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1. Introduction 
This papa deals with the problem of 3-D robotic visual W n g  of 
targets whose motion consists of 3-D tnurslational and rotational com- 
ponents. The visual tmcking is accomplished through a camera 
mounted on the robat that computer the diapl.cements of marl 
ftahlns that belong to the target. These visual m ~ ~ t s  ore fed to 
an adaptive control algorithm that provides the inputa to 8 mtcsian 
robot contml scheme after each measurement Numerical issues dated 
to the strong coupling of the rotational and translational degr&r of 
fitmiom arc tmitcd in a way that guarantees tracking of the. object. A 
single camera is uscd instead of a binocular system because one of om 
main objectives is to danonstrate that relatively unsophisticated off- 
the-self hardware can be used to solve the 3-D kacking problem if the 
proper modeling and control issues arc addnwtd 

The major diffcrcnca of our algorithms from sirnil= restarch efforts 
[l. 2,3,4,5] an the use of a single moving cam- the ability to 

compensate for inecclrmte camera parameters and unknown depth (dis- 
tance of the target with respect to the camera hme). the full 3-D 
tracking ability, the small a u m k  of parametas that rn estimated 
on-line, and the intcprion of the chamctcristics of the motion detection 
algorithm into the mathematical modd for tracking. Tbut diffaences 
d o w  the use of the proposed algorithms in poody crlibrrted spaces or 
in spaces that am difZicult to calibrate, such as uudcrwater, apcc, and 
nuclear sites. This paper extends our previous work 16.7.81 in 
conirotled active vision by allowing tracking of full 3-D motion (trans- 
lations and rotations) and by d u c i n g  the number of parametas that 
should be estimated on-line. Experimental rtsnlu arc prcsentcd to 
show the strengths and the weaknesses of the proposed approach The 
wrpcrimenk am ptrformed on the 'IROIl<ABOT multi-robotic system 
which opcratu under the CHIMERA 11 d- t ime  operating system. The 
TROIKABOT system consists of thrte PUIvfAS6O's. One PUMA 
cauies the camera while another holds the target. 

The organization of this papa u as follows: Section 2 desaibes the 
mathematical framework nndcr which our problem is solved. The 
control, filttring. and csdmation stmtcgics me discussed in Section 3. 
The experimental nsults arc psented in Section 4. Finally, in Section 
S, the papa is summarizcd. 

2. Modeling of the 3-D Robotic Visual Tracking 
Problem 

This d o n  describes the mathematid modeling of OUT problem. W e  
assume a pinhole 4unaa model with a frame R, placed at the focal 
point of the lens. Consider a target with a feature located at a point P 
with coordinates UU, , Y, .ZJ in R,. Mortovcr, the camera moves with a 
trandational velocity T=Cr,,TY,Tar and with an angular vclocity 
R=(R,.R, ,RJr with  pea to tbc camera frame R,. Since the camera 
and the target me moving simultaneously. we can write (using the 
qpmach desuibcd in [91) the following equatioru for one feature point 
(d is a delay factor (d E (1.2, ... )).fir the focal length of the 
cdmerr, s ~ , s ~  am the dimensions (mmrpixtl) of the camera's pixels, 
(x ,y)  a the unage uxdhtcs of the projection of the featme point P 

operator, and no (k) and ve (A) are the components of the optical flow 
induad at the time insrent A by the motion of the object): 

on theimage plpne, Tis  th8 nmpling period, 4-1 is the backward shift 

XF (k + 1) =A, (k) xF (k) +B, (k-d + 1) u (k -d + 1) +E, (k) d, (k) 



One f w  point is not enough to determint the control input vedor 
u (k). The reason is that the number of system outputs is less than the 
number of control inputs. Thus, we ~ l t  obliged to considex mom points 
in our model. In orda to solve for tk control input that will be sent to 
the manipulator, it can be shown that at least thne non-collinear featun 
points arc needed. ?he rcason for thc non-mllindty rcq-tnt is 
investigated in [IO]. 

The state-space model for M (M 2 3) feanpt points can be writien BS: 

where A(k)=H(k)=$,, ,  E ( k ) = T $ ,  x (k )  E PM. d(k) E pM. 
andv(k) E RZM.ThematrixB(k) E R Z M x 6 k  

x (k + 1) = A  (k) I (k) + B ( k - d +  1) u (k-d+ 1) + E ( k )  d(k) +R(k)V (k) (3) 

Bd') (k) 

B(k)= [ B F k )  1. 
The superscript (13 denotes each one of the fcatrne points 
( ( ~ 3  E ( ( I ) ,  . . . ,(tu))). The vector x ( k ) = ( x ( I ) ( k ) , y  (')(k), . . . , 
x ( ~  (k) ,y "(k))' is the new state vector. and v(k)=(v;')(k), 
v (k) , . . . , v i w  (k) , v,,(w (k))' is the new white noise vector.  he 
new measurement vector y (k) = (yil) (k), y i ' )  (k), . . . .y:w (k), 
y,(w Q))' for M (M 2 3) f w u m  is given by: 

(4) 
where w (k) = ( w i ' )  (k) , w,(l) (k) , . . . , w i w  (k) , w y m  (k))' is the new 
white noise vector (w (k) - N(0,W)) and C = Qr 

We can combine quations (3)-(4) into a MIMO (Multi-Input Multi- 
Output) model: 

Y 

y (k) =cx (k)+ w (k) 

(1 -2q-'--2)J Q)P B (k- d) U (C- d) -B (k -d- 1) u ( k - d -  1) + o (k) (5) 
when n (k) is the white noise vedor. The new white noise vector n (k) 
contsponds to the measurement noise, to the modeling emm. and to 
the noise i n n o d d  by inaccurate robot control. If we assume 
B ( k - d ) - B ( k - d - I ) ,  t k n  (5 )  can be r c ~ t t c n  as a MIMO ARX 
(AutoRegressive with auxiliary input) model. This model consists of 
2M MIS0 (Multi-Input Singleoutput) ARX models. In rddition, the 
new model's equation is: 

(1-2g-'+g-z)y(k)=B(k-d)A~(A-d)+~(k) (6) 

Au (k- d) = U (k- d) - u (k- d- 1). 0) 
where Au (k-d) is defined as: 

In the next section, we present the control and estimation techniques for 
the 3-D visual tracking problem. 

3. Control and Estimation 
The control objective is to move the manipulator in a such a way that 
the projections of the selectcd features on the image plane move to 
some dcsircd positions or stay at their desired positions while the targd 
is moving. This sbction examines the control strategies that rralizc this 
motion and the estimation scheme used to estimate the unknown 
pararnctm of the model. Some implementation issues me also & 
CUSSed. 

Adaptive control techniques can be used for visual scrvoing around a 
moving object when the depth of the objeu is not pnxisely known. 
Adaptive control techniques are used for the ncovery of the com- 
ponents of the mnslational and rotational velocity vectors, T(k) and 
R(k), respectively, and are based on the estimated and not the actual 
values of the system's paramcters. This approach is celled certainty 
equivalence adoptive control [I I]. A large number of algorithms can be 
generated depending on which parameter estimation scheme is used and 
which control law is chosen. The rest of this d o n  is devoted to a 
detailed description of the control and estimation schemes. 

3.1. Selection of an Efiicient Control Law 
Thc control objective is to txack the motion of certain features of the 
target and place their projections on the image plane at some desired 
positions. The tracking of the features' projections is realized by an 
appropriate motion of the mbot-camera system. A simple control law 
can be derived by thc minimization of a cost function that includes the 
feature positional error. the conml signal. and the change in the control 
signal: 

J (k + d)= (k + 4 - y' (k + d)lrQ ij (k+ 4 - Y '  (k + 41 

+ ur(k) L u (k) + AJ (k) L~ AU (k) . (8) 

ThC vector y* (k) represents the desired positions of the projections of 
the M (M 2! 3) f-s on the image plane. In our experiments, the 
v-or yo (k) is known a priori and is constant over time. By placing 
waghts on the control signal. the change in the control signal, and the 
error, we can choose how much emphasis the controller is to place on 
minimizing each of the three quantities. Including the control signal and 
the change in the control signal in the cost function described by (8) 
callscs the control input signal to be bounded and feasible. This is in 
agreunent with the structural and operational charadenstics of the 
robotic system and the vision algorithm. A robotic system cannot track 
signals that command large changes in the featuns' image projections 
during the sampling interval T. In addition. our optical flow algorithm 
ca~ot dew displacements larger than 28 pixels p a  sampling interval 
T. Thc term Au'(k)L,Au(k) of the cost h a i o n  (8) introduces an 
integral term in the control law. This term is desirable since our 
mathematical model (3) has a dctesministic disturbances component. 
One problem of the introduction of an integral term in the control law is 
the possible saturation of the control inputs. In orda to compensate for 
this problem, one should tum off the integrator whenever a sahuation of 
tbe control inputs occurs. 

The conaol law is derived from the minimization of the cost function 
(8) by taking the duivative of I (A + d) with 'tspcct to the vcctor u (A) 
and combining the resulting u p s i o n  with the system model equation 
(5). The nsulting control law is: 

u (k) =- [B'&) Q B  (A) +L +LJ' P'(4 Q { { (d+ 1)y (k) 

- f (k + d)- d y (k- 1)) - d B  (k- d) u (k - d) 
m d -  1 

-1 
+ B ( k - m ) u ( k - m ) )  -Ldu(k-l) l .  (9) 

Faddcma and Lee [3] proposed a similar control law for the robotic 
visual tracking problem. The main difference of our control law is that, 
instead of imposing constraints on the optical flow induced by the 
camera motion (image plane space). we impose constraints on the 
components of u(k) of the nquired camera cracking motion (camera 
frame space). In this way, we directly control the magnitudes of the 
control signal and the m n m l  signal change. This fact results in a 
control law that is more robust and feasible than the one propostd in 
[3]. The &sign parametm in our control law PTC the elements of the 

maPicesQ.L,and L,,. Often,weretLorL,,tozem. Inmostofthe 
wrperiments. we set L=O and L, # 0 in order to achieve a fast and 
b0twk.d response. If the matrix B(k) is full rank then the matrix 
l B T ( A )  Q B (k) + L + LJ is invextible. The matrix B (k) is singular when 
the M featrnt points B T ~  collinear[3, IO]. An extensive study of other 
conditions which make B (A) singular can be found in [9]. 

By s e l d n g  L, L, and Q, OM can place more or less emphasis on the 
c o r n 1  input, the control input change, and the semoing error. There is 
no standard procedum for the selection of the elements of these 
matrices. One technique is the optimization approach [12]. 



If we want to include the noise of our modd and the inaccuracy of the 
B (k) matrix in OUT control law. the control objective (8) becomes: 

J (k + d) = E (  [Y (k + 4 - Y’ (k + 4l‘Q b (k + 4 - Y O  0 + 41 

+ d (k) L u (k) + AU‘ (k)  L~ AU (k)i F ~ )  (10) 
where the symbol E ( X )  denotes the expcctcd value of the random 
variable X and FA is the sigma algebra genaatcd by the past measure- 
ments and the past contml inputs up to time &. Tbe new control law ir: 

u(k)=- $(k) Q i (k)+L +Ld]-’ I$’(&) Q ( { (d+ 1) y (k) 

-yo (k+ 9 -d  y (k-  1) ) - d i  (&-a) u (k-a) 
m=d- 1 

-1 
+ c i ( k - n ) u ( k - m )  )-Ldu(k-l)] (11) 

where 6 (k) is the estimated value of the matrix B (k). The mahi;x i (A) 
is dependent on the estimated values of the features' depth Z,(fi(k) 

projdons. In particular. the mahix B (A) is defined as follows: 
( ( I )  E (( 11, . . . 1 (M)))  and the cprdiwcs of the feanncs’ image 

where ~ A J ’ ]  (k) is: 

~ l + ~ ~ ( * ~ ~  - X ~ W P ( ~ * .  -=‘w*, J’ 
f *, T., 

In the experiments. the &lay factor d is 2, so the control law (11) 
becomes: 

u (k) =- $r(k) Q B (k) + L +L J-’ [hr (k) Q ( (3 J (k) -yo (k +2) 

- 2 J (k - 1) ) - 2 i (k-2) P (k-2) +B (k- 1) u (k- 1) ) -L, II (k- l)] . (12) 

3.2. Estimation of the Depth Related Parameters 
The estimation of the depth (Z,(fi (k)) related paremdtrs can be &ne in 
multiple ways. In this section, we present some of thcst algorithms. If 
the inverse of (sxZ,(f i(k)/f i  is defined as <,(n(k). thcn, equations (1) 
and (2) can be rewritten as: 

yF() (k) = 2 yp‘) (k- 1) -y , / f i  (k -  2) ( k -d )  Bdfi (k- d) 
I 

AT(&-d)+B (fi k-d)AR(k-d)+np(fi(&) (13) 
where the vector ndn (k) is a gaussian noise vector with ZQO m a  and 
~V~~ N (JJ (np’fi (k) - N (0 ,  N (fi (k))), urd Bdfi (A), Bdfi (k) 
are given by: 

s ( 

V 

I (fi (k) I= 
0 

- J  

B ‘J)(k)=T r, 

A T  (k) = T (k) - T (k-  1). AR (k)  = R (k) - R (k - 1). 

BY defining AU,‘) (k) and AU!~ (k) t~ AU,’) (k) = Bp‘” (4 A T  (4 and 
Au,‘J] (k) = BdJ) (&)a (k), equation (13) is transformed into: . 

y,(n (k) = 2 ydn (k - 1) -ydfi (k- 2) + e!” (k- d) Aur (A - 4 
+All;” (k -  d) + Ilp’ (k) . (1 4) 

The final nansformation of equation (14) is done by using the vector 
Ay,(n (k) which is defined as: 

A~~(n(&)=yp‘fi(k)-2~~(fi(k-l)+Y~‘fi(k-2)-Aur(”(k-d). 
The new form of the equation (14) is: 

(1 s) 
The vectors AyJfi(&) and AUr()(&-d) arc known at every time 
instant, while thc s~alar <,(I’ (k) is continuously estimated. It is assumed 

that an initial estimate t!)(O) of c , ( j ] ( O )  is given and ~(”(0) 
=E([<!~(o>-~,(~(o)I’) is apositive s ~ a l a r p ~   he term ~ ( ” ( 0 )  can 
be i n t q q e d  (LS a measure of the confidena that we have in the initial 
estimate <!f i (O) .  Accurate knowledge of the scalar e,( )@) cor- 
responds to a small covariance scalar pw In our examples, N () (&) is a 
constant predefined matsix. To simplify the notation b(k) is used 
instead of Aur (fi (k). 

Thc estimation equations (ut [13]: 

AyF(n (A) = <,(fi ( k -d )  h r ( n  ( A - d )  + nib (k). 

-fy (k)=+@ (k-  1) (1 6) 

(1 3 

(1 8) 

(1 9) 

(20) 
wben d f i ( k )  is a covariance scalar which msponds  to the white 
aoistthatrhaw&me ’ s the transition baareen the states, the superscript 
(-1 denotes the prcdiucd value of a vmiable, and the superscript (+) 
denotes its updated value Thc depth related parameter e,()(&) is a 
t imc-vqhg variable since the met moves in 3D and the camera 
translates along its optid axis and rotatcs along the X and Y axis. The 
estimation scheme of quations (16H20) can compensate for the time- 
varying nature of <,() (k) btcause it is designed under the assumption 
that the estimated variable undergoes II random change. One problem is 
to keep rhe covuiance. scalar p(f i  (k) finite Solutions for this can 
found in [ll]. In addition. we have implemented other estimation 
techniques which deal with time-vsrying parameters [9]. In addition to 
the pvious techniques, we propose the use of a more accurate form for 
the state update of < , ( f i ( ~ ) .  ~ b i s  fonn is based on the equation (corn- 
plltational delays ue included): 

(21) 
w h m  A Z f J  (k) is defiatd as: 

-p (fi (k) = +p (n (k- 1) +stn (k- 1) 

+p(b  (k) = [ ( -p( f i  (&))-I + b ‘ ( k - 4  (N (h  (&))-I h ( k - 4 J - l  

k’(&)=+p(fi(&)b‘(&-d) (N(f i (k ) ) - ’  

+<,(n (k) =-e,() (k) + k ‘(k) [Ayp(fi (k) --fin (k) h (k-d)] 

Z,() (k + 1) - Z!J)(k) +AZ?(k) +q-‘* ’ AZ? (k) 

Z;J) (k )  
(4 =- { T,(k) + I RXWytn (k) sY-RY (8~”’ (k) sX 1 7 )  T 

and (k) is the change in depth induced by the motion of the target. 
It is assumed that ~C,$fi (k) does not change significantly between two 

t h e   hat^^^. ”IC tam AZ,$fi(k) is created by the motion of the 
cam- and is derived by an algebraic computation described in [9]. 
Equation (21) provides an approximation of tbe change in the feature’s 
depth Z,(”<k) between two time instances given the fcatm’s image 
coonhates and the camera motion. This equation can be rewritten as: 

(u) z y  (k) - 2Z1‘“(k- 1) -2,’” (k- 2) + Aq’” (k-d) - A q ’  (k-d- I ) .  



By inverting the terms of the pxwious quation (U), the following 
equation is derived: 

(,‘J’(k- 1) 
(:J’ (k) =(,‘“(k- I) /  ( 2-- 

(,‘J’(k-2) 

(u) 
SX 

+ (,(n (k - 1) [ AZLn (k- d)- AZLfi (k - d-  1) I) 7 
where 

*X 
AZLJ’ (k) - ( T, (k) + 1 R, (k)y (’ (k) s,-R, (k) I”’ (k) Sx 1-1 T . 

&(B (4 
If we substitute the values of <!fi (k) with rheir estimatts, (23) will be 
nansformed into: 

+(#(J’(k- 1) 
-C,’” (k) = +c; J’ Q - 1) I ( 2- +L(J, ~~ - 2) 

0.4) 

The tum +A’ZAfi (k) is derived from A’ZAfi (k) by Nbstituting <!fi (k) 
with +qfi (k). In addition, equation (17) should be modified to incor- 
porate the new equation for the updates of states. These estimation 
schemes xcquk the estimation of one parameter per fepture-point and 
thmforc, the rcal-time implementation of the athation scheme is 
feasible. In addition, we have imp1mtnte-d an &ation scheme that 
computes two parameters per feature point. This scheme is a variation 
of the previous estimation scheme and sepamkly edmatcs the depth 
da ted  parametm (f/ (s,Z,’J’ (k))) and (f/ (syZ,(fi (k))) in thc X and Y 
directions on the image plane. In theory, this formulation m estimate 
the depth related parametm more accurately. 

The matxices B,(J) (k) and B,(n (k) arc hnnsformcd and decomposed as 
follows: 

5 
f + +(,( J’ (k - 1)- [ *A’Z:’ (k -4 - +AZLfl (k - d- l)]) . 

I I 

x(J’ (k) sx 
1 - 

f BF:J’(k) = T [ -1 

BF.(J’(k) = T I 0 

0 

- *X Y ( fi (k) sr - 
f 1  

- 
X‘J’(k)y‘”(k)S, - f2-(X‘”(k))r>2 y(n(k)Jr 

1 - 
f f $2 5 

-I ( f i  (k)y‘b (k) sx 

B (J’(k)=T 1 
F“ 

p +  0, (n (k) $22 

f ‘I 

-dJ’ (k) SX 

BF:” (k) = T [ f 3, 1. 

The subscript i denotes the X or Y k t i o n .  The estimation quations 
for each feature point art (i = 1 ,2): 

-f y (k) = +f Afi (k- 1) 

- p y  (k) = + p p  (k- 1) + s y  (k- 1) 

5 (k) = +p,(fi (&)hi ( k - 4  (n /J  (k))-l 

(25) 

(26) 

+p,‘fi(k)=[ (-p,‘f i(k))-l+h,(k-d) (n,‘n(k))-lhi(k-a)]-l (27) 

(28) 

‘4L.B (k) = -4 A.fi (k) + K , (k) [A yF{fi (k) - -g,$fi (A) hi (k - a)] (29) 
where Ay,$ (k) and hi (k) denote the X or Y components of the vectors 

A yp (A) is the estimated value of 
either the term (f/ (sZZ!fi (&))I or the term v/ (syZ,(fi Q))). In practice. 
the experimental nsults h m  the implementation of this estimation 
scheme prove to be comparable with the rcsults of thc lint estimation 
scheme. Some rcstarchtrs [3] propose the use of an adaptive scheme 
that estimates all the elements of the block mafxix B (k) on-line. This 
approach is computationally expensive and not necessary. 

(k) and h (k), nspeCtively. and 

3.3. Implementation Issues and Robot Controllers 
In the upeximents. we arc forced to bound the input Jignals in order to 
avoid saturation of the actuato~s. AAer the c o m p d o n  of the trans- 
lational T (k) = (7“ (k) , Ty (&), 7’* (k))T and rotational velocity vectors 
R (k) = (R, (k) , Ry (k) , R, (k)?, we Limit the input Signals by performing 
several steps that arc described in [9]. Thus. thc V M ~  T (k) and R (k) 
arc hansformed to T’ (k) and R’ (k), respectively. 

After computing the hyulational velocity vector T‘ (k) and the rota- 
tional velocity vector R (k) with resped to the camera frame R,, we 
trcmsform it to the endcWor frame R, with the use of the transfor- 
mation T,. The transformed signals m fed to the robot controller of 
the PUMA which acts as the traclra. We use the Unimation controllers 
which arc interfaced to our system through multiple IroNcs IV-3230 
CPU boards. The Alter line is used and the desind trajectory in 
&an space is Opdated cvay 28ms. W e  arc cumntly in the process 
of substituting thc Unimation controllas with Trident boards which can 
be programmed in C. Finally, the whole system runs under the 
CHulERA II real-time Opeseting system [14]. The hardware configura- 
tion of the TROIKABOT system is described in [9]. 

Thc text saction describes the experimental results of our algorithms on 
the TROIKABOT multi-robotic system. 

4. Experimental Results 
The algorithms have becn verified by performing a number of expen- 
m a t s  on the TROIKABOT robotic system [15]. A camera is mounted 
on the cnd-ef fm of one of the PUMAS which ~ c t s  as the tracker. The 
other WMA holds a target and mwed it accordingly. The rcal images 
are 492x510 and art quantized to 256 gray levels. The camera’s pixel 
dimeasions m: s~=O.Ollmm/pixel and sy=0.013mm/pixel. The focal 
length of the cpmcra is 16mm and tbe objects move with full 3-D 
motion. Tbt initial depth of the obj~crs’ ~enar  of mass with rcsped to 
the camaa frame 2, is 29Omm. The maximum permissible trans- 
M o d  velocity of the eixlcfiector of tbc hacking robot is Iocm/sec 
and ea& of the components of the endcffedor’s rotational velocity 
(roll. pitch, yaw) is not allowed to excad 03rad/sc~ The objective is to 
move the manipulator so that the image projections of certain features 
of the moving object move to some desirtd image positions or stay at 
thcir initial positions. The objects used in the sewoing examples me 
books, pencils. or any item with distinct fcaturts. The user uses the 
mouse to select features of the object to be used in tracking. Then, the 
systan evaluates on-line the quality of the fcaturts, based on the 
confidurce m c a s m  described in [a]. The same +on can be done 
automatidy by a computer process that runs o m  and Deeds 2 or 3 
minutes, dcpcnding on the Size of the interest operators which 811: used. 
Thc four best fcaturcs arc selected and used for the robotic visual 
smoing ta& The size of windows is 8x8 while the search area is 
64x64. The maximum displscunent pa sampling period T that can be 
detected is 28 pixels. The SSD algorithm has ken implemented by 
using thc pyramidal structure &Scribed in [9]. An interesting solution to 
the antomatic detection and selection of point ftatures has been 
proposed by Tom& and K.nade [la]. We arc currently investigating 
the potcntial of this approach as an rrltcmative to OUT algorithms for the 
scledion of the best feature points. 

-mental rcsults axe presented in Figures 1 through 6. The gains 
for the conmllexs a Q=O.9$, L=O. and L,=diug(0.04 , O M  , l , O ,  
S x l d . 5 x 1 6 . 5 x 1 6 ) .  The diagonal elements of the Q, L, and L, 
can vary by a factor of between 2 and 3 and the system will continue to 
track successfully. The delay factor d is 2. The vector yo (k) is given 
every instant of time k by the dation f (k) = y (0). This implies that the 
objedive of our scheme is to beep the fcaturw at thcir initid positions 
during the motion of thc targ& 



The computation of the $ (k) Q t (k) + L + LJ’ mlllrix is done on a 
Hemikon 68030 board. The technique used is tbe same as the one 
descxibed in [IO]. The ‘9‘8‘ compu!ation time (image processing and 
~ontml calculations) of T (k) and R (k) is approximately 220 ms. The 
howledge of the depth Z, is assumed to be inaccunuc. For dl the 
features, ~,(fi(O)isinitializdto3.63 andp~(0)isO.l. 

In the example depicted in Figures 1 through 6. the performance of the 
control and estimation algorithms is illushated. The target’s tra$%Xory 
is plotted with respect to the frame R, which is attached to tbc target at 
the time instant k = 0. At the same instant, the 2 axis of the R, frame is 
aligned with the optical axis of the camera The d m a t i o n  scheme 
which is used estirmtcs one parametex pa feahnc point, thus, four 
parametern axe estimated in total. The forgetting factor is 0.99. The 
mcasud  deviations of the features from their desired positions qqxm 
noisy. The fact that the mrs on the image plane are bounded 
guarantets that the mrs arc within the search range of the SSD 
algorithm, thus. the SSD algorithm can accurately measure the features’ 
positions. The mors nach a maximum value when the target changes 
its trajectory sharply. The control and estimation algorithms compen- 
sate quickly and after 10 seconds the ~ 1 o f 8  arc reduced. Thc error in 
the 2 direction is large. The reawn is that the noisy mearurtments, the 
camera gcomew, and the experimental sdup make the accurate com- 
putation of the tracking motion in the Z diredion (along the optical axis 
of the camera) difficult. Another inttllesting obsa-vation is that there is 
a small error in pitch even though thae is no pitch component in the 
target’s motion. This pharomenon occurs since then is a strong cow 
pling bctwcen the pitch component and the X translational component 
of the tracking motion The same is truc for the yaw component and the 
Y txanslational component of the tracking motion. In otha words, the 
tracking system triies to track X translational or Y wnslational motion 
of the target with the rotarional d e w  of freedom, Ry or R,. respec- 
tively. Numerically, this implies that the conditio? number c 
(c = a- / ad. a ratio of singular values) of the matrix B (k) is large. 
Appropriate ueleaion of the fmnm point8 and the relative position of 
the C I M ~  with respect to the taget can minimize the condition 
number. If the nlative distance of the camera (assuming the same focal 
length for the camera) from the target is more than 2 meters, the 
condition number becomes too large and tracking is impossible. In 
addition, full tracking is impossible when the four feature points arc 
close to each other, or if they arc very close to the piercing point. 

5. Conclusions 
In this papa, we examined the problem of robotic visual tracking of full 
3-D motion (three translations and thnc rotations) by a monocular 
robotic tracker. A camm is mounted on the end-effector of the robotic 
device and provides visual information about the motion of the rarge~ 
The detection of motion is based on an optical flow technique called 
Sum-of-Squarcd Differences (SSD) optical flow. This algorithm, which 
has been implemented in a pyramidal scheme for computational ef- 
ficiency, provides the displacement vector of catain selected featurts 
of the target. Under the general guidelines of the confrolled ucfive 
vision framework which was introduced i n m .  we combine these 
measurements with appropriate catrol and estimation techmques 
Adaptive conad techniques arc introduced to compensatt for uncer- 
tainties in the model, unknown depth slated parameters, and computa- 
tional delays. The computational burden is nduccd by estimating only 
one or two parameters per feature point. Our algorithms do not require 
accurate calibration of the workspace, and thus, can be efficiently used 
in assembly lines in order to track moving items. In addition, these 
algorithms make possible autonomous satellite docking and recovery. 
The algorithms w m  extensively tested in several experiments which 

wen performed on the TROIKABOT multi-robotic system. The nal- 
t h e  experiments show the feasibility and efficiency of our algorithms. 
In genad, thcsc dgorilhms show that monocular vision in conjundon 
with efficient motion of the vision sensor and adaptive control al- 
gorithms can be a viable alternative to standard stem vision tech- 
niques. 

Some of the amas for future mearch which we arc cllrrently consider- 
ing include the use of more elaborate MlMO adaptive control tech- 
niqucs than those that have been implemented, the computational im- 
provement of om algorithms. and the i n d u d o n  of algorithms for 
nsing edges as the source of motion information. We iue currently 
pursuing the use of ”makes” for contour scrvoing, the application of 
adaptive algorithms to model-based visual tracking and savoing, and 
the duivation of depth maps thmugh appropriate motion of the robot- 
camaa system in conjunction with simple adaptive filtering techniques. 
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