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Abstract

Monocular 3D object detection task aims to predict the 3D
bounding boxes of objects based on monocular RGB images.
Since the location recovery in 3D space is quite difficult on
account of absence of depth information, this paper proposes
a novel unified framework which decomposes the detection
problem into a structured polygon prediction task and a depth
recovery task. Different from the widely studied 2D bounding
boxes, the proposed novel structured polygon in the 2D im-
age consists of several projected surfaces of the target object.
Compared to the widely-used 3D bounding box proposals, it
is shown to be a better representation for 3D detection. In or-
der to inversely project the predicted 2D structured polygon to
a cuboid in the 3D physical world, the following depth recov-
ery task uses the object height prior to complete the inverse
projection transformation with the given camera projection
matrix. Moreover, a fine-grained 3D box refinement scheme
is proposed to further rectify the 3D detection results. Exper-
iments are conducted on the challenging KITTI benchmark,
in which our method achieves state-of-the-art detection accu-
racy.

Introduction

3D object detection is an important computer vision task
since it is an essential component of autonomous driving
and robot perception to avoid collisions with surrounding
objects. Most existing 3D object detection methods heav-
ily rely on LiDAR devices to obtain accurate and direct
depth measurements. However, such sensors can not widely
adopted due to the expensive cost and limited perception
range (∼100m). The farther away the objects are, the fewer
and sparser depth measurements would be on the objects.
In contrast, cameras are much cheaper and can be installed
on any vehicles. This paper mainly focuses on 3D detection
with monocular images. In general, a 3D bounding box can
be described by 7 parameters in autonomous driving scenar-
ios, i.e. the location (x, y, z), size (l, w, h) and orientation θ
on the ground. For 3D detection from monocular images, re-
covering the location in 3D space is challenging on account
of the absence of the accurate depth measurements. As il-
lustrated in Fig. 1, given an accurate 2D bounding box of an
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Figure 1: 3D detection from 2D monocular images is chal-
lenging as even accurate 2D detection boxes (top) corre-
spond to ambiguous 3D detection boxes (bottom). Best
viewed in color.

object (Fig. 1 (a)), its 3D location is still difficult to recover
because one 2D box has an infinite number of correspond-
ing 3D boxes (Fig. 1 (b)) according to 2D-to-3D projection.
However, the projection of the 3D bounding box on the 2D
image plane is unique and much easier to estimate with fea-
tures in a 2D image. Since the projected 3D box follows
prior knowledge of being a polygon consisting of several
quadrilaterals (corresponding to the visible surfaces of the
3D box), we refer it as structured polygon for convenience.
The 3D box can be completely recovered given the struc-
tured polygon, depth and the projection matrix. As the cam-
era projection matrix is generally known in auto-driving sce-
narios, the only additional information required is the depth
of the object.

Inspired by the analysis above, we propose a novel frame-
work that decomposes the 3D object detection task into a
structured polygon prediction task and a depth estimation
task. Different from the commonly used 2D bounding boxes
in most previous works (Chen et al. 2016), (Mousavian et al.
2017), (Xu and Chen 2018) and (Qi et al. 2018), the struc-
tured polygon can provide richer information for the 3D box
recovery. Since the challenging depth estimation task is de-
coupled, the specific module can be designed to accurate
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Figure 2: The overall framework (Decoupled-3D) decouples the monocular 3D object detection problem into sub-tasks. The
overall network consists of three parts. (Top row) The 2D structured polygons are generated with a stacked hourglass network.
(Middle row) Object depth stage utilizes 3D object height as a prior to recover the missing depth of the object. (Bottom row)
3D box refine stage rectifies coarse 3D boxes using bird’s eye view features in 3D-ROIs. Best viewed in color.

tackle it. Moreover, the prediction of other parameters, e.g.,
the orientation of the object and the aspect ratio, would not
be affected by depth estimation. Therefore, our framework
has significant superiority over existing works that estimate
all the 3D parameters simultaneously (Chen et al. 2018),
(Chen et al. 2017), (Xu and Chen 2018), (Qi et al. 2018).

To obtain the structured polygon, we regress the projec-
tion points of the eight vertices of the cuboid via a stacked
hourglass network. With the predicted structured polygon,
we propose an efficient method to estimate the depth. Specif-
ically, we use the object height as a prior to compute the in-
verse projection transformation from the 2D image plane to
3D space with the given camera projection matrix. With the
estimated depth and the obtained structured polygon, we can
consequently recover the complete 3D box.

The 3D box obtained from previous steps is actually a
coarse estimation. We further propose a 3D box refinement
scheme to rectify the coarse 3D boxes of the objects. We use
the local features around and within the coarse 3D box for
the refinement. The features are extracted from the bird’s eye
view map of the estimated depth map by a monocular depth
estimation algorithm DORN (Fu et al. 2018). In contrast to
previous works that refine the 3D boxes with 2D image-
level features such as MGR (Qin, Wang, and Lu 2019) and
MLF (Xu and Chen 2018), we refine the deviations of coarse
boxes with bird’s eye view map containing direct spatial in-
formation. The ingenious design can align the coarse boxes
adaptively and substaintially enhances the accuracy of 3D
boxes.

To validate the effectiveness of our method, we perform
thorough experiments on the challenging 3D object detec-
tion benchmark KITTI (Geiger, Lenz, and Urtasun 2012)
and achieve new state-of-the-art performance under both
APBEV and AP3D metrics. The contributions are summa-
rized as following three-fold:

• A novel framework, which decomposes the challenging
3D detection problem into sub-tasks of image based struc-
tured polygon prediction and object depth estimation, is
proposed. The two decomposed sub-tasks can be better
tackled.

• An efficient object depth estimation approach is proposed,
which uses the object height as a prior. Combined the
depth with the structured polygon, coarse 3D boxes can
be obtained.

• A fine-grained 3D box refinement scheme is proposed.
Different from the existing methods, we rectify the coarse
boxes with bird’s eye view map, which significantly im-
proves the accuracy of the 3D boxes.

Related work

We briefly review recent works based on LiDAR data,
stereo images and monocular images.

LiDAR-based 3D Object Detection. Most state-of-the-art
3D object detection methods reconstruct 3D bounding box
using point clouds from LiDAR. (Luo, Yang, and Urtasun
2018) and (Zhou and Tuzel 2018) quantize the raw point
cloud by using voxel grid and then feed the structured
voxel grid to 2D or 3D CNN to detect 3D objects. (Qi et
al. 2018) and (Shi, Wang, and Li 2019) directly exploit
raw point cloud to generate 3D bounding boxes instead
of quantizing to voxel grid with less information lossing.
They respectively uses 2D bounding box and segmentation
to lock effective point cloud and both encode point cloud
via PointNet++ (Qi et al. 2017). Our method focuses on
monocular data setting and unavoidably suffers from the
lack of accurate and direct depth measurements.

Stereo-based 3D Object Detection. There are several

10479



works are based on stereo vision. Stereo R-CNN (Li, Chen,
and Shen 2019) utilizes stereo RPN to detect 3D objects
on left and right images simultaneously and tries novel
pixel-level refinement based on stereo matching to refine
3D boxes. 3DOP (Chen et al. 2015) assumes enormous
3D candidates and exploits ground-plane prior and object
size to set up a energy function to filter the candidates.
Stereo images provide more information than monoculars.
However, stereo setting has high requirements during the
camera installation while our approach only needs a single
image, which can be more flexible in real cases.

Monocular-based 3D Object Detection. More and
more recent works are based on monocular images even
through it is the most difficult. MGR (Qin, Wang, and
Lu 2019) and Mono3D (Chen et al. 2016) encode RGB
image feature to 2D CNN to regress 3D proposals and
further refine the proposals with superimposed 2D features.
Mono3D generates a diverse set of 3D candidate boxes first
and exploites ground plane prior and 2D cues including
segmentation and object size to filter the candidates.
Pseudo-LiDAR (Wang et al. 2019) transforms the depth
map into pseudo point clouds and feeds the points into
LiDAR based methods. (Kehl et al. 2017), (Pepik et al.
2015) and (Chabot et al. 2017) adopt CAD models to build
templates for better supervision. Deep3Dbox (Mousavian
et al. 2017) leverages the geometry constrains between
3D and 2D bounding box to recover the 3D poses. These
methods use more information from the superimposed 2D
image level features or additional CAD models to constrain.
However, our method decomposes the problem in a novel
approach and designs specific strategies for each subtasks
to achieve better 3D object detection.

Our Approach

In this section, we present our proposed framework for 3D
object detecting from monocular images. First, we introduce
the overall formulation of our architecture. We then intro-
duce 3D coarse box estimation with structured polygon and
depth estimation. Finally, a 3D box refinement scheme to
rectify coarse boxes is demonstrated. We name our 3D ob-
ject detection method via decoupled tasks as Decoupled-3D,
as illustrated in Fig. 2.

Decoupled Tasks

As introduced, since the estimation of depth is the most
strenuous part for monocular based 3D object detection, we
decouple the depth from complicated 3D box estimation and
decompose the task into structured polygon prediction and
coarse-to-fine depth estimation sub-tasks.

In 3D object detection, each object can be covered by a
minimal cuboid in the 3D space, denoted by B3D. A cuboid
contains eight vertices Pi = [Xi, Yi, Zi]

T ∈ R
3, i = 1,· · · ,8,

as the left blue cuboid shown in Fig. 3. An object corre-
sponds to a special structured polygon on the 2D image
plane via 3D-to-2D projection. A structured polygon con-
tains eight projected vertices {pi = [ui, vi]

T |i = 1, · · · , 8}
as the 2D vertices shown in Fig. 3 (right). Given the camera

Figure 3: 3D bounding box (left) and structured polygon
(right). Best viewed in color.

intrinsic matrix K, the projection of a 3D vertex Pi on the
image plane is formulated as the following equation:

K · [Xi, Yi, Zi]
T
= [ui, vi, 1]

T
· Zi, (1)

where Zi is the depth of the vertex Pi. Given pi and Zi, Pi

can be obtained as:

[Xi, Yi, Zi]
T
= K−1 · [ui, vi, 1]

T
· Zi. (2)

According to this equation, to estimate B3D, we just need
K, projected 2D vertices pi and the corresponding depth Zi.
As the camera intrinsic matrix K is generally known, the
remaining problem is the estimation of the 2D vertices of
the structured polygon and their corresponding depths.

2D Structured Polygon Estimation

In order to first obtain the locations of objects in the 2D im-
age, we predict the 2D bounding box of each object by Faster
RCNN (Ren et al. 2015).

For structured polygon estimation, we propose to regress
the 2D image coordinates of the 8 vertices based on the fea-
tures extracted from the object area. However, it is still dif-
ficult to find accurate position in occlusion areas, texture-
less regions and reflective surfaces. As shown in Fig. 4,
the vertices are projected on texture-less background such
as ground plane and wall without strong physical meaning.
Solely applying the local feature is generally insufficient for
accurate estimation in such challenging regions. Therefore,
global context information should be incorporated to infer
accurate positions of the vertices.

Figure 4: Structured polygon estimation aims to estimate the
2D locations of the projected vertices.

To capture more global context information, we adopt
a stacked hourglass architecture after several shallow con-
volution layers (res2 in ResNet). This architecture con-
sists of two repeated top-down/bottom-up hourglass mod-
ules (Newell, Yang, and Deng 2016). The fusion of fea-
tures from multi-scales can integrate both local and global
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features to obtain accurate vertices positions. Each of the
eight projected vertices has a corresponding output heatmap
from the network, as shown in Fig. 4. We use Mi to de-
note the heatmap of the projected vertex pi, and Mi(u, v) is
the value of the pixel (u, v) on the heatmap, which repre-
sents the probability of the vertex locating at this location.

The supervision of each vertex is a label map M̂i with the
ground truth position being one and others being zeros. We
use the Euclidean loss function for training, which can help
the model converge faster:

Lsp =
∑

i

||Mi − M̂i||
2
2 (3)

During testing, the vertex position is estimated as the loca-
tion with the highest probability.

p̂i = argmax
(u,v)

Mi(u, v) (4)

The label of the eight projected vertices can be obtained via
3D-to-2D projection with Eq. (1) from 3D coordinates of the
vertices.

Height-Guided Depth Estimation

The depth of an object is the most challenging parameter
to estimate due to the fact that this information is missing
after 3D-to-2D projection. Therefore, instead of directly re-
gressing the strenuous depth from image-level features, we
choose to recover the depth via camera projection principle.
Based on the projection principle, we adopt a simple, but ef-
fective strategy for the missing depth via structured polygon
and a 3D physical prior, object height.

Figure 5: Height-Guided Depth Estimation. Combine object
height H and corresponding pixel value h to estimate object
depth. Best viewed in color.

As shown in Fig. 5, f is the camera focal length, H rep-
resents the 3D height of object and hj for j=1, 2, 3, 4 is
the projected height of one vertical edge of the cuboid. The
height values of the four vertical edges in 3D space are the
same, while the projected height of the four vertical edges
are different due to their different locations in the 3D space.
Fig. 5 clearly shows the 3D-to-2D projection process of one
vertical edge (i.e., h2). Therefore, the corresponding depth
(Zj) of each vertical edge of the cuboid can be expressed as

Zj = f ·H/hj for j = 1, 2, 3, 4 (5)

where hj can be directly obtained from the estimated struc-
tured polygon, which is the pixel distance of two projected

vertices. For object height H , which represents real height
in 3D space, an intuitive idea is to use the average value AH

obtained from the statistics of the height values in data set.
However, the average height is not accurate enough for each
instance. So we estimate the height of each object. Specifi-
cally, we pool the RoI feature of an object on the feature map
from Res4, and then use 2 fully connected layers to predict
the height. Instead of regressing the ground truth height GH

directly, our regression target tH is the scale change:

tH = log(GH/AH) (6)

The Smooth-l1 (Girshick 2015) loss function is adopted for
the training of the regressor, since Smooth-l1 is less sensitive
to outliers. Further, according to Eq. (2), the coordinates of
eight vertices in 3D space can be obtained via generated pro-
jected vertices and depths.

With the eight 3D vertices, we use an average operation
to obtain a coarse 3D box. Specifically, in KITTI dataset the
location of an object is defined as the position of the bottom
center of its 3D bounding box, so we use the average of the
midpoints of the diagnal P2P7 and P3P6 to estimate the lo-
cation (x, y, z). The l can be calculated using the average of
distances of P2P3, P6P7, P1P4 and P5P8. h and w are cal-
culated using the similar way. Orientation θ comes from the

average of four vertors
−−−→
P3P2,

−−−→
P7P6,

−−−→
P4P1 and

−−−→
P8P5.

3D Box Refinement

The 3D box obtained from previous steps is actually a coarse
estimation. But the error is usually minor and the ground-
truth is just located nearby. As shown in bird’s eye view of
Fig. 6 (left), the predictions have deviations about 1m.

Figure 6: 3D Box Refinement. Rectify coarse boxes with
bird’s eye view map.

Based on this fact, the proposed method tailors a fine-
grained refinement scheme for 3D detection. Different from
existing methods exploiting image-level features or front-
view depth map, we leverage bird’s eye view map, which
contains direct spatial information, to rectify coarse boxes.
The well-designed scheme can adjust coarse 3D boxes to
better locations in nearby region. For convenience, we refer
this Fine-Grained refinement strategy as FG.

Bird’s eye view maps are transformed from predicted
monocular depth maps using DORN (Fu et al. 2018). The
details for the transformation process are outlined in Imple-
mentation Details. We take an entire bird’s eye view map
and a set of coarse boxes as input. The whole map is pro-
cessed by a CNN to produce a feature map. Then, for each
object we adopt a warping operation of the region on the
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feature map to extract a fixed-length feature vector. The re-
gion has 2x size of the coarse box to ensure that targets are
within this region. Since this region contains direct 3D in-
formation, we named it 3D-ROI for convenience. Each fea-
ture vector is fed into a sequence of convolution layers fol-
lowed by a fully-connected layer that outputs residual val-
ues (δx, δy, δz, δl, δw, δh, δθ) based on the coarse 3D box.
A Smooth-l1 loss is used for the training of this network.

In this way, the deviations of coarse boxes are removed,
which surges the performance. We argue that bird’s eye view
map with direct 3D spatial information is much more suit-
able for fine-grained refinement in 3D task than 2D image-
level features or front-view depth map. Detailed analysis and
comparisons are in Ablation Study.

Experiments

We evaluate the proposed method on the KITTI object detec-
tion benchmark (Geiger, Lenz, and Urtasun 2012) and split
training images into training set and validation set following
the commnly used train/val split mentioned in 3DOP (Chen
et al. 2018). In the dataset, objects are divided into three dif-
ficulty regimes: easy, moderate and hard, according to the
2D bounding box height, occlusion and truncation degrees
following the KITTI official standard. For all experiments,
we follow most previous methods to focus on vehicle cate-
gory as it has the majority of samples in the dataset.

Implementation Details

ResNet-50 (He et al. 2015) is selected as our basic back-
bone to extract features, which is initialized by pre-trained
weights on ImageNet (Russakovsky et al. 2015). The initial
learning rate is 0.001 for the previous 30K interactions and
then 0.0001 for another 10K iterations. For the 3D box re-
finement, we consider the following range:

−25m ≤ X ≤ 25m,−1.5m ≤ Y ≤ 4.09m, 0 ≤ Z ≤ 50m

The predicted depth map is from a monocular based method
DORN (Fu et al. 2018). The row and column represent left-
right (i.e., X) direction and the depth (i.e., Z) direction re-
spectively, and the top-down value, Y is mapped to a slice
at each (X,Y ) location on bird’s eye view maps. The width
and height of 3D-ROI are set as 256 and 456 respectively.
The size is computed from the statistics to ensure targets are
within this region. For the object height, we use 1.46m as the
average value.

Comparison with Other Methods

We compare with state-of-the-art monocular based methods
including Mono3D (Chen et al. 2016), Deep3Dbox (Mousa-
vian et al. 2017), MLF (Xu and Chen 2018), ROI-10D
(Manhardt, Kehl, and Gaidon 2019), GS3D (Li et al. 2019),
MGR (Qin, Wang, and Lu 2019), MonoPSR (Ku, Pon, and
Waslander 2019) and Pseudo-LiDAR (Wang et al. 2019).

Metrics. The proposed method is evaluated by Aver-
age Precision on both bird’s eye view (APBEV ) and 3D
detection (AP3D) metrics. APBEV evaluates whether the
prediction is accurate by calculating the intersection over

union (IoU) with ground-truth boxes from bird’s eye view.
This performance of this metric is critical for autonomous
driving to avoid collision. AP3D counts the intersection of
two cuboids (i.e., predicted box and ground truth) and adds
object height and up-down information based on location.

Bird’s Eye View Evaluation. APBEV evaluates the
projection of the 3D box on bird’s eye view. For comprehen-
sive comparison, we experiment with two IoU thresholds
(0.5 and 0.7) following exsting methods. Just as shown in
Tab. 1, our method outperforms state-of-the-art monocular
based methods at both IoUs and surpasses Pseudo-LiDAR
(Wang et al. 2019) by 4.91% for 0.5 IoU and 3.39% for 0.7
IoU under moderate level respectively.

3D Detection Evaluation. For AP3D, we also per-
form evaluations under the two IoUs. Compared to APBEV ,
AP3D expands from bird’s eye view plane to 3D space and
calculates the intersection over union with 3D ground-truth
boxes. As show in Tab. 1, our method outperforms state-
of-the-art monocular methods in all difficulties for 0.5 IoU
and surpasses Pseudo-LiDAR (Wang et al. 2019) by 8.20%
for moderate level. The results of 0.7 IoU have certain gap
compared with Pseudo-LiDAR.

Results on Test Set. We submit our results to KITTI
test server for evaluation and compare with all monocular
based published methods on the test set. As shown in Tab. 2,
the results show that our method outperforms the previous
methods by significant margins in almost all metrics, which
prove the effectiveness of our method. Compared to the
latest state-of-the-art method, our APBEV has an average
improvement of 3.31%, and AP3D increases by ∼1% at
easy level.

Ablation Study

In this section, we conduct ablation experiments to validate
the effectiveness of different components of our overall
framework. All comparison are engaged on validation set.

Benefits of Decoupled Tasks. As introduced in De-
coupled Tasks, we decompose the 3D box estimation
problem into sub-tasks including image based structured
polygon estimation and height-guided depth estimation.
To better evaluate the contribution of decoupled tasks, we
compare our coarse and final results with regressing all
variables simultaneously. As shown in Tab. 3, the perfor-
mance of jointly regressing all parameters is far worse than
our decoupled strategy. Even compared with the coarse re-
sults, there is a drop of 10% in terms of APBEV and AP3D.

Benefits of Structured Polygon. We add an experi-
ment of utilizing bird’s eye view (BEV) features to regress
coarse 3D boxes instead of using structured polygon (SP).
As shown in Tab. 4, the model with structured polygon
outperforms the one with BEV by 15.70% and 22.62%
in terms of APBEV and AP3D at moderate level, which
demonstrates the contribution of structured polygon.
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Table 1: Bird’s eye view localization and 3D detection performance: Average Precision in bird’s eye view (APBEV ) and
Average Precision of 3D boxes (AP3D) on KITTI validation set.

Method
IoU=0.5 APBEV IoU=0.5 AP3D IoU=0.7 APBEV IoU=0.7 AP3D

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

Mono3D 30.50 22.93 19.16 25.19 18.20 15.52 5.22 5.19 4.13 2.53 2.31 2.31
Deep3Dbox 31.12 22.53 18.12 26.15 19.42 14.62 9.33 6.71 5.11 5.49 3.96 2.92

MLF 55.02 36.73 31.27 47.88 29.48 26.42 22.03 13.63 11.60 10.53 5.69 5.39
ROI-10D - - - - - - 14.76 9.55 7.57 10.25 6.39 6.18

GS3D - - - 33.11 27.16 23.57 - - - 11.63 10.51 10.51
MGR 53.29 37.55 30.46 50.51 36.97 30.82 21.67 14.93 12.34 13.88 10.19 7.62

MonoPSR 56.97 43.39 36.00 49.65 41.71 29.95 20.63 18.67 14.45 12.75 11.48 8.59
Pseudo-LiDAR 70.8 49.4 42.7 66.3 42.3 38.5 40.6 26.3 22.9 28.2 18.5 16.4

Ours 73.22 54.31 45.97 69.40 50.50 42.46 44.42 29.69 24.60 26.95 18.68 15.82

Table 2: Average precision for bird’s eye view localization
and 3D detection on KITTI test set.

Method
APBEV AP3D

Easy Mod. Hard Easy Mod. Hard

ROI-10D 9.78 4.91 3.74 2.02 4.32 1.46
GS3D 8.41 6.08 4.94 2.90 4.47 2.47
MGR 18.19 11.17 8.73 9.61 5.74 4.25

MonoPSR 18.33 12.58 9.91 10.76 7.25 5.85

Ours 24.62 14.66 11.46 11.68 7.28 5.69

Table 3: Ablation study of decoupled tasks. Jointly repre-
sents all variables regressed simultaneously.

Method
IoU=0.5 APBEV IoU=0.5 AP3D

Easy Mod. Hard Easy Mod. Hard

Jointly 16.44 12.05 9.90 6.84 4.50 4.13

Coarse 26.42 20.91 17.93 19.67 16.36 13.87

Ours 73.22 54.31 45.97 69.40 50.50 42.46

Benefits of Height-Guided Depth Estimation. As in-
troduced, we propose a simple, but effective height-guided
depth recovery strategy. To verify the effectiveness, we
regress the depth directly and use mean depth error to
compare the two strategies. As shown in Tab. 5, the mean
depth error of height-guided depth recovery strategy is
1.21m, while directly regressing depth is 2.41m almost
twice as much as the former. The depth inferred from height
outperforms regressing directly, which is due to that the
height-guided strategy tackles the problem by utilizing the
stable physical prior object height.

Benefits of 3D Box Refinement. As mentioned in 3D
Box Refinement, we propose a tailored refinement scheme
for 3D task and argue that bird’s eye view map with
direct 3D spatial information is much more suitable than
2D image-level features and front-view depth map for
fine-grained refinement in the 3D space. For comprehensive
comparison, we refine coarse boxes with 2D image features
and front-view depth map respectively. As shown in Tab.
6, the impacts of 2D image-level features (i.e., +img) and
front-view depth map (i.e., +fv) are basically the same.
The results of 3D detection are all better than our coarse
results and AP3D improves about 1.3% at hard level.

Table 4: Ablation study of structured polygon. BEV repre-
sents coarse 3D boxes regressed with bird’s eye view map.

Method
IoU=0.5 APBEV IoU=0.5 AP3D

Easy Mod. Hard Easy Mod. Hard

BEV 56.19 38.61 31.94 40.03 27.88 22.70

SP 73.22 54.31 45.97 69.40 50.50 42.46

Table 5: Ablation study of height-guided depth estimation.
The lower the mean depth error value, the better the results.

Method mean depth error

regress directly 2.41m
height-guided 1.21m

The performance of localization is basically unchanged.
While with the help of fine-grained 3D box refinement
(i.e.,FG), APBEV and AP3D have been substantially im-
proved, which proves the effectiveness of FG successfully
capturing bird’s eye view map.

Table 6: Ablation study of 3D box refinement. Comparison
of different refinement strategies. (+img) and (+fv) repre-
sent refining the coarse results via image-level features and
front-view depth map respectively.

Method
IoU=0.5 APBEV IoU=0.5 AP3D

Easy Mod. Hard Easy Mod. Hard

Coarse 26.42 20.91 17.93 19.67 16.36 13.87

+img 26.36 20.74 17.83 21.82 16.95 15.17
+fv 26.32 20.70 17.80 21.81 16.93 15.14
+FG 73.22 54.31 45.97 69.40 50.50 42.46

The remarkable margins for our coarse to final results is
due to two reasons. One is about the elaborately designed
refinement scheme, which leverages bird’s eye view map.
Compared to other formats, our design with direct spatial in-
formation is much more suitable for 3D detection. Another
is that most coarse boxes are actually not far from the cor-
responding targets. As shown in Fig. 8, most deviations of
coarse X and Z are within 1m. As long as the boxes are
shifted suitably, the accuracy can be increased substantially.

We also conduct an additional experiment to verify the
contribution of FG. As shown Tab. 7, when applied on other
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Figure 7: Qualitative Results. Top: structured polygons. Bottom: 3D bounding boxes in bird’s eye view. Camera center is located
at bottom center. Predicted 3D bounding boxes are drawn in pink, while ground truths are in green. Best viewed in color.

methods like Mono3D (Chen et al. 2016) and MGR (Qin,
Wang, and Lu 2019), FG can also improve them with sig-
nificant margins.

Table 7: Ablation study of 3D box refinement. Results for
other methods refined similarly.

Method
IoU=0.5 APBEV IoU=0.5 AP3D

Easy Mod. Hard Easy Mod. Hard

Mono3D 30.50 22.93 19.16 25.19 18.20 15.52
Mono3D+FG 54.12 37.67 32.20 41.04 29.05 24.59

MGR 53.29 37.55 30.46 50.51 36.97 30.82
MGR+FG 65.87 49.01 40.93 60.95 43.80 36.27

Qualitative Results

We show some quantitative results in Fig. 7, where struc-
tured polygons are visualized in top row and the 3D boxes
are showed in bottom on bird’s eye view. The pink and
green boxes represent ground-truth boxes and predicted re-
sults respectively. As seen from the visualization results, our
method can accurately predict the boxes in different loca-
tions and orientations only based on monocular images.

Conclusion

In this paper, we propose an efficient monocular 3D object
detection framework which decomposes the complicated 3D
object detection problem into a structured polygon predic-
tion task and a following depth recovery task. The former
task uses a stacked top-down/bottom-up hourglass network
to build the structured polygon with a pretty high precision.
The following depth recovery task utilizes the object height
prior to inversely project the structured polygon to a cuboid
in the 3D space. Moreover, a fine-grained refinement scheme
is then adopted to rectify the deviations, which uses the lo-
cal feature from the bird’s eye view transformed from the

Figure 8: Deviation analysis of X and Z. The figure shows
the number of absolute deviation of X and Z of the coarse
boxes compared with ground-truth boxes in different inter-
val segments. Best viewed in color.

prediction of a monocular depth estimation algorithm. Ex-
periments on the KITTI benchmark proves the effectiveness
of our proposed framework.
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