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Monocular 3D Metric Scale Reconstruction using Depth from Defocus

and Image Velocity

Tomoyuki Shiozaki and Gamini Dissanayake

Abstract— This paper presents a novel approach to metric
scale reconstruction of a three-dimensional (3D) scene using
a monocular camera. Using a sequence of images from a
monocular camera with a fixed focus lens, metric distance to
a set of features in the environment is estimated from image
blur due to defocus. The blur texture ambiguity which causes
scale errors in depth from defocus is corrected in an EKF
framework that exploits image velocity measurements. We show
in real experiments that our method converges to a metric scale,
accurate, sparse depth map and 3D camera poses with images
from a monocular camera. Therefore, the proposed approach
has the potential to enhance robot navigation algorithms that
rely on monocular cameras.

I. INTRODUCTION

A mobile robot must be able to map its environment and

estimate its egomotion to be able to perform many tasks.

Information from a monocular camera, visual odometry (VO)

[1], visual simultaneous localization and mapping (V-SLAM)

[2], or structure from motion (SfM) [3], can be used to

generate this information accurate up to a scale. Typically,

stereo cameras [4] or RGB-D cameras [5] are necessary to

generate three-dimensional (3D) metric scale reconstruction.

Although both stereo setups and RGB-D cameras are now

widely available and becoming compact, the fact remains

that the ability to use a monocular camera is still attractive,

particularly in robotic applications, due to the small size and

the versatility.

The typical monocular approaches to estimate scale are

depth from focus (DfF) and depth from defocus (DfD) [6].

DfF requires many images of the same scene with different

focus setting, thus is not suitable for mobile robots. On

the other hand, DfD relies on the amount of defocus blur

which depends on the distance to the object [7]. It has been

demonstrated that the defocus blur can be estimated even

from a single image [8], [9]. Therefore, the use of DfD has

the potential to reduce the complexity of monocular VO and

V-SLAM algorithms, and enhance their output by producing

metric scale data. However, DfD from a single image has a

fundamental problem: the blur texture ambiguity [8]. This

means that from a single image it is not straightforward

to distinguish between blur caused by defocus and that

caused by texture. Although the coded aperture method

[10] or active lighting [11] can resolve the blur texture

ambiguity, these methods require modifications to the camera
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or additional illumination and therefore compromise the main

advantage of monocular cameras; their versatility.

In this paper, we propose a method to correct the scale

error of DfD due to the blur texture ambiguity and estimate

the metric distance to a set of features of a static scene in an

extended Kalman filter (EKF) framework. Our method uses

a sequence of images taken by a moving monocular camera

using a lens with a fixed focal length and a finite aperture.

We show that the blur texture ambiguity is mainly caused

by regions with low contrast. Also, we demonstrate that

the scale error caused by the low contrast can be estimated

from changes in defocus blur and image velocity induced by

camera motion. The main contributions of this paper are as

follows:

• Derivation of an equation to correct the scale error

caused by blur texture ambiguity

• EKF framework for metric 3D reconstruction of an

environment

• Experimental demonstration of the proposed method in

combination with SfM using a conventional camera

We note here that the proposed approach does not require

any additional sensors or camera modifications. Therefore it

retains all the advantages of using a monocular camera and

has the potential to enhance the level of information typically

gathered through monocular VO or V-SLAM, particularly for

robot navigation.

This paper is organized as follows. Section II provides a

review of related works on DfD. Section III demonstrates

how to estimate the metric scale. In this section, the DfD

method is introduced, and the scale error caused by low con-

trast texture is formulated. Then, the EKF approach based on

the relationship between changes in defocus blur and image

velocity induced by camera motion is proposed. In section

IV, experimental results are presented. The first experiment is

to illustrate properties of the proposed algorithm. The second

experiment is to demonstrate the application of the proposed

method in combination with SfM. Section V discusses the

strengths and limitations of the proposed method. Section VI

concludes the paper.

II. RELATED WORK

Conventional depth estimation methods from a monocular

camera require multiple images with changes to camera

settings such as aperture and focal length to obtain different

defocus blur [12], [13], [14]. Taking images with different

camera settings is complex and requires solving the matching

problem [6] and therefore not particularly attractive in many

applications. Pentland [12] pointed out that defocus can be



extracted at edge locations on a single image. Elder [15] used

the derivatives of the input images to find the edge locations

and their defocus blur. Zhuo and Sim [8] proposed a method

based on the Gaussian gradient ratio that is more robust to

image noise than those available in the literature.

However, to be effective, single image DfD methods

require strategies to resolve ambiguities due to focal plane,

motion blur, and blur texture. The focal plane ambiguity

results from the fact that DfD from a single image cannot

differentiate on which side of the focal plane the objects are

placed [8]. Kumar et al. [16] demonstrated that chromatic

aberration provides an effective indicator to solve the focal

plane ambiguity. Second, the motion blur influences the

defocus estimation. However, motion blur is also a useful

depth cue. Paramanand and Rajagopalan [17] proposed a

method to recover the 3D structure from both motion blur

and defocus blur with camera motion in an Unscented

Kalman Filter (UKF) framework. Third, the blur texture

ambiguity is still a challenging problem. Srikakulapu et al.

[18] proposed a method to correct the depth map by using

texture information such as edge sharpness, spot energy, and

contrast. However, this approach cannot estimate the metric

scale. As addressing the blur texture ambiguity is the main

objective of this paper, we do not address the focal plane

ambiguity and motion blur. We assume that all observed

objects exist on one side of the focal plane and the camera

motion is sufficiently slow.

The work most related to our paper is by Wöhler et

al. [7]. They combined DfD with SfM and estimated the

metric distance with reasonable accuracy. In [7], the scale

error caused by the blur texture ambiguity is termed due to

“image content”. The main drawback of this method is the

assumption that each of observed features in the scene is in

focus at somewhere in a sequence of images. The method

proposed in this paper relaxes this condition and is able to

estimate the metric scale even when the features concerned

are never in focus.

III. THREE DIMENSIONAL METRIC

RECONSTRUCTION

In this section, the proposed methodology for 3D metric

reconstruction is described. First, the DfD approach based on

a formula derived using the thin lens model is introduced.

The point spread function is approximated with a Gaussian

to model the amount of defocus blur in a given image at

edge locations. Second, ambiguity caused by low contrast

texture is formulated. Finally, using the relationship between

changes in defocus blur and image velocity induced by

camera motion, an EKF based approach to resolving this

ambiguity is proposed.

A. Depth from Defocus

Image formation based on the thin lens model is shown

in Fig. 1 [12]. All rays from a point located at the in-focus

distance d f converge to a single point on the image plane

placed at the distance b f from the lens. On the other hand,

rays from an object located at any other distance d converge

Fig. 1. Thin lens model. Origin is the lens center. b f is the distance to the
image plane. d f is the distance to the focal plane. Size of c depends on the
object distance d. When the image plane is placed at b f +bδ , the object is
best focused.

to a point on a plane located at a distance b f +bδ from the

lens and therefore will be out of focus when viewed at the

image plane. Rays from such an object will make a blurred

circle on the image plane. This is known as the circle of

confusion (CoC). The diameter of this circle is given by

c =
|d −d f |

d

f 2

N(d f − f )
, (1)

where f is focal length and N is f-number of the camera [8].

It is seen that larger |d−d f | is, the larger the CoC. To get a

large amount of defocus blur, a long focal length and a large

aperture are required as the f-number is N = f/A where A

is the aperture diameter of the lens.

The size of c can be approximated by σ of the Gaussian-

shaped point spread function (PSF) G(σ) as

Ii = G(σ)∗ I fi , (2)

where ∗ means convolution, Ii is a small region of interest

(ROI) around a feature i, and I fi is the ROI around the same

feature when it is best focused [7]. c can be expressed as

c = γσ with a camera-specific value of γ [19]. We use the

method proposed by Zhuo and Sim [8] to estimate σ from

an image.

Wöhler et al. [7] proposed the following function to relate

d and σ :

σ = D(d) =
1

φ1
exp(−

1

φ2
(bδ (d))

2)+φ3,

bδ (d) =
d f

d − f
−b f ,

(3)

where φ1, φ2, and φ3 are the calibration parameters. For a

given camera setup, these parameters together with b f and

f can be estimated using a calibration process which is per-

formed by measuring values of σ at the corners of the black-

and-white checkerboard while changing its distance. Solving

Eq. (3) yields the metric distance d from the measured σ .

However, Wöhler et al. [7] pointed out that the measuring σ
does not work well on features other than black-and-white

corners due to errors caused by blur texture ambiguity of

the input image. This ambiguity is due to many factors such

as soft shadows, brightness and color of the object, and the



Fig. 2. Demonstration of Eq. (4). (a) is a low contrast edge pattern with 50% and 75% gray levels. (b) is a high contrast binary edge pattern. (c) is a
face and (d) is a checkerboard. × and + show the measured σ . Red and magenta lines show the approximations of measured σ using Eq. (3). Black line
shows the effect of correction using Eq. (4). (e) was taken with N = 3.5 and d f = 400mm. (f) was taken with N = 5.0 and d f = 2800mm. Table I shows
all the other parameters.

TABLE I

CALIBRATION PARAMETERS

case φ1 φ2 φ3 b f [mm] f [mm]

case1 -1.13 0.275 2.13 20.4 19.4

case2 -0.555 1.42 2.88 47.7 46.9

Parameters of Dt . Case1 and case2 are for Fig. 2 (e) and (f), respectively.

illumination. Our experiments demonstrated that one of the

main causes is the difference of the contrast between the

ROIs. Also, it was observed that this error could be expressed

empirically by the following equation:

σm = λσt = λD(d), (4)

where σm is the measured σ at a low contrast edge and σt is

the true σ measured at a high contrast edge without texture

ambiguity, and λ describes the correction factor for the extent

of texture blur. This is illustrated in Fig. 2. Fig. 2(a) and (b)

are low contrast and high contrast edge patterns, respectively.

In Fig. 2(e), σm is measured from the low contrast edge, σt

is measured from the high contrast edge, approximations Dm

and Dt are based on Eq. (3), and λDt is based on Eq. (4).

As can be seen in Fig. 2(e), λDt is close to Dm. This means

that a constant λ can approximate the extent of texture blur of

σm. This is because the gradients at edge locations are used

to estimate the amount of defocus blur in [8], [9], and [15].

When the contrast of the edge location is low, the gradient

becomes low. This behavior caused by low contrast texture

is independent of the distance between the camera and the

object. Therefore, λ remains constant independent of d. It

can also be seen that the same is true in a more complex

scene. Fig. 2(f) shows the results from the images of a face

(Fig. 2(c)) and the checkerboard (Fig. 2(d)). The σm and σt

are measured at the features detected by KLT tracker [20],

[21]. λ approximates the extent of texture blur of σm. The

median of measured values of σ at each distance was used

in the experiments. The illumination and camera parameters

such as the shutter speed, the aperture size, and the sensitivity

were remain unchanged during the experiments.

B. Extended Kalman Filter

The experiments presented above demonstrate that the

relationship between measured σm of a point and the distance

d can be expressed using Eqs. (3) and (4). This section

presents an EKF framework for estimating the scale based

on these relationships.

We begin by defining the scale factor Λ and image velocity

vi, where vi is the projection of the 3D relative velocity to

a point onto the image plane with unit focal length f = 1.

Λ can be used to obtain the geometry of the scene in metric

scale using

di = Λui, (5)

where di is the metric distance to each point of a scene, ui is

its up to a scale counterpart. Both ui and vi can be obtained

using a sequence of images and one of the many algorithms

available in the literature, for example, [22], assuming that

the observed object is stationary. Subscript i is used to denote

the i-th point. Given that image velocity vi =
u̇i
ui

, the time

derivative of Eq. (5) can be expressed as

ḋi = Λu̇i = Λuivi. (6)

Taking the time derivative of Eq. (4) and using Eqs. (5) and

(6):

σ̇m,i = λi

d

dt
D(Λ,ui,vi)

=
2λibδ ,iΛuivi

φ1φ2
(

f

Λui − f
)2 exp(−

1

φ2
b2

δ ,i),
(7)

where bδ ,i =
Λui f

Λui− f
− b f . In the following, we describe the

use of an EKF to estimate Λ and λi, which are constants.



The state vector of the EKF is as follows:

X = [Λ λi σm,i]
T , (8)

where i = 1 . . .N and N is the number of observed points.

The process equations governing the evolution of the state

vector are

Λk+1 = Λk + εΛ,k,

λi,k+1 = λi,k + ελ ,i,k,

σm,i,k+1 = σm,i,k +λi,k
d

dt
D(Λk,ui,k,vi,k) ∆t + εσ ,i,k∆t,

(9)

where ∆t is defined as ∆t = tk+1 − tk and ε(k) =
[εΛ,k ελ ,i,k εσ ,i,k]

T represents the process noise. Note that

Eq. (7) is used to compute σm,i,k+1.

The observations of the defocus blur σm,i are obtained at

edge locations using the method proposed by Zhuo and Sim

[8]. Therefore, the observation vector is Z = [σm,i]
T . The

observation equations then become

σ̂m,i,k = σm,i,k +ηi,k, (10)

where η(k) = [ηi,k]
T is the observation noise vector. Further-

more, the constraint defined by Eq. (4) always needs to be

satisfied. In the EKF framework, equality constraints can be

imposed using the projection method [23]. These constraints

are rewritten as

c[X(k)] =
λi,kD(Λk,ui,k)

σm,i,k
−1+ζi,k = 0, (11)

where ζ (k) = [ζi,k]
T is the noise vector added to account for

the possible extent of constraint violations.

We assume that the noises ε(k), η(k) and ζ (k) are all

Gaussian, temporally uncorrelated and zero-mean

E[ε(k)] = E[η(k)] = E[ζ (k)] = 0,∀k (12)

with corresponding covariance

E[ε(k)ε(k)T ] = Q,

E[η(k)η(k)T ] = R,

E[ζ (k)ζ (k)T ] = Rc.

(13)

Equations used to implement the EKF are given in the

Appendix.

IV. EXPERIMENTAL EVALUATIONS

A. Experiment 1: Properties of the proposed EKF

The objective of this experiment is to evaluate the ability

of the EKF shown in subsection III-B to estimate Λ and λi. In

this experiment, the same edge patterns and camera settings

used to obtain Fig. 2(e) were used. The chart is shown in Fig.

3(a). A sequence of images with 640 × 480 pixels resolution

at 30fps was taken by the CANON EOS 650D with the EF-

S 18-135mm f/3.5-5.6 IS STM lens. Initially, the camera

was positioned to face the chart at a distance d = 1000 mm.

The camera was moved at an approximately constant speed

of 55 mm/sec along the optical axis until d = 400 mm.

During the experiment, values of σ were measured at the

edge locations on (k) of Fig. 3(a) and the median of them

Fig. 3. Experimental environments. (a) shows the chart used in experiment
1, where (i) is the checkerboard used to get the true metric scale, and (j)
and (k) have the same edge patterns as (b) and (a) described in Fig. 2,
respectively. (b) shows the scene used for experiment 2. (l) and (m) are two
of the feature points where σm,i are measured.

Fig. 4. The estimates of Λ (a), λi (b), σm,i (c), and the metric distance di

(d) in experiment 1. The blue lines show the results from the EKF, the red
lines show the ground truth, and the black line shows the measurement.

was used as σm,i. σt was measured at the edge locations on

(j) of Fig. 3(a) in the same way. The true scale was calculated

using a known size of the checkerboard shown in (i) of Fig.

3(a). ui and vi were calculated from changes in the size of

the checkerboard in the image sequence. Therefore, in this

experiment, measured vi was accurate except for some small

amount of noise.

Fig. 4(a), (b), and (c) show the estimates of Λ, λi, and

σm,i. The true value for λi was calculated from the true scale

with Eq. (4). It can be seen that σm,i gradually changes as

expected and Λ converges as more and more measurements

are obtained. Fig. 4(d) shows the estimated metric distance.

After convergence, the final distance error between the

camera and the chart is only 1.6 mm. These results illustrate

that the proposed method can correctly estimate the metric

scale.



Fig. 5. (a) and (b) show the estimates of Λ and di to the point indicated in
(m) of Fig. 3(b). The blue lines show the results from the EKF and the red
lines show the ground truth. (c) is the camera poses and 3D sparse depth
map reconstructed to the metric scale. The red line shows the trajectory
of the camera with EKF. The green line shows the true trajectory of the
camera.

TABLE II

PARAMETERS FOR EXPERIMENT 2

φ1 φ2 φ3 b f [mm] f [mm] N d f [mm]

-1.14 0.086 1.53 32.3 32.2 4.0 5000

B. Experiment 2: 3D metric scale reconstruction in a clut-

tered environment

This experiment is aimed at demonstrating that the pro-

posed algorithm can estimate Λ and λi even in a cluttered

environment. A set of feature points around a desk in Fig.

3(b) was observed by the same camera with Experiment

1. The parameters used are shown in Table II. Initially,

the camera was set facing to the desk at the distance of

approximately 3000 mm. It was then moved at an approxi-

mately constant speed (around 230 mm/sec) until about 1500

mm. ui and vi were measured using the SfM algorithm with

bundle adjustment [24] as implemented in Matlab R©. The

camera egomotion and the 3D sparse depth map obtained

from the SfM algorithm were then rescaled with the metric

scale estimated using the proposed EKF. In this experiment,

the values of σ measured at feature points detected by KLT

tracker were used as σm,i. As in the case with subsection

IV-A, the true scale was calculated with the checkerboard

with a known size shown in Fig. 3(b).

Fig. 5(a) shows the estimate of Λ. Fig. 5(b) shows the

metric distance di to the point indicated in (m) of Fig. 3(b).

Fig. 5(c) shows the camera poses and 3D sparse depth map

Fig. 6. (l) and (m) show the estimates of λi at the points indicated in (l)
and (m) of Fig. 3(b). The blue lines show the results from the EKF and the
red lines show the ground truth. λi of (l) decreases continuously due to the
changes in texture, although λi of (m) is almost constant. The fluctuations
seen from 1 to 2 seconds are due to motion blur.

with the estimated scale. Note that the large error in camera

position at the beginning is expected as the EKF takes time to

converge. The root-mean-square error of the final distances

from the camera to the reconstructed 3D points is only

0.32mm under the assumption that the 3D sparse depth map

obtained from the SfM algorithm is true. Results from this

experiment demonstrate that the proposed method combined

with SfM can generate 3D camera poses and sparse depth

map to metric scale with only a monocular camera even in

a cluttered environment.

V. DISCUSSION

Assumption that λi is constant

The proposed method relies on the assumption that λi is

constant, which does not hold if there are significant changes

in texture and illumination through the image sequence. For

example, Fig. 6(l) shows the estimate of λi at the point

indicated in (l) of Fig. 3(b). It is clear that λi of (l) decreases

continuously due to the changes in texture. The point of (l)

is positioned at the spine of the book. The spine appears as

a single edge when the camera is at a distance. However,

it reveals rich texture due to the letters present on it when

the camera is nearby. The amount of defocus blur cannot be

estimated correctly in this case as gradient the calculated is

not correct when there are many discontinuities in the ROI

Ii shown in Eq. (2). Our assumption that λi is constant is no

longer correct these situations. However, the use of additive

noise for the possible extent of constraint violations in EKF

relaxes the constraint that λi is constant. Therefore, as seen

from multiple results in section IV, the EKF can estimate

the metric scale correctly despite the fact that some of λi

change with the camera motion.

Size of the lens

The range over which the proposed method applies de-

pends on the focal length f , and the aperture size A. In small

cameras such as those present in mobile phones, defocus

blur is not present at points beyond relatively short distances

from the lens. Fig. 7 shows the 3D map and camera poses

reconstructed by the rear camera on iPhone SE. Although

this result demonstrates that the proposed method is effective



Fig. 7. The camera poses and 3D sparse depth map reconstructed by
iPhone SE. The red line shows the trajectory of the camera with EKF. The
green line shows the true trajectory of the camera.

even for a small camera on a mobile phone, the effective

measuring range is only about 500 mm. Therefore, in typical

robotic applications, it will be necessary to select a suitable

lens to increase the effective range.

VI. CONCLUSION

An approach for metric scale reconstruction of 3D environ-

ments from a sequence of monocular images is demonstrated

in this paper. It is shown that blur due to texture can be rep-

resented using a constant gain when estimating depth from

defocus. An EKF framework that incorporates information

from non-scaled distances and image velocity is shown to be

able to resolve blur texture ambiguity and produce accurate

metric reconstruction. Use of the proposed approach in more

complex and large scale environments, and examining the

possible positive impact of being able to estimate scale in

conventional monocular SLAM algorithms will be the focus

of future work.

APPENDIX

Julier and LaViola [23] proposed a two-step projection

method to implement an EKF with nonlinear equality con-

straints. The procedure is as follows:

1) compute constrained covariance

Sc(k) = Hc(k)P∗(k|k)HcT (k)+Rc(k)
2) compute constrained gain

Wc(k) = P∗(k|k)HcT (k)Sc−1(k)
3) apply first-step constraint for estimate

X+(k|k) = X∗(k|k)−Wc(k)(HcX∗(k|k)−dc(k))
4) apply first-step constraint for state covariance

P+(k|k) = P∗(k|k)−Wc(k)Sc(k)WcT (k)
5) update 1) and 2) with P+(k|k) instead of P∗(k|k)
6) apply second-step constraint for estimate

X(k|k) = X+(k|k)−Wc(k)(HcX+(k|k)−dc(k))
7) apply second-step constraint for state covariance

P(k|k) = P+(k|k)+(X(k|k)−X+(k|k))
× (X(k|k)−X+(k|k))T

Here, X∗(k|k) is the unconstrained estimate, P∗(k|k) is the

unconstrained state covariance. Hc(k) and dc(k) are related

by Hc(k)X(k) = dc(k), and are derived from Eq. (11).
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