parameters

The estimation of the depth (Z{/ (k)) related parameters can be done in
multiple ways. In this section, we present some of these algorithms. If
the inverse of (s, Z{P (k) /) is defined as § (P k), then, equations (1)
and (2)can be rewritten &

¥e'? =276 (k=) - ¢ P k-2 4 D - ) B (k-

AT (k~d) + B§P (k= d) AR (k—d) +nfD (k)  (13)
where the vector n{# (K)is a gaussian noise vector With zero mean and
covariance N () (k) (g (k) = N(0,N D 1)), and BSD (), B (k)
are given by: ' !

P @ys,
-1 0
B’(J) k=T ! ,
-, y (9] (k) s,
0 —
s, f
2wy P, LB YD Eys,
f Is, 5
BF(D k=T R
r'+oPms)? —xPmyrms,  -xPWs,
7, 7 5

and

ATE=T®-Tk-1), ARK=R K-RK-1).
By defining Auf (k) and Au(? (k) as AufP (k) =B (k) AT (k) and
AuD (k) = B,(lﬁ (k) AR (K), equation (13) is transformed into:
¥ P () = 2y D (k= 1)~y 2 (k=D +E D (k- &) Bu, D (k - )

+8u8D (k- d) +n P (k) . (14)

The final transformation of equation (14) is done by using the vector
Ay (k) which is defined as:

AV P W=y, P 1) =2y, P (k=1)+ 3P (k~2) - Au (D (k-d).
The new form of the equation (14)is:

AyeD () =5 P (k—d) au, P (k~d) +ngP (k). as
The vectors Ayed (k) and Au (D (k-d) are known at every time
instant, while the scalar § (7 (k) is continuously estimated. It is assumed
thet an initial estinate (;’(J) ©) of {P(0) is given and p?(0)
=E([§ 2 ©0)-§ P @)} is  positive scalar p,. The term p‘? (0) can
be interpreted as a measure Of the confidence that We havein the initial
estimate § {(?(0). Accurate knowledge of the scalar § {2 (k) cor-
responds to a stalll covariance scalar p,. In our examples, N D@isa

constant predefined matrix. 10 simplify the notation h(k) is used
instead of Au, @ ().

The estimation equations are {13]:
£ ow=E P x-1) @)
PAER =D k-1)+sDP (k- 1) an
PO®R=[{PP®)+bTR-DIND®)ThE-DI g5
kT &) ="p P (k)b (k~d) (NP (b)) (19)

LR 0=CPK+kT W By 2 W-EP W E&-a] )
where s() (k) is a covariance scalar which corresponds to the white
noise that characterizes the transition between the states, the superscript
{(-) denotes the predicted value Of a variable, and the superscript (+)
denotes its updated value The depth related parameter § (A (k) is a
tme-varying variable since the target moves in 3D and the camera
translates along its optical axis and rotates along the X and Y axis. The
estimation scheme of equations (16)-(20) can compensate for the time-
varying nature of <,() (k) because it is designed under the assumption
that the estimated variable undergoes a random change. One problem is
to keep the covariance scalar p<A (6) firte. Solutions for this can pe
found in[11), In addition. we have implemented other estimation
techniques which deal with time-varying parameters [9). In addition to
the previous technigues, we propose the Use of a more accurate form for
the state update of § (P (k). This form is based on the equation (com-
putational delays are included):

ZO®k+1) = ZP W) +AZP () +q74* ' AZLD (K) en

where AZ (P (k) is defined as:
z‘()) (k)
AZD W=~ (T,B) + ROy P ®) 1R W=D B s1=7—IT

and AZO“D (k) is the change in depth induced by the motion of the target.
It is assumed that AZ{P (k) does not change significantly between two
time instances. The term AZ{) (k) is created by the motion of the
camera and is derived by an algebraic computation described in [9).
Equation (21) provides an approximation of the change in the feature's
depth Z{P (k) between two tine instances given the feature's image
coordinates and the camera motion. This equation can be rewritten as:

Z () = 221D (k—-1)~ZP (k- 2) +AZLP (k~d) - AZLD (k~d-1). @2



By inverting the terms of the previous equation (22), the following
equation is derived:

g(/) *-1
L2 =P k-1/{2- m
3
+§’(/)(k—1)?'[A'ZL” (k=d)— &ZYP (k- d-D))) @3

where

s
- ¢ )] —_—
AZP (R == (T, W +IR, Wy k) s =R WD (k) s, ) o L T

If we stbstitute the values of §{P (k) with their esimates, (23) will be
transformed into:

; *c())(k_]_)
-t =Dk - —_—
L =TI h-D1{2— %=
3
U Rz 62D k=~ *4ZP (k-d- D]} @4

The term *aZ2{? (K)is derived from AZ5P (K) by subsruting &P (k)
with *¢{? (K). In addition, equation (17) should be modified to incor-
porate the new equation for the updates of states. These estimation
schemes require the estimation of one parameter per feature-point and
therefore, the real-dme implementation of the estimation scheme is
feasible. In addition, we have implemented an estimation scheme tret
computes two parameters per feature point. ThiS scheme is a variation
of the previous estimation scheme and separately ¢stimates the depth
related parameters (f/ (s, Z{? ) and (f/ (s, Z{P () inthe X and Y
directions on the image plane. In theory, this formulationcan estimate
the depth related paramsters more accurately.

The matrices B (K)and Bp{? (K)are transformed and decomposed as
| 14
follows:

x (1)) s,
n,:ﬂ(k) =7 (4 0 7
-, Ym(k):,
B,,_U)(k) =T | 0 5 7 )
DwyPms,  —f-Pm? Y PMs,
B,:D k=T 1 7 7a ;.
7+0Pws)  —xPhyPms,  ~xP@)s,
B,,:f’(k):r { T, T 5,

The subscript i denotes the X or Y direction. The estimation equations
for each feature point art (i=1,2):

£ L W= P (k-1) 5)
PRy =*pfD (k- 1)+s{P (k- 1) 26)
PP W= WY +h,Uk=d) (AP h k=T (27)
x;: 00 ="p{D (k) b, (k- d) (n{D ()}~ (28)

P W= LW+ QORI O-EPWRK-a] (29
where & y(? (K)and 4, (k) denote the X or Y components of the vectors
Aye O (K)and h (K), respectively, and é (M (k) is the estimated value of
either the term (#/ (s, Z{? (k))) ortheterm ¢/, ZP (k). Inpractice,
the experimental results from the |mplementat|on of this estimation
scheme prove to be comparable with the results of the first estimation
scheme. Some researchers [3] propose the use of an adaptive scheme
thet estimates dl the elements of the block matix B (K) o+lire. This
approachis computationally expensive and not necsssary,

3.3. Implementation Issues and Robot Controllers

In the experiments, we are forced to bound the input signals in order to
avoid saturation of the actuators. After the computaton of the trans-
lational T k)= T, T &).T, ()T and rotational velocity vectors
R®=(R, (K).R, (K., (k))f we Limit the input Signals by performing
several steps tha arc described in [9]. Thus. the vectors T (K)and R (k)
are transformed to T~ (K)and R” (K), respectively

After computing the translational velocity vector T“(K)and the rota-
tional velocity vector R* (K)with respect to the camera frame R, we
transform it to the end-effector frame R, with the use of the transfor-
mation “T,. The transformed signals m fed to the robot controller of
the PUMA which acts as the tracker. We use the Lhiimatdan controllers
which are interfaced to our system through multiple Ironics I'V-3230
CPU boards. The Alter lire is used and the desired trajectory in
cartesian space is updated every 28ms. W € arc currently in the process
of substituting the Unimation controlers with Trident boards which can
be programmed in C. Finally, the whole system runs under the
CHIMERA I real-time operating system [14]. The hardware configura-
tion ofthe TROIKABOT system is described in {9].

The next section describes the experimental results of our algorithmson
the TROIKABOT multi-robotic system.

4. Experimental Results

The algorithms have been verified by perforrning a number of experi-
ments on the TROIKABOT rohotic system [15). A camera is mounted
on the end-effector of one of the PUMAs which acts as the tracker. The
other PUMA holds a target and moves it accordingly. The real images
are 492x610 and art quantized to 256 gray levels. The camera’s pixel
dimensions are; 5,=0.01 1mm/pixel and sy:0.0Bmmipixel. The focal
length of the camera is 16mm and the objects move with full 3-D
motion. Txe initial depth of the objects’ center of mass with respect to
the camera frame Z, is 290mm. The maximum permissible trans-
lational velocity OF the end-¢ffector OF the hacking rdwt is 10cm/sec
and each of the components of the end-effector’s rotational velocity
(dl. pitch, yaw) is not allowed to exceed 0.3rad/sec. The objectiveis to
move the manipulatorso that the image projections of certain features
of the moving object move to some desired image positions or stay at
their initial positions. The objects used in the servoing examples are
books, percils, or any item with distinct features. The user uses the
mouse to select features of the doject to be used in tracking. Then, the
system evaluates on-line the quality of the features, based on the
confidence measures described in [6). The same operation can be done
automatically by a computer process that runs once and nseds 2 or 3
minutes, depending on the size of the interest operators which are used.
The four best features are selected and used for the robotic visual
servoing task. The size of windows is 8x8 while the search area is
64x64. The maximum displacement per sampling period T that can be
detected is 28 pixels. The SSD allgxittin has been implemented by
usingthe pyramidal structure described in [@) An interesting solution to
the antomatic detection and selection of point features has been
proposed by Tomasi and Kanade (16]. We arc currently investigating
the potental of this approach as an altemative to our algorithms for the
selection Of the best featurepoints.

Experimental results are presented in Figures 1 through 6. The gains
for the controllers are Q =091, L=0, and L, =diag(0.04,0.04,1.0,
5x10%,5x10%,5x10%). The diagonal elements of the Q, L, and L,
can vary by a factor of between 2 and 3 and the system will continue to
track suecessfully. The delay factor d is 2. The vector y* (k) is given
every instant of time k by the dation y* (k) =y (0). Thisimplies that the
objective OF our scheme is to kesp the features at their initial positions
during the motion of the target.



The computation of the (BT (K)QB (k)+L +L 7! marix is doneon a
Heurikon 68030 board. The technique used is the same as the one
described in [10]. The total computaton time (image processing and
control calculations) of T (K)and R’ (K) is approximately 220 ms. The
knowledge Of the depth Z, is assumed to be inaccurate. For all the

features, § P (0) is initialized 10 3.63 and p ¥ (0) i 0.1.

In the example depicted in Figurss 1 through 6.the performance of the
control and estimation algorithms is illustrated. The target’s trajectory
is plotted with respect to the frame R, which is attached to the target &
the time irstant k =0. At the same instant, the Z axis ofthe R, frameis
aligned with the optical axis of the camera The esimation scheme
which is used estimates one parameter per feature point, thus, four
parameters @€ estimated in total. The forgetting factor is 0.99. The
measured deviations of the features firam their desired positions eppear
noisy. The fact that the errors on the image plane are bounded
guarantees that the errors arc within the search range of the SSD
algorithm, thus. the SSD algorithm can accurately measure the features’
positions. The errors reach @ maximum value when the target changes
its trajectory sharply. The control and estimation algorithms compen-
sate quickly and after 10 seconds the errors arc reduced. The error In
the Z direction is large. The reason is that the noisy measurements, the
camera geometry, and the experimental setup make the accurate com-
putation of the tracking motion in the Z direction (along the optical axis
of the camera) difficult. Another iateresting observation is tat there is
a small error in pitch even though there is no pitch carponentin the
target’s motion. This phenomenon OOOUFS since then is a strong cou-
pling between the pitch component and the X translational component
of the tracking motion The same is true for the yaw component and the
Y translational component of the tracking motion. In other words, the
tracking system tries to trak X translational or Y translational motion
of tte target with the rotarional degrees of freedom, R, Or R,, respec-
tively.  Numerically, this implies that the conditio? number ¢
(€ =0 e/ O @ 1atio of singular values) of the matrix B (k) is large.
Appropriate selection of the feature points and the relative position of
the camera with respect to the target can minimize the condition
number. If the relarve distance of the camera (assuming the same focal
length for the camera) from the target is more than 2 netars, the
condition number becomes too large and tracking is impossible. In
addition, full tracking is impossible when the four feature points arc
close 0 each other, or if they arc very close to the piercing point.

5. Conclusions

In thispapa, we examined the problem of robotic visual tracking of full
3-D motion (thres translations and three rotations) by a monocular
robotic tracker. A camera is mounted on the end-effector of the robotic
device and provides visual information about the motion of the target.
The detection of motion is based on an optical Flowtechnique called
Sum-of-Squared Differences (SSD) optical flow. TS algorithm, which
has been implemented in a pyramidal scheme for computational ef-
ficiency, provides the displacement vector of certain selected feanures
of the target. Under the general guidelines of the controlled active
vision framework which was introduced in [7], we combine these
measurements with appropriate control and estimation techmiques.
Adaptive control techniques arc introduced to compensate Tor uncer-
tainties N the model, unknown depth related parameters, and computa
tional delays. The computational burden IS reduced by estimating only
one or two parameters per feature point. Our algorithms do not require
accurate calibration ofthe workspace, and thus, can be efficiently used
in assembly lines in order to track moving items. In addition, these
algorithms make possible autonomous satellite docking and recovery.
The algorithms were extensively tested in several experiments which

wen performed on the TROIKABOT multi-robotic system. The real-
dme experiments show the feasility and efficiency of our algorithms.
In gensral, these algorithms show tret monocular vision in conjunction
with efficient motion of the vision sensor and adaptive control al-
gorithms can be a viable ajtenative © standard stereo vision tech-
niques.

Some of the areas for future research which we arc currently consider-
ing include the use of more elaborate MIMO adaptive control tech-
niques than those that have been implemented, the computational im-
provement of our algorithms. and the introduction of algorittms for
using edges as the source OF motion information. We are currently
pusuing the use of “makes Yor contour servoing, the application of
adaptive algorithms to model-besed visual tracking and servoing, and
the derivation of depth maps ttrough appropriate motion of the robot-
camera System in conjunction with simple adaptive filtering techniques.
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Figure 1: Translational and rotational trajectories of the moving object with
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Figure 2: Translational and rotational tracking errors in the previous example

(experimental).
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3 Devistion of featre A from its desired position in the previous
example (experimental).

5 8
v

Devistion of the Fasture from fhe Deslry =iy,
8

-

gsi
Figure 4: Devistion of feature B from its desired position in the previous
example (experimental).
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Figure 6: Devistion of feawre D from its desired position in the previous

example (experimental).



