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Monocular Depth Ordering Using T-Junctions and
Convexity Occlusion Cues
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Abstract— This paper proposes a system that relates objects
in an image using occlusion cues and arranges them according
to depth. The system does not rely on a priori knowledge of
the scene structure and focuses on detecting special points,
such as T-junctions and highly convex contours, to infer the
depth relationships between objects in the scene. The system
makes extensive use of the binary partition tree as hierarchical
region-based image representation jointly with a new approach
for candidate T-junction estimation. Since some regions may
not involve T-junctions, occlusion is also detected by examining
convex shapes on region boundaries. Combining T-junctions and
convexity leads to a system which only relies on low level depth
cues and does not rely on semantic information. However, it
shows a similar or better performance with the state-of-the-art
while not assuming any type of scene.

As an extension of the automatic depth ordering system, a
semi-automatic approach is also proposed. If the user provides
the depth order for a subset of regions in the image, the system
is able to easily integrate this user information to the final
depth order for the complete image. For some applications, user
interaction can naturally be integrated, improving the quality of
the automatically generated depth map.

Index Terms— Binary partition tree (BPT), convexity, monoc-
ular depth, occlusion cues, T-junction estimation.

I. INTRODUCTION

HUMANS are known for their ability to recognize objects
and determine the scene structure in many distinct situ-

ations. Our capacity to retrieve a coherent depth interpretation
of the environment seems to be robust and reliable in the
majority of cases, with the exception of some optical illusions.
The ability to perceive a 3-D world in humans is mainly due to
binocular vision, where each eye provides a different image of
the scene and disparity is subconsciously inferred. However,
in monocular situations, perception is affected but still, depth
information can be perceived. The scientific community has
tried to mimic the human behavior to determine the depth
structure of scenes. To this day, human performance is still
much better than computer based approaches in both time
and accuracy, but the evolution of 3-D visualization hardware
encourages researchers devote efforts to estimate depth from
visual content.
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With the decrease of stereo camera costs, depth estimation
in stereo/multiview systems is gaining more importance. Most
of the state of the art systems on depth estimation take profit
of multiple points of view to infer disparity. However, most
of the acquired content has only one point of view. The huge
amount of photos or movies obtained with conventional cam-
eras makes monocular depth estimation an attractive research
area and an rather pressing need for the 3-D media industry.
As 2-D to 3-D conversion is a relatively new field, many
systems still rely on semi-supervised approaches to correct
estimation errors. For example, converting monocular content
to 3-D to some extend has been an objective for many
industrial actors such as Microsoft [1], Disney [2] or Prime
Focus (a post-production company for Hollywood Studios)
with View-D software [3]. Monocular depth systems are not
able to estimate a perfect depth map, but, in practice, a
rough representation may suffice for humans to perceive a
3-D effect [4]. Additionally, monocular depth estimation can
be used as an input to other systems such as object editing by
depth (foreground/background removal, or example) or as a a
rough depth estimation for a full 3-D system.

Although current commercial products (such as the ones
previously mentioned) heavily rely on human interaction to
derive a correct depth interpretation, there is a need for an
automated system to reduce both time and costs. To this
end, many research institutions [5], [6] have proposed several
monocular depth estimation systems. These systems base
their reasoning on finding monocular depth cues in images.
Although these cues are easily identified by humans, they are
a detection challenge for state of the art computer algorithms.
Since they are an important part of the proposed algorithm,
Section I-A is devoted to describe their role on human depth
perception. Section I-B discusses the current literature on
monocular depth estimation, followed by a brief description
of the structure and innovations of our system.

A. Monocular Low Level Depth Cues

Perceptual organization is a widely known area of study
in the Gestalt Psychology with its Laws of Organization.
According to this field, the set of cues that humans use to
infer depth in a single image [7], are, among others: bright-
ness, shading, blurring, occlusion, convexity, vanishing points,
texture gradient and familiar size. Even though humans make
extensive use of stereo vision to perceive absolute depth, when
only one point of view is available, we are also capable to infer
certain depth relationships. Many monocular cues also rely on
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Fig. 1. (a) T-junction example. Locally, region R2 is the one forming the largest angle, appearing to be over R1 and R3. (b) Inverted T-junction example.
Locally, region R1 is the one forming the largest angle, but corresponds to the sky region, which is behind the dog. (c) and (d) Points of high convexity are
cues to determine the relative depth. Local cues at each boundary point should be averaged to decide the correct sign of convexity.

the overall scene knowledge and previously known situations
such as the sun being on top or people standing upright on
the ground. A priori knowledge of the scene structure, like
the approximate size of a person or the shape of a tree may
also help to infer depth in natural scenes. Other cues, such as
occlusion, are local and related to specific image points. At
these points, the image structure may offer good signs of depth
discontinuity. Produced by the projection of the 3-D scene into
the image plane, occlusion is specially observed in two cases:
T-junctions and convexity.

T-junction points appear when an object is in front of
other two objects, see Fig. 1. T-junctions are formed by
three regions and, locally, one of them is forming an almost
flat angle (i.e. 180 degrees). The other two regions may
form two arbitrary angles, but if any falls below 30-40
degrees, the perception of occlusion falls rapidly [8]. Although
T-junctions are clear signs of occlusion, the relative depth
order of the intervening regions cannot be determined exclu-
sively by examining the local angle configuration. In normal

T-junctions, the region forming the largest angle is likely to be
the occluding region (and thus closer to the viewer). However,
in the case of inverted T-junctions, the same region can
correspond to the background (and thus occluded and further
away to the viewer). According to [8], junction detection is
difficult even for humans but, once detected, the occluding
side is easily identified, see Fig. 1(b). Computers, however
have much more difficulties in determining the depth order
and a global reasoning on other T-junctions is needed.

The second case of occlusion is produced when a single
object is lying in front of other regions. In small neigh-
borhoods of the object boundaries, convex shapes appear to
be in front of their background, whether or not other cues
are present. When humans deal with natural shapes, local
decisions at points of object boundaries are averaged along
the entire object contour to arrive at a global interpretation.
For example, in Fig. 1(c), a feline standing in front of a wall
is shown. If convexity is interpreted along the boundaries
as shown in Fig. 1(d), there may be parts of the contour
indicating one depth order (green arrows) and other parts with
opposite sign (red arrows). In such cases, humans partially use
convexity cues to decide that the feline is in front of the wall.
As a priori information, recognizing the different parts of the
image (the feline and the wall) immediately restricts the scene
structure. Humans know that a feline cannot be visible and
behind a wall at the same time. Nevertheless, occlusion cues
help to enforce depth relationships even in known situations.

Humans not only make use of local cues to derive the
depth structure of an image, but other global reasonings
take place. Therefore, it is unlikely that a system for depth
perception defined only on T-junction and convexity detection
can compete with human vision. However, in this paper, we
are interested in studying the performances and limitations
of such a system. In cases where the system cannot achieve
the correct depth interpretation, user interaction can be used.
Since humans can easily identify depth planes in an image,
the proposed system incorporates the possibility to accept
depth information on a limited set of regions provided with
markers defined by the user. Markers are widely used in image
processing: image segmentation [9], reconstruction [10] or 2-D
to 3-D reconstruction [4]. In this work, markers set the depth
relations on image regions.

B. Related Work

Monocular depth perception is a fairly new field of study
in computer vision. One of the first works trying to recover
the image structure was presented in [11], but reference points
were needed to reconstruct lines and planes. In [12], instead
of the overall depth organization, a computation of the scale
of the image (i.e. mean depth) was proposed. Focusing on
algorithms that recover absolute/relative depth of regions in
the image, two main approaches are found. The ones that use
high level information and the ones that operate over the image
structure finding special points indicating some depth cues. In
the former class, [5] and [6] oversegment the image and gather
for each region color, texture, vertical and horizontal features
to use them in a conditional random field, trained a priori with
a ground truth data set, for absolute depth estimation. The main
drawback of high-level information approaches is that they are
limited to the kind of images they have been trained for. The
latter type of systems, where [13] can be included, use focus
on the detection of relative depth cues such as occlusion to
order the objects in the scene. Occlusion does not permit to
infer absolute depth as high-level information may offer, but
is more generic as it does not assume anything about the type
of scene.

Depth ordering the regions of an image permits to determine
immediately the occlusion boundaries. An occlusion boundary
is defined as the border between two different depth planes.
Moreover, the nearest side of the boundary is defined as the
owner (or figure, foreground) of the boundary. Similarly, its
further side is called the background or simply, ground, of
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the boundary. The problem to detect on occlusion boundaries
which side is figure and which side is ground has been
addressed by works in [14]– [16]. Similar to depth estimation
systems, some of these approaches rely also on low level cues
such as shapemes [14], convexity or parallelism [15]. The main
drawback of these systems is that they do not provide closed
partitions and only single contours are labeled.

Following the computational vision model of [17], [18],
our system tries to integrate the estimation of depth cues
and the segmentation process. In this work, the segmentation
is understood as a two step process: A construction of a
region-based, hierarchical representation of the image, and a
selection of the regions in this hierarchy to compose the final
depth ordered partition. Inside this framework, T-junction and
convexity cues are estimated iteratively during the first step of
the system. The second stage proposes an optimization scheme
to produce a depth ordered partition from the depth relations
determined by the previously mentioned cues.

This architecture differs from the one of [13], which consists
of an estimation of T-junction points, followed by image
segmentation, convexity detection and a final depth ordering
stage. Here we integrate the estimation of low level depth cues
into the construction of the BPT. As the framework is region-
based, our aim is to increase the performance and robustness
of the cue detection compared to [13] where the T-junction
detection is performed using a modification of the [19] pixel-
based detector. A part from the architecture, another funda-
mental difference with [13] is that the T-junction model is
extended to include both normal and inverted depth orders.
Finally, the last major difference deals with the pruning of the
BPT, formulated here as an optimization problem on the tree.

Although the system can provide an automatic depth
ordered segmentation of the image, an optional strategy
involving user interaction is also discussed. The purpose of
incorporating human interaction is to help the system to decide
in challenging situations, where the assumptions related to low
level depth cues are not fulfilled. To interact with the system,
a few depth markers can be provided as an additional input. If
that is the case, the depth relations introduced by the user are
naturally combined with the detected depth cues in the second
stage of the system. This form of interaction is suitable owing
to the fact that the first step of the system is computationally
more costly. As a result, with little computation overload, the
user is able to easily refine the markings in case the algorithm
does not provide a sufficiently accurate solution. The work
in [4] also proposes algorithms for semi-automatic 2-D to
3-D reconstruction, for videos and single images. These sys-
tems offer absolute depth maps (up to a scale), while our
system outputs relative depth orders.

Two major conclusions can be drawn from this work: First,
it is shown that using only low-level (and very local) cues a
global depth ordering of the image can be obtained. Second, it
is shown that even if the algorithm does not rely on a training
phase, results are of similar or better quality than approaches
of the state of the art [5], [6] that rely on high level specific
(even semantic) cues.

The following sections describe the system architecture.
First, the system models are exposed in Section II, as well as

how the hierarchical image representation is built. Section III
is devoted to the estimation of occlusion cues. Section IV
describes the process of finding a suitable depth ordered
partition from the set of estimated cues. Finally, experimental
results are presented in Section V for both the automatic
and the semi-automatic proposed systems. Comparison with
other systems is also performed qualitatively against [5], [6],
and [13] and quantitatively with [14], [15] by evaluating the
performance on occlusion boundaries.

II. SYSTEM MODELS

An important part of the system relies on the Binary
Partition Tree (BPT). The BPT is a structured hierarchical
representation of the image regions that can be obtained
iteratively from an initial partition [20], [21]. At each iteration,
pairs of adjacent regions are iteratively merged to form a
parent region containing the two merged ones [20]. The pair
of regions to be merged are the two most similar according
to a similarity measure. In this project, the BPT is used with
two objectives:

1) Region-based representation of the image: Pixels can be
thought as the basic unit of image information. Many
times working with pixels is limiting and another image
representation is needed. In our case the final objective is
to have a depth ordering of objects/regions in the image
so, a region representation is needed. Going from pixels
to regions is carried out using the BPT algorithm

2) Solution space: When the BPT is constructed, the leaves
of the tree represent the regions belonging to the initial
partition and the root node refers to the entire image
support. The remaining tree nodes represent the inter-
mediate regions formed during the merging process.
Many partitions can be formed by combining regions
represented in this hierarchical structure. This process
can be seen as a tree pruning. In summary, the BPT
defines a partition solution space.

A. Region Model

To define similarity, region models are needed, along with
a distance measure between them. The chosen color space
to represent the image is the C I E Lab because of the
perceptual nature of color difference metrics in this space.
Region color distribution is modeled using adaptive three-
dimensional histograms (signatures), [22]. Previous region
merging algorithms use a simpler region model, considering
only the mean color [21] or monodimensional histograms [23].
3-D-histograms do not loose correlation information between
channels. Unfortunately, their representation is very costly in
memory usage. To overcome this drawback, adaptive signa-
tures as in [22] are chosen. In practice, 8 dominant colors are
a good choice to represent the whole image [24], so the same
number is chosen to describe each region, but depending on
the region color homogeneity, a lower number may suffice.
Each signature si is characterized by a set of ordered pairs
{(p1, c1), (p2, c2) . . . (pn, cn)} with n ≤ 8. Each pair i is
composed of a representative color vector ci and its probability
of appearance pi . Since in a BPT construction, some regions
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belong to the initial partition and some others are created by
merging, the estimation of these dominant colors is depending
on the nature of the region. If the initial partition is formed
by individual pixels, the dominant color for each region is
simply the pixel color. If a segmentation is available as input,
the dominant colors of the regions containing many pixels
are estimated using a quantization algorithm as in [25]. In our
case, the proposed system has no segmentation input, therefore
the initial partition is formed by the pixels. On the other hand,
when a region is the result of a merging process, another
approach can be followed to reduce the computational burden.

Hierarchical Signature Estimation: To approximate a joint
signature s from two signatures si and s j , the following
algorithm is proposed: When two regions are merged, a new
signature s is created for the parent region by joining the
two underlying signatures, si and s j . While the number of
representative colors exceeds the maximum (that is 8, here),
the two most similar colors are merged and replaced by their
average color, until s contains at most 8 colors.

The distance di j chosen to measure the difference between
two colors i and j of signature s is di j = (pi + p j )ci j . Where
the ci j term is perceptually defined as in [22] which is based
in [26]:

ci j =

(
1 − e

−
�i j
γ

)
(1)

with �i j being the euclidean distance between Lab-colors ci

and c j . The decay parameter γ indicates a soft threshold of
distinguishable colors and is set to 14.0 as in [22].

B. Region Similarity Measure

The construction of the BPT is done by merging neighbor-
ing regions iteratively. The order in which these regions are
merged is defined by a similarity measure. Usually, this mea-
sure is based on low-level features of the regions such as color,
area, or shape [21]. In this work, however, depth information
based on T-junctions is also introduced to contribute to this
measure. The formal expression used to measure the similarity
between two adjacent regions R1 and R2 is:

d(R1, R2) = da (αdc + (1 − α)ds) dd (2)

da stands for the area distance. dc and ds are the color
and shape measures respectively. α is the weighting factor
between shape and color and its value was experimentally
set to α = 0.7, giving color much more importance than
shape. dd is the newly introduced depth measure. These four
contributions (area,color,shape and depth) are considered to be
key characteristics to define regions.

Color has been proven to be the most important feature. In
practice, however, objects in the real world have more or less
compact and round shapes. The exclusive use of color distance
dc lead to regions with unnatural shapes so a measure eval-
uating the region shape ds is introduced. Moreover, relevant
objects in a scene present similar areas so a term addressing
region size da is also included. Since the goal of this work
is to estimate depth planes, the inclusion of a depth measure
dd attempts to differentiate different levels of depth already
during the BPT construction.

To measure color similarity dc(R1, R2) between signatures,
the earth mover’s distance (EMD) [27] is chosen:

dc(R1, R2) = E M D(s1, s2). (3)

Although in [22] this distance is used locally to detect corners
and junctions, there is no knowledge that it has been used for a
complete segmentation process. The EMD distance is defined
to be the minimum cost to transport a certain probability
masses fi j to transform one signature s1 to another s2,
according to some costs between signature colors. Formally,
the EMD is defined as:

E M D(s1, s2) = min
∑

i

∑

j

fi j ci j (4)

subject to: fi j ≥ 0,
∑

i

fi j = p2 j ,
∑

j

fi j = p1i . (5)

The costs ci j are defined as the distance (1) between
signature colors. The constraints (5) impose that the probabil-
ity masses fi j should be non-negative and should transform
the probabilities of occurrence in s1 (p11, p12, . . . , p1n) to
the ones in s2, (p21, p22, . . . , p2n). The minimization of (4)
subject to (5) is performed using linear programming [28].
The shape distance is the relative increase of perimeter of the
new region with respect to the biggest one [21]:

ds(R1, R2) = max

(
0,

min(P1, P2) − 2P1,2

max(P1, P2)

)
(6)

where P1, P2 and P1,2 are the two region perimeters and the
common perimeter respectively. ds is only applied when both
region shapes are meaningful (i.e. at least 50 pixels in area).

The area distance is defined as:

da(R1, R2) = log (1 + min(A1, A2)) (7)

with A1, A2 the respective region areas in pixels. There is
no general consensus about which area weighting distance
should be used during BPT construction. In [21], [23], either
no weighting and linear weighting are performed. Generally,
area weighting is used to encourage the merging of small
and semantically unimportant regions before the large regions
merge. In this work, a logarithmic weighting is chosen.

As a final similarity measure, depth information dd is
introduced using T-junction candidate points. The idea is
to increase the region distance if two adjacent regions do
not belong to the same depth plane, according to a set of
T-junctions. To determine the probability that a region R1

occludes R2, common T-junction candidate points are exam-
ined. Candidates arise where three regions meet, see Fig. 2.

If R1 and R2 share a common neighbor R3, at least a
T-junction candidate n is present at the contact point(s) of the
three regions. For each candidate n a probability pi,n , i = 1, 2,
of the occluding region to be Ri is computed as described in
Section III. Common candidates between R1 and R2 determine
the probability of occlusion:

px =

(
1 −

Nx∏

n

(
1 − px,n

)
) Ny∏

n

(
1 − py,n

)
(8)

where (x, y) = (1, 2) or vice versa. Therefore, p1, p2 is the
probability of R1, R2 being the occluding region respectively.
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R1
R2R3

Fig. 2. Common T-junctions between R1 and R2. Red circles show the
T-junction points that should be evaluated when measuring the similarity
between R1 and R2.

N1 and N2 are the number of T-junctions indicating whether
R1 or R2 is the occluding region. The probability p1 can be
seen in the following way: if R1 is occluding R2, all the
p2,n should be false and at least one p1,n should be true.
A similar reasoning can be applied to p2. The final depth
distance between regions is defined as:

dd(R1, R2) =
1

(1 − |p1 − p2|)
. (9)

The measure dd(R1, R2) ≈ 1 either when there are conflicting
T-junctions indicating both R1 and R2 as occluding regions
(p1 ≈ p2), or when the T-junction confidences are low
(p1, p2 ≈ 0). dd(R1, R2) ≫ 1 when the occlusion relation
is very likely, that is, either p1 ≫ p2 or vice versa.

Introducing depth information into the region distance
allows us to favor the merging of regions belonging to the
same depth plane, leaving different depth planes to be merged
at the top of the tree. To evaluate (8) and, as a consequence,
(9), p1,n and p2,n need to be estimated for each candidate
point. This is the subject of the following section.

III. OCCLUSION DEPTH CUES ESTIMATION

Two subsystems are designed to detect the two considered
depth cues: T-junctions and convexity. For the first class of
cues, each point of the image is assigned a confidence value,
indicating the probability to be indeed a true T-junction. The
confidence computation is performed, as in [29], during the
BPT construction so as to introduce depth information into
the region similarity measure (2).

The second class of occlusion cues are convexity cues.
They relate two adjacent regions by their common boundary
shape and gradient intensity. Convexity is only reliable on
long contours which only appear at the very top of the BPT
structure. To this end, convexity cues are estimated for the final
depth ordering but do not affect the region similarity measure.

A. T-Junction Candidates Estimation

Several approaches can be found on the literature about
T-junctions estimation but, unlike the proposed system, many
of them rely on a hard threshold to detect these points [13],
[22], and [30].

In this section,we assume that we are analyzing a candidate
local configuration no in which R1 may be on the top of R2
and R3; that is, we want to estimate the value of p1,no of

Fig. 3. T-junction boundary presents boundary pixels (pink), which may
introduce bias in mean and variance estimation. The three different regions
are marked with white, gray, and yellow.

equation (8). Extension to p2,no is straightforward. To simplify
the notation, we call p this value of p1,no . To estimate the
confidence value p of a T-junction, color difference, angle
structure and boundary curvature confidence are evaluated at
each candidate point within a centered circular window (R =

10), except for the angle. Color contributes to differentiate
between contrasted regions, angle helps to infer the depth
relationship and curvature detects if the junction has clearly
defined boundaries. Since they are independent features,
p = pcolor pangle pcurve.

1) Color: When a T-junction is formed in an image at
a location pt , it may have some color characteristics that
indicate a discontinuity on depth. The analysis of the color
characteristics is limited to a local neighborhood � ( pt),
see Fig. 3. In this local window, the three regions can be
modeled with a three dimensional histogram, similar to the one
proposed as region model in Section II-A. Since the analysis
is done in a local neighborhood, n = 3 representative colors
proved to be sufficient. As shown in Fig. 3, the included pixels
for color confidence(s) evaluation are the ones which are not
neighbors of the other two regions. Due to the blurring of
contours, all region boundary pixels are discarded to avoid a
bias in the signature calculation.

Define hi i = 1, 2, 3 to be the histogram of region Ri near
the T-junction candidate. Since a distance measure can only
be applied to a histogram pair at a time, a total of three color
distances are computed. λi j , i < j , i, j = 1, 2, 3, represents
the distance between region Ri and region R j . Distances
are also computed using the EMD, as for the region color
similarity used for the BPT construction. Each distance gives
a value 0 ≤ λi j ≤ 1 :

λi j = E M D(hi , h j ). (10)

If λi j ≈ 0, the two regions do not seem different in a local
neighborhood. Conversely, if λi j ≈ 1 a strong contrast is
present between Ri and R j . The color confidence pcolor for
the pixel pt is obtained by:

pcolor =
2λminλmax

λmin + λmax
(11)

with λmax = max (λ12, λ13, λ23). λmin is computed similarly.
The measure (11) is motivated by the Harris corner detec-
tor [31], [32] and pcolor ≈ 1 only when all λi j ≈ 1.

2) Angle: The angle is a fundamental local cue to determine
the depth order of the three regions meeting at a T-junction,
see Fig. 1(a) and (b). Within the BPT construction, the angles
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of a T-junction point are determined by the region boundaries.
Information at the junction center is considered to be unclear,
so all the boundaries falling within a small circle of radius
3 are neglected. Region boundaries around T-junctions are
locally considered to be straight lines corrupted by noise. The
boundary coordinates can me modeled by:

bi j (n) = t + nϕi j + z(n) (12)

where t = (tx , ty) is a vector containing the T-junction
coordinates. ϕi j = (ϕx , ϕy) is a vector indicating the main
direction of the boundary and z(n) represents the noise. The
tangent vector at each boundary point is approximated with
finite differences as τi j (n) = bi j (n) − bi j (n − 1). To estimate
each branch bi j orientation ϕi j , the average tangent vector ϕ̂i j

is found by means of an exponential weighted mean.

ϕ̂i j =

∑Ni j −1
n=0 λ (n) τi j (n)
∑Ni j −1

n=0 λ (n)
=

∑Ni j −1
n=0 λn

0τi j (n)
∑Ni j −1

n=0 λn
0

. (13)

The total number of considered points for a branch is Ni j and
depends directly on the damping factor λ0. The points near
the junction have more importance (and thus are weighted
by a larger factor) than the points being further away. Since
contour points lie between pixels of integer coordinates, there
is a finite number of values for the tangent vectors τi j (n) =

(±1,±1). This finite set of values introduces high frequency
changes in the mean estimation. Therefore, the estimator (13)
should attenuate these high variations while keeping the angle
estimation as local as possible. The parameter λ0 controls both
the locality of the estimator and frequency selectivity. Typical
values are in the range λ0 = 0.9−0.99.

Once the three average tangent vectors are available, each
region angle θi is estimated and the junction angle characteris-
tics evaluated. Considering the angles, ideal shaped T-junctions
have a maximum angle of π and a minimum angle of π

2 . Two
measures are then proposed:

�θmax = ‖θmax − π‖ �θmin = ‖θmin −
π

2
‖ (14)

where θmax and θmin refer to the maximum and minimum of
the three angles respectively. To obtain the confidence value,
�θmin and �θmax are considered to be Rayleigh distributed.
With this assumption, two confidences can be obtained using:


max = exp

(
−

�θmax

σ 2

)
(15)


min is computed similarly. σ = π
6 . This value is obtained

from [8], as the perception of occlusion on T-junctions drops
rapidly when angle variations are greater than 30–40 degrees
from the ideal angle configuration. By combining these two
values, pangle is obtained similarly to (11):

pangle =
2
min
max


min + 
max
. (16)

3) Curvature: Although curvature is not as important as
color and angle, it serves to measure the branch straightness.
If boundaries are highly curved, the point may not be perceived
as a junction and, instead, only erratic and noisy boundaries
are seen. The curvature of the boundaries is measured using

Fig. 4. Process to calculate the curvature. Left: local window with the three
regions and some outliers (diagonal striped pixels, belonging to other regions).
Center: binary image where Region 1 has been isolated. Right: reconstructed
image without outliers.

the level sets theory. The process of curvature confidence
calculation is shown in Fig. 4.

Each region Ri is isolated creating a binary image of the
local window. Note that since the regions may have arbitrary
shapes, other regions than R1, R2, R3 may be present in the
local window. To eliminate possible interferences from these
outliers, a reconstruction process is performed where, from the
boundaries, the binary markers are extended eliminating the
holes that may be present. The second and third steps in Fig. 4
illustrate this hole filling process. Finally, the mean absolute
value |κ |i of the curvature κ(xl, yl) of the two branches
forming a region Ri is computed at the boundary points (xl , yl)
in the binary image using the level sets theory [33]. Each of
the |κ |i measures (one for each region) are also assumed to
be Rayleigh distributed to obtain:

ϒi = exp

(
−

|κ |i

σ 2
c

)
. (17)

Similar to color and angle, curvature confidence pcurve is
obtained by finding ϒmax and ϒmin :

pcurve =
2ϒminϒmax

ϒmin + ϒmax
. (18)

4) Local Depth Gradient Determined by T-Junctions:

Previous work on T-junctions [13] imposed unique depth
configuration for these kind of cues: the region forming
the largest angle was always assumed to lie closer to the
viewer. However, experience shows that T-junction may also
indicate the opposite depth relation. Since, locally, all kinds of
junctions are similar, deciding whether T-junctions are normal

or inverted should be done by looking at other characteristics
than intrinsic color, angle and curvature local features. As a
result, to determine the sign of the depth gradient of each
T-junction, relation with other T-junction configurations are
considered, see Fig. 1.

T-junctions actually indicate depth discontinuities but the
sign of the discontinuity proved to be rather uncertain. Nor-
mally, if an object is really occluding other objects in the
background, more than one T-junction is likely to be formed
in the image, and all these T-junctions may have the same
region/object as the occluding region. This is why a global
reasoning is helpful. Moreover, it is possible to detect a
T-junction even though no real occlusion relation exists. False
detections often occur due to color or texture variations. In
our case, as a starting point to the global reasoning explained



1932 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 5, MAY 2013

Fig. 5. Normally, convex shapes present less area in small neighborhoods
centered on contour points. Convex regions, as in R1 here, are perceived as
foreground while R2 is perceived as background.

in Section IV-D, we will assume that detected T-junction are
not false detection and are of type normal.

This initial guess has a low confidence and will be allowed
to change when estimating the global depth ordering of the
scene. That is, in some circumstances, the depth gradient of a
T-junction will be changed if there are many other occlusion
relations indicating the opposite depth relationship.

B. Convexity Estimation

Convexity depth cues are defined locally at region bound-
aries. A region R1 is convex with respect to R2 if, on average,
the curvature vector on the common boundary is pointing
towards R1. If R1 appears to be convex, it is perceptually
seen as the foreground region (and thus, closer to the viewer).
Since computing derivatives to estimate the curvature may
lead to imprecise results, an alternative approach is presented.
Generally, when examining boundary pixels, if R1 presents
less area than R2 in a local neighborhood, R1 may be seen as
convex, see Fig. 5. Formally, the overall boundary convexity
is obtained from the combinations of two measures:

ζc (R1, R2) =
∑

(x,y)∈Ŵ

α(x, y)

L

∑

(x,y)∈Ŵ

w(x, y)

L
(19)

with α(x, y) = 1 if the area of R1 is greater than the area
of R2 in �(x, y), and α(x, y) = −1 otherwise. The function
0 ≤ w(x, y) ≤ 1 is a weighting function of the points and it
is chosen to be the normalized Sobel gradient of the image,
although other gradient operators work too. L is the number
of points where the measure α(x, y) is calculated. The overall
convexity confidence of a boundary is:

ζ (R1, R2) = 1 − exp

(
−

1

γc

‖ζc (R1, R2)‖

)
(20)

γc has been determined experimentally and set to 1
12 . If the

result ζc (R1, R2) is positive, R1 is considered to be convex
and, therefore, on top of R2 with confidence ζ (R1, R2).
The converse indicates that R2 is on top of R1. To make
the measure as scale invariant as possible, the neighborhood
�(x, y) of a pixel is chosen to be a circular window with a
radius of about the 5% of the contour length. Points lying near
junctions, image borders and other regions are discarded for
the measure. Contours having small lengths (L < 100 pixels)
are considered to be non-significant for convexity cues.

IV. DEPTH ORDERING

Once the BPT has been constructed as described in sec-
tions II and III, a further processing is required to obtain the
relative depth order. The depth map is constructed by selecting
some of the regions represented by the BPT and the process
can be formulated as a BPT pruning because the leaves of
the pruned tree represent the regions belonging to a partition.
The pruning is optimal in the sense that it minimizes a cost
function. To this end, an initial depth partition is obtained
by an initial BPT pruning and the tree is iteratively pruned,
reducing the number of regions. During this process, for each
examined partition, the depth relations of T-junctions and
convexity cues are used to determine the region depth order by
means of a probabilistic framework. Since several cues may
indicate opposite depth relationships, a conflict resolution is
necessary. The final output of the system is the depth partition
with minimum cost.

A. Initial Partition/T-Junction Selection

Prior to entering the minimization process, the BPT is
pruned to simplify the solution search space. Ideally, all possi-
ble partitions resulting from BPT pruning should be examined,
but the high dimensionality of the problem encourages to cut
the search range to a few solutions. Restricting the solution
space does not prevent to get to the optimal solution, as long
as the true solution remains after the restriction. Since humans
partially interpret scenes by reasoning from characteristic
points, it seems logical that the remaining solution space
should contain the most prominent estimated cues. To this
end, the initial BPT pruning is done by preserving the more
confident estimated T-junction points.

During the BPT construction, every point of the image is
assigned a T-junction confidence value 0 < p < 1. Determin-
ing which T-junctions could indicate occlusion is performed
by thresholding. Discarded candidates are the ones with
p < 0.1 or p < 0.2 pmax, where pmax is the maximum con-
fidence value found during the BPT construction. Discarding
points with p < 0.1 attempts to eliminate some false alarms,
although this threshold leaves practically untouched prominent
T-junctions. The relative threshold 0.2 pmax is chosen to elimi-
nate low-contrasted T-junctions compared to the overall image
contrast. About 10–30 T-junctions are preserved on average
per image.

The initial BPT pruning is performed by choosing the
minimum amount of regions preserving the remaining
T-junctions. An example of an initial partition is shown in
Fig. 6.

B. Criterion Definition

After an initial partition selection, the algorithm performs a
minimization process on the BPT structure. The goal of this
process is to retrieve the ’best’ depth order partition D. The
criterion to determine the best solution is defined by equation
(21). This criterion relies on three notions: First, estimated
cues (T-junctions and convexity relations) are supposed to be
reliable. That is, the algorithm should try to accept as many
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Fig. 6. Original image (left) and the partition generated after T-junction
selection (right). Regions are represented by their mean color.

estimated depth cues as possible. Second, natural images can
be decomposed with few depth planes/regions. Third, regions
are expected to have at least one depth relationship with
their neighbors. Behind these three intuitions, the following
criterion for D can be defined:

C(D) =
∑

i∈R

pi + γN N + γuU (21)

where R is the set of rejected depth cues (T-junctions and
convexity relations) for a particular solution. pi is the confi-
dence of a T-junction or the confidence of a convexity relation
between region boundaries. γN and γu are the weights for N

and U . U refers to the number of isolated regions, that is,
regions which do not have any depth relationship with any
other in the final depth image. Finally, N stands for the number
of regions composing the final depth partition.

The value of γu is set rather high to efficiently minimize
the number of isolated regions. In practice, values γU > 2
produce good results. The value γN is chosen depending
on the values of the confidences found for T-junction and
convexity cues. Since γN weights the number of regions N ,
setting a high value encourages the final solution to have few
regions. If the value is high enough, the system output behaves
like a foreground/background segregation system, separating
the front-most depth plane from the deeper regions. Usually,
pmin < γN < pmax, with pmin and pmax being the minimum
and maximum confidences found in the image respectively.
γN = pmin throughout the experiments of this paper.

C. Minimization Process

The adopted scheme assumes that the final depth ordered
partition D is the one minimizing the criterion C(D). Seeking
for the global minimum of this criterion starting from the
initial partition alone has proven to be difficult, as C(D) is
extremely non-convex, with many local minima. The work
in [29] attempts to find a global minimum by searching for
the optimal solution with a RANSAC-style algorithm. For
images with few T-junctions, the solution found can be near
the optimal. Nevertheless, since the complexity of [29] is
exponential with the number of T-junctions, the process turned
out to be unfeasible for relatively complex images. In this
work, the BPT is used to explore greedily a subset of solutions
and to minimize the criterion. The approach follows a strategy
that gradually prunes the tree until the root node is reached.

The initial pruned tree B0 is obtained by the initial
T-junction selection. At each iteration t , for each tree Bt , a
set of K feasible solutions Bk

t , k = 1 . . . K , are generated by
considering all the possible prunings that reduce the number
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Fig. 7. Three allowed prunings of a given BPT. For each pruning, the framed
leaf nodes are merged to their parent, reducing the number of BPT nodes by
one. All other possible prunings in this BPT reduce the number of leaves
by more than one. (a)–(c) Results of the prunings (red, blue, and green) are
shown at the bottom.

of leaves in Bt by exactly one. In the example of Fig. 7,
three such prunings are possible. Since the leaves of each
pruned BPT define a partition, the depth ordered partition Dk

t

is obtained for each Bk
t . With all Dk

t available, the next tree
Bt+1 is the tree corresponding to the partition of minimum
cost:

Dk
min = arg min

Dk
i

(
C(Dk

1), C(Dk
2), . . . , C(Dk

s )
)

. (22)

The pruning process is applied successively, obtaining at each
iteration Bt and Dt , t = 1 . . . T . At the final iteration T , the
tree has only one leaf and cannot be further pruned. The final
depth ordered partition is:

Dmin = arg min
Dk

min

(
C(D1

min), C(D2
min), . . . , C(DT

min)
)

. (23)

As can be seen in the previous minimization procedure, a
depth ordered partition has to be generated from each pruned
tree B . To this end, local depth cues should propagate their
depth information through regions by means of a Depth Order
Graph (DOG). Since conflicts may appear, a probabilistic
scheme to resolve these conflicts is proposed.

D. Probabilistic Framework for Depth Ordering

Since the initially computed cues are merely local, a global
reasoning should be done to arrive at a consistent solution for
the whole image. To this end, a Depth Order Graph (DOG) is
constructed for each partition extracted from the BPT. Nodes
in the graph represent regions of the partition extracted from
the leaves of the BPT. The depth relations are represented
in the DOG by directed weighted edges, going from the
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foreground region to the background one. There is exactly
one edge going from region R1 to R2 if there is a depth cue
i (T-junction or convexity) stating that R1 is in front of R2.
The weight of this edge is the cue confidence, pi .

To order the regions according to depth, the DOG should
be acyclic (with no conflicts). To achieve such a graph
structure, the DOG has to be modified. To this end, it is
interpreted as a network of reliable links [34]. Each edge in the
DOG associated with a cue i is reliable with probability pi .
A region R j is reachable from Ri if there exists at least one
directed path that goes from the former region to the latter. The
probability of existence of this path ρi j is defined as reliability
in [34], and referred in this work as probability of precedence
(PoP) due to its nature. That is, the PoP ρi j is the probability
of a region Ri to be in the foreground of R j . The proposed
solution to create a direct acyclic graph from the DOG can be
summarized as follows:

1) Compute the PoP, ρi j , for every pair of regions (nodes),
Ri and R j , that is, the probability that Ri is in the
foreground of R j .

2) Examine all pairs ρi j and ρ j i . If a cycle is present,
both Ri and R j can be foreground and, therefore, both
ρi j , ρ j i �= 0.

3) In case of conflict, modify one of the paths from Ri to
R j or vice versa to eliminate the cycle.

The probability ρi j can be calculated exactly by the
inclusion–exclusion principle [34]. Nevertheless, its compu-
tation cost encourages to find approximate solutions. Since
the exact value of ρi j is not the ultimate goal of the conflict
resolution step, an upper bound proved to give reasonable
results. The PoP is computed using a variant of the Floyd–
Warshall algorithm [35]:

for j=1…|V | do

for i=1…|V | do

for k=1…|V | do

ρn+1
ik = ρn

ik + ρn
i j ρ

n
jk − ρn

ikρ
n
i j ρ

n
jk

end for

end for

end for

The computation of all the pairs ρi j leads to a new graph,
DOG+, which is the transitive closure of the DOG, see Fig. 8.
The transitive closure of a graph G is a graph G+ with the
same nodes of G but that contains a direct edge (possibly
weighted) from node Ri to R j if there exists a path Pq in G

that connects both nodes. In our case, the transitive closure
of the DOG contains edges with weights ρi j . The graph
G+ allows to easily detect cycles as paths with arbitrary
lengths are reduced to direct edges. It is known that identifying
all cycles in a graph G is an NP problem [36], meaning
that there is no efficient solution. Instead, making use of the
DOG+, cycles can be easily detected by direct comparison of
ρi j and ρ j i .

A conflict may occur mainly because of two factors. The
first may be because of some false T-junction or convexity
depth relations, false alarms have been introduced. The second
may be because self occlusion actually exists in the image.
Assuming that self-occlusion is rather difficult to find in

(a) (b)

Fig. 8. Simple DOG example (a) and its transitive closure (b). Edge weights
are shown close to each edge. Red edges form a conflict. The red stripped
edge in the left graph breaks a cycle if it is deleted.

natural images, the conflicts are said to come from bad depth
cue selection. Translating this reasoning to the DOG, each
time a conflict is found, either ρi j or ρ j i is assumed to have
been wrongly estimated.

The proposed approach aims to break low-confident depth
relations. Assuming ρi j < ρ j i , some modifications on the
paths that go from Ri to R j should be done by deleting or
turning some edges (and thus possibly breaking the cycle).
For each conflicting path P , the modified cue is the one cor-
responding to the edge with lowest confidence. Two different
cases appear. First, if the edge represents a convexity depth
cue, the cue is discarded and the corresponding edge removed.
Second, if the edge nature comes from a T-junction, a slightly
different approach is used. Since the occlusion relation in a
T-junction is not clear, the edge is first reverted, thus changing
a normal T-junction to an inverted one. If it still creates a
conflict, it is discarded.

This process is repeated until no cycles in the DOG are
found. When an acyclic graph is available, the depth order of
each region can be computed using a topological partial sort
to obtain the depth ordered partition D.

E. Depth Ordering

The depth ordering of the regions/nodes forming the DOG
is performed using a topological partial ordering [35]. Since
in a depth image two different regions may have the same
depth order, R1 = R2, (i.e. do not have any depth relationship
between them), strict ordering of the elements is not suitable.
Instead, partial order permits that two elements of a set have
the same order when sorted. After the depth for each region is
computed, the criterion (21) can be evaluated. When a region
doe not share any occlusion cue with its neighbors, its depth
is chosen to be the depth of the most similar adjacent region
according to the distance (2).

V. EXPERIMENTAL RESULTS

The proposed depth ordering system is compared with state
of the art systems on f/g labeling and on depth estimation.
Note that our system defines the depth information on a
region basis, whereas the f/g algorithms [14], [15] output
is a labeling on points of image contours that may not
be closed. Therefore f/g algorithms do not allow to create
complete depth order partitions. Nevertheless, the existence of
a ground truth f/g database makes the comparison with these
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Fig. 9. From left to right. Original image, depth order partition, and f/g
labeling on contours. In the depth order partition, white regions are closer to
the viewer. In the f/g labels, green pixels belong to the foreground region, the
red belong to the ground region.

Fig. 10. First row: systems [14], [15] threshold the output of the soft contour
detector [38] and infer the figure/ground labels on the resulting contours.
Second row: the ultrametric contour maps (UCMs) approach [37] uses the
contours of [38] as an input and the proposed optimization strategy estimates
the depth order map. Third row: complete proposed scheme using a BPT
image representation and the optimization strategy.

systems attractive. The evaluation can be done quantitatively,
determining the number of contour points where the labeling is
correctly estimated. Depth ordering systems are more difficult
to compare, as no ground truth database exists with relative
depth ordering. Instead, a qualitative evaluation is presented
by examining the overall image depth structure.

A. Quantitative Performance on Figure/Ground Assignment

One of the byproduct of depth order estimation can be seen
as a solution to the boundary ownership problem. At the depth
region boundaries, the region lying closer to the viewer is
considered to be the owner the of the boundary, or figure side.
The further region is considered the ground side. To obtain the
f/g labels, the contour points are extracted from the final depth
order partition at points where the depth gradient is not null,
assigning either a figure or ground label depending on the
local depth configuration, as shown in Fig. 9. To evaluate the
system, ground truth f/g labels of the dataset [37] are used.

Fig. 10 shows an outline of the proposed comparison.
The first row of Fig. 10 represents the state of the art in
f/g labeling [14], [15]. It consists in extracting non closed
contours on the original image [38], then in thresholding
these contours and in assigning the f/g relationships on the
contours following [14], [15]. In figure 10, the % of correct
assignment is indicated. As our algorithm involves two major
parts: 1) the image representation by means of a BPT and 2)
an optimization strategy extracting depth order partitions from
the BPT, two experiments are done.

The goal of the experiment represented by the second row
of figure 10 is to demonstrate the interest of the proposed
optimization strategy running on an image region-based repre-
sentation and to compare it with the strategies described in [14]

TABLE I

TABLE SUMMARIZING THE EVOLUTION OF F/G LABELS CORRECTNESS

WHEN THREE FACTORS ARE CHANGED IN THE SYSTEM. BPT±dd

INDICATES WHETHER DEPTH IS CONSIDERED OR NOT IN THE BPT

CONSTRUCTION. ROWS ON THE TABLE INDICATE, FROM TOP TO

BOTTOM, WHEN ONLY T-JUNCTION, CONVEXITY, OR BOTH DEPTH

RELATIONS ARE USED IN THE OPTIMIZATION STRATEGY

B PT + dd B PT − dd

Only T-junctions 62.9% 64.6%

Only convexity 65.45% 64.9%

T-junction+convexity 71.3% 67.1%

and [15]. As we need an image region-based representation,
we have chosen to construct it by means of the ultrametric
contour map (UCM) described in reference [37] which rely
on the contours [38] used in the first experiment. The use of
UCM allows us to construct a tree based representation of the
image as the BPT and we can use our optimization strategy to
extract the depth order. As can be seen in Fig. 10, the results
of this strategy slightly outperform the results in [14], [15] and
therefore demonstrate the interest of the optimization strategy
proposed here.

Finally, the last row of Fig. 10 shows the last experiment,
the goal of which is to demonstrate the interest of the BPT
construction compared to the UCM approach as a region-based
representation of the image. Here a clear improvement can be
observed in the context of the f/g assignment and demonstrate
the interest of the proposed BPT tool.

The next set of experiments study the system behavior
when some factors are excluded. Table I shows the f/g
labeling performance when the system is run with or without
considering: depth region distance in the BPT construction,
T-junction depth relations and convexity depth relations in the
optimization strategy. Following intuition, the best behavior is
when all factors are used, including the depth distance. Table I
confirms that the introduction of a depth factor into the BPT
construction contributes positively to the final result. Results
also show that, in the optimization strategy, T-junction depth
relations are less reliable than convexity cues, possibly because
junction detection is still a difficult challenge [32].

Results obtained on depth ordering and f/g labeling are
shown in Figures 11 and 12. Although f/g labeling perfor-
mance is similar to current state of the art algorithms, it has
to be noticed that the proposed system gives much more infor-
mation than simple labels on contours. For instance, the depth
order image can be considered as a possible segmentation. In
contrast to our approach, f/g labeling systems [14], [15] oper-
ate only on boundaries, discarding region information. To our
knowledge, the only work that proposes a joint segmentation
and f/g labeling system is found in [16], but no quantitative
comparison is available. Note that a region-based system is
able to apply global reasoning and to resolve possible depth
conflict providing more robustness to the estimation process.

B. Qualitative Analysis

High level information systems in [5], [6] can be compared
with the proposed algorithm as they produce a complete
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Fig. 11. Results on depth estimation and f/g assignment on some of the BSDS500 images. From left to right, for each column: original image, depth order
estimation, and f/g boundaries.

Fig. 12. More results on the BSDS500 dataset. From left to right, for each column: original image with estimated T-junctions, depth order estimation, and
f/g boundaries overlaid in the original image.

depth partition. The comparison of the systems should be
done qualitatively, noting that [5], [6] estimate the absolute
depth of the image while the proposed approach only offers
relative depth order. Despite the differences, results can be
contrasted by looking at the major structure of the final depth
partitions.

Results in Fig. 13 show that the proposed system generates
clearer boundaries in most cases. However, [6] and [5] permit
arbitrary surface orientation, leading to smooth depth gradients
which our system is unable to obtain. However, most of their
results present the same general image structure, being the
lower regions the ones that normally are closer to the viewer,
specially in [6]. This can be a drawback if non-typical pictures

are presented to the system as the algorithm will try to fit
the learned model into the input image. Of course, this can
be overcome by a more extensive training dataset but the
variety of scenes that must be presented may turn this process
unfeasible.

Our algorithm does not make any assumption on the type of
images and relies only on low-level information. Obviously,
trusting only pixel information, without any previous knowl-
edge of the scene can be limiting, but it also has its positive
points. In particular, there is no real restriction on the scene
type. This makes the algorithm work in more situations such
as landscape, indoor or portrait images. Such examples can
be found in Fig. 14 where a variety of scenes are presented.
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Fig. 13. From left to right. Original image, results of the proposed system, results from [5], and results from [6]. White regions are closer to the viewer,
while black ones are further away.

Fig. 14. Proposed algorithm runs on several situations. For each combination of four columns, from left to right: original image, proposed system results,
results from [5], and results from [6]. Even in such different scenes, the considered low level cues (occlusion and convexity) remain valid, obtaining reasonable
depth order maps. High level information approaches always show a similar structure.

Fig. 15. From left to right. Original image, results of the proposed system,
and results of the region-based approach in [13].

Some of these scenes were downloaded from the Internet,
some were taken with a camera and some others are from
the Corel database.

Finally, in Fig. 15 a comparison with the region-based
system discussed in [13] is shown. Since both systems rely on
the same low-level cues, a similar performance is expected.
However, the integration of cue estimation and segmentation

helps to retrieve more depth cues resulting in clearer bound-
aries and more detailed depth maps.

C. Introducing User Interaction

For some applications, user interaction can naturally be
integrated in the working flow and can be used to improve the
quality of the depth order map. With very little modification,
the unsupervised system we have described can be adapted to
accept user input. If the user introduces some depth markers
in the images, the given information can be used to force
some depth relations. There could be many situations where
this extension is desirable. For example, user information may
overcome some system limitations. Moreover, user may be
interested in accurately ordering some parts of the image,
leaving all the other regions to be ordered automatically.
Since the proposed system is originally designed to perform
in an unsupervised way, unlike [4], it is able to infer extra
depth planes other than the ones introduced by the user.
Markers can be simply defined by roughly marking areas
of the image with gray levels. To integrate this information
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Fig. 16. From left to right, for both columns. Original image, image with user defined markers, and retrieved depth ordered partition.

with the depth ordering stage, two little changes are proposed:
one concerns the initial BPT pruning and the other the DOG
construction.

a) Initial BPT pruning: A part from preserving the most
important T-junction at the initial partition, the pruning must
also preserve user input markers at different regions.

b) Depth ordering: Each pair markers from two different
regions introduce a fully confident depth relation. That is, these
edges are assigned the maximum confidence p = 1, making
sure that no edge is deleted in the conflict resolution step and
the final depth ordered partition contains all the user markers.

Examples of the system accepting user interaction are shown
in Fig. 16 showing that, with little user information, accurate
orderings can be obtained.

VI. CONCLUSION

This paper has proposed a system which relies only on
low level image cues for monocular image segmentation and
depth ordering. Despite the simplicity of the used depth cues,
the algorithm offered results comparable to other approaches
which base their reasoning on higher level information. The
proposed system involves several contributions compared to
existing algorithm. The most important innovations are the
joint T-junction estimation and BPT construction which adds
depth information to the process as well as the tree pruning
algorithm which minimize a global criterion. Additionally, the
proposed region color model and region distance were not used
before on a BPT construction.

Moreover, we have shown how user interaction can be easily
and naturally integrated in the processing architecture. Project-
ing the 3-D world to a 2-D plane implies an inherent loss of
information which cannot be recovered completely using a
single image. The generated depth ordering can nevertheless
be used in several environments.

1) Visualization of images giving a pseudo-depth impres-
sion

2) Object editing by depth (foreground/background
removal)

3) Rough depth representation as input for full 3-D systems

Moreover, as stated in Section I the huge amount of 2-D
content that already exists: videos and photos, encourage the
development of systems to perform the inverse operations.
While generating accurate depth maps is a challenging task,
defining depth planes is proven to be possible. In fact, using
occlusion cues does only permit to provide constant depth
regions, which in some cases are not able to describe accu-
rately the geometry of the scene. Nevertheless, the depth
perception of the scene is preserved even with this strong
restriction.
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