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Abstract— Markerless, vision based estimation of human
hand pose over time is a prerequisite for a number of robotics
applications, such as Learning by Demonstration (LbD), health
monitoring, teleoperation, human-robot interaction. It has spe-
cial interest in humanoid platforms, where the number of
degrees of freedom makes conventional programming challeng-
ing. Our primary application is LbD in natural environments
where the humanoid robot learns how to grasp and manipulate
objects by observing a human performing a task. This paper
presents a method for continuous vision based estimation of
human hand pose. The method is non-parametric, performing
a nearest neighbor search in a large database (100000 entries)
of hand pose examples. The main contribution is a real time
system, robust to partial occlusions and segmentation errors,
that provides full hand pose recognition from markerless
data. An additional contribution is the modeling of constraints
based on temporal consistency in hand pose, without explicitly
tracking the hand in the high dimensional pose space. The pose
representation is rich enough to enable a descriptive human-
to-robot mapping. Experiments show the pose estimation to
be more robust and accurate than a non-parametric method
without temporal constraints.

I. INTRODUCTION

Vision based, markerless human hand tracking in natural

environments with and without interaction with objects is

an important building block for various human-machine

interaction and robot learning tasks. An important aspect

considered in our work is enabling robots to learn how

to grasp and manipulate objects just by observing humans.

Another aspect is monitoring of humans in everyday environ-

ments for designing hand prosthesis able of performing most

common human grasps. However, capturing hand articulation

is a challenging problem. Using the joint angle representation

of hand pose requires 28-dimensional configuration space. In

addition, self-occlusions of fingers introduce uncertainty for

the occluded parts. Although there have been examples of

systems that can track hands for very specific purposes such

as sign recognition, full pose estimation remains an open

problem, specially if real-time performance is required.

In robotic applications, an important aspect of task mod-

eling is how different objects involved in the task should

be grasped and manipulated. Humanoid robots are equipped

with more and more dexterous humanoid hands, capable of

perform human-like grasps. However, the control of these

hands is far from trivial; therefore LbD is an attractive way

of teaching the robot how to grasp [1]. While observing

the human, the robot must estimate the human hand pose

(a) (b)

Fig. 1. a) ARMAR head, b) ARMAR head observing human grasp
demonstration

over time, and then map the hand pose to its own hands

or grippers. In this paper we focus on visual estimation of

human hand motion during object manipulation. While hand

motion can be robustly extracted using 3D magnetic sensors

or datagloves [2], the usability of a home service robot is

compromised if the user is required to carry special markers

during task instruction. The visual hand pose estimation is

therefore required to be markerless.

Humanoid heads are constraint to have small baseline,

lightweight stereo vision systems (see Figure I). This makes

the stereo-matching problem difficult and sometimes inaccu-

rate, specially for textureless surfaces as human hands. For

this reason visual hand pose estimation based on monocular

images can be an attractive field for humanoid robot research.

Markerless 3D reconstruction of hand pose based on

a single image is an extremely difficult problem due to

the large self-occlusion, high dimensionality and non-linear

motion of the fingers. There are different ways of addressing

these difficulties. Hand pose estimation method can largely

be divided into two groups [3]: model based tracking and

single frame pose estimation. Due to the high dimensionality

of the human hand, articulated 3D model based trackers are

facing challenges such as high computational complexity

and singularities in the state space [4].Single frame pose

estimation is usually more computationally efficient than

model based tracking, but lacks the notion of temporal

consistency, which is an important cue to hand pose [5],

[6].

In earlier work [6], we presented a method for non-

parametric estimation of grasp type and hand orientation



from a single monocular image. The method maintained a

large database of (synthetic) hand images. Each database

instance was labeled with the grasp type and the orientation

of the hand with respect to the camera. The grasp type and

orientation of a new (real) image could then be found using a

nearest neighbor approach. For completeness, the hand image

representation is described in Section III and the nearest

neighbor-based mapping is described in Section IV.

In the current work, we have further developed the initial

approach in two ways; I) by including temporal consistency

in the distance measure used for database retrieval. This

greatly enhances the robustness of the hand pose estimation,

as it will be shown in Section VI; II) by extending the state

space to a full joint angle representation, allowing a full 3D

reconstruction of hand pose. This facilitates the learning of

rich human-to-robot hand pose mapping. Development II)

is the main contribution of this paper, described in more

detail in Section IV and it is possible in part because of

Development I), which is a secondary contribution, detailed

in Section V.

Experiments in Section VI show that we can reconstruct

the hand pose in real time and that our method is consider-

ably robust to segmentation errors, a necessary requirement

for the method to be applicable in a realistic setting. Addi-

tionally, it is shown that the temporal consistency constraint

has a profound effect on the pose estimation accuracy and

robustness.

II. RELATED WORK

Analysis of human hand pose for the purpose of LbD [7]

has been thoroughly investigated, almost exclusively with the

help of markers and/or 3D sensors attached to the human

hand [2]. However, we envision a LbD scenario were the

teaching process can be initiated without calibration and

where the robot-user interaction is as natural as possible.

For this reason we want to reconstruct the hand posture in a

visual markerless fashion.

The field of markerless visual hand pose estimation has

been mainly devoted to hand gesture or sign language

recognition [8]. A common approach is to estimate the hand

pose from a single frame and use this pose as the input to a

recognition module [5], [9], [10].The pose estimation is made

easier by the fact that the range of poses can be constrained

to the discrete set of specific gestures.

Methods for hand pose estimation that are not constrained

to a limited set of poses can largely be classified into

two groups [3]: I) model based tracking and II) single

frame pose estimation. Methods of type I) usually employ

generative articulated models [11], [4].Since the state space

of a human hand is extremely high-dimensional, they are

generally very computationally demanding, which currently

makes this approach intractable for a robotics application.

Methods of type II) are usually non-parametric [6].They are

less computationally demanding and more suited for a real-

time system, but also more brittle and sensitive to image

noise, since there is no averaging over time. The method

presented here falls into the second approach. However, it

(a) HOG x, JOINT p (b) HOG x1, JOINT p1 (c) HOG x2, JOINT p2

Fig. 2. Ambiguity in mapping from HOG space to JOINT space. Even
though it is visually apparent that ‖p−p2‖ ≪ ‖p−p1‖ in JOINT space,
database instance 1 will be regarded as the nearest neighbor as ‖x−x1‖ <

‖x−x2‖. Note that the object in the hand just contributes with occlusion of

the hand in HOG extraction, as it is then colored uniformly with background

color.

takes temporal continuity into account and it can be used for

on-line real-time reconstruction.

For LbD purposes, it is relevant to investigate what hand

pose information the robot needs in order to perform a

successful human-to-robot mapping of the hand motion. In

[12], [13] the control of a grasping hand was performed from

a low dimensional space thanks to dimensionality reduction

techniques.

III. IMAGE REPRESENTATION

The input to the method is a sequence [It], t = 1, . . . , n
of monocular images of the human hand. The same image

representation was used in our previous work [6], where a

more elaborate description can be found.

In each frame It, the hand is segmented using skin color

segmentation based on color thresholding in HSV space. The

result is a segmented hand image Ht. Due to a number of

factors such as image noise, skin color in the background

and non-skin colored areas on the hand (e.g. jewellery), the

segmentation is more or less erroneous.

The shape information contained in Ht is represented with

a Histogram of Oriented Gradients (HOG). This feature has

been frequently used for representation of human and hand

shape [14], [15].It has the advantage of being robust to small

differences in spatial location and proportions of the depicted

hand, while capturing the shape information effectively.

Gradient orientation Φt ∈ [0, π) is computed from the

segmented hand image Ht as Φt = arctan(∂Ht

∂y
/∂Ht

∂x
).

From Φt, a pyramid with L levels of histograms with

different spatial resolutions are created; on each level l, the

gradient orientation image is divided into 2L−l ×2L−l equal

partitions. A histogram with B bins is computed from each

partition.

The hand view at time t is represented by the HOG xt

which is the concatenation of all histograms at all levels in

the pyramid. The length of xt is thus B
∑L

l=1 22(L−l). Em-

pirically, we obtained the best performance with a reasonable

running time using B = 8 and L = 3. A discussion about

how different parameters of the HOG affect human detection

can be found in [16].

IV. NON-PARAMETRIC POSE RECONSTRUCTION

In this section, we regard the problem of estimating a

single pose p from a single HOG x omitting the time index.



The goal of the hand pose reconstruction process is to find

the mapping p̂ = M(x), where p̂ is the estimated 31D hand

pose in terms of global orientation (lower arm yaw, pitch,

roll) and joint angles (3 wrist joint angles, 5 joint angles per

finger) , and x is the observed 168D HOG representation of

the hand view, described in Section III.

The mapping function M can be expected to be highly

non-linear in the HOG space, with large discontinuities. Fol-

lowing [6], M is therefore represented non-parametrically,

i.e., as a database of example tuples {〈xi,pi〉}, i ∈ [1, N ].
Due to the high dimensionality of both the HOG space

(168D) and the state space (hereafter denoted JOINT space,

31D), the database needs to be of a considerable size to cover

all hand poses to be expected; in our current implementation,

N = 90000. This has two implications for our mapping

method, as outlined in the subsections below.

A. Generation of Database Examples

Generating a database of 105 examples from real images

is intractable. Instead, we used the graphics software Poser 7

to generate synthetic views H
synth
i (see Figure 4) of different

poses. The database was generated offline and it took around

5 days to render all the poses on a standard desktop computer.

We are here motivated by the LbD application where we

envision human to perform different types of grasps on

objects in the environment. Therefore, the database examples

are chosen as frames from short sequences of:

1) different grasp types, from

2) different view points, with

3) different grasped objects, and with

4) different illuminations.

The grasp types are selected according to the taxonomy

developed in the GRASP project1, which integrates the

Cutkosky [17], Kamakura [18], and Kang [19] taxonomies.

The whole database is also available at the same place.

For each grasp type, a number of poses from whole grasp

sequences (rest, approach and grasp) are included. Each pose

is rendered with four different illuminations and from 386

different points of view uniformly distributed on a sphere.

Standard objects are included to simulate typical occlusions.

From each example view H
synth
i , the tuple 〈xi,pi〉 is

extracted, where xi is generated from H
synth
i as described

in Section III, and pi is the pose used to generate the view

H
synth
i in Poser 7.

B. Approximate Nearest Neighbor Extraction

Given an observed HOG x, the goal is to find an esti-

mated pose p̂ = M(x). With the non-parametric mapping

approach, the mapping task p̂ = M(x) is one of searching

the database for examples 〈xi,pi〉 such that xi ≈ x. More

formally, Xk, the set of k nearest neighbors to x in terms

of Euclidean distance in HOG space, di = ‖x − xi‖ are

retrieved.

As an exact kNN search would put serious limitations on

the size of the database, an approximate kNN search method,

1www.grasp-project.eu.

Fig. 4. Synthetic sequence not contained in the database. Note that the

object in the hand just contributes with occlusion of the hand in HOG

extraction, as it is then colored uniformly with background color.

Locality Sensitive Hashing (LSH) [20] is employed. LSH is a

method for efficient ǫ-nearest neighbor (ǫNN) search, i.e. the

problem of finding a neighbor xǫNN for a query x such that

‖x − xǫNN‖ ≤ (1 + ǫ)‖x − xNN‖ (1)

where xNN is the true nearest neighbor of x.

The number of hyperplanes and number of tables used in

the LSH search are learned from the database, as explained in

[20]. In our current implementation, K = 30 and T = 5000.

The computational complexity of ǫNN retrieval with LSH

[20] is O(DN
1

1+ǫ ) which gives sublinear performance for

any ǫ > 0.

C. The Mapping M is Ambiguous

The database retrieval described above constitutes an

approximation to the true mapping p̂ = M(x), robust to

singularities and discontinuities in the mapping function M.

However, it can be shown empirically that M is inherently

ambiguous (one-to-many); substantially different poses p can

give rise to the similar HOGs x [14]. An example of this is

shown in Figure 2.

Thus, the true pose p can not be fully estimated from a

single HOG x (using any regression or mapping method);

additional information is needed. In the next section, we de-

scribe how temporal continuity assumptions can be employed

to disambiguate the mapping from HOG to hand pose.

V. TIME CONTINUITY ENFORCEMENT IN JOINT SPACE

We now describe how temporal smoothness in hand mo-

tion can be exploited to disambiguate the mapping M.

Consider a sequence of hand poses [pt], t = 1, . . . , n,

that have given rise to a sequence of views, represented

as HOGs [xt], t = 1, . . . , n. Since the mapping M is

ambiguous, the k nearest neighbors to xt in the database,

i.e. the members of the set Xk, are all similar to xt but

not necessarily corresponding to hand poses similar to pt.

An important implication of this is that a sequence of hand

poses [pt], t = 1, . . . , n does not necessarily give rise to a

sequence of HOGs [xt], t = 1, . . . , n continuous in the HOG

space. This is illustrated in the upper part of Figure 3, where

we see that the red crossed arrow forcing continuity in HOG

space points to the wrong pose.

This property of the data makes the problem of continuous

hand pose recognition intrinsically different to other continu-

ous NN problems found in the literature. For example, in [21]

the “visible” feature displays time continuity, thus allowing

the kNN answers from previous time steps to guide a new

kNN query.
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Fig. 3. Due to the underlying physics, a sequence of poses is continuous in the JOINT space, but not in HOG space.

However, due to the physics of the human body, the speed

of the hand articulation change is limited. Thus, the sequence

of hand poses [pt], t = 1, . . . , n, i.e. the hidden variables,

display a certain continuity in the JOINT space. This is

illustrated in Figure 3.

The hand pose recognition for a certain frame t is therefore

divided into two stages; I) retrieval of a set of k nearest

neighbors Xk using single frame non-parametric mapping,

as described in Section IV; II) weighting of the members of

Xk according to their time continuity in the JOINT space.

(a) t = 1 (b) t = 2 (c) t = 3 (d) t = 4

Fig. 5. Recognition of hand pose with perfect segmentation. Row 1: query
pose pt; Row 2: estimated pose p̂t; Row 3: estimated pose p̂

uniform
t

.

Let Pk be the set of poses corresponding to the kNN set

Xk found in stage I). Moreover, let p̂t−1 be the estimated

pose in the previous time step. In stage II), the members

pj , j ∈ [1, k] of Pk are weighted as

ωj = e−
‖pj−p̂t−1‖

2σ2 . (2)

where σ2 is the variance of the distance from each entry pose

pj to the previous estimated pose pt−1.

The pose estimate at time t is computed as the weighted

mean of Pk:

p̂t = (

k∑

j=1

ωjpj)/(

k∑

j=1

ωj) . (3)

It should be noted that this is very similar in spirit to

temporal filtering. The main difference is that a filtering

approach can be regarded as top-down, making predictions

about future poses according to some motion model, pre-

dicting how the observations of those prior poses should

appear, and comparing the expected observations with the

actual observations. Our approach can instead be regarded as

bottom-up, making estimates directly from the observations,

and then evaluating them in terms of the motion model.

In order to weight the poses pj , pt−1 could be substituted

by more complex predictions such as Kalman Filters or

Particle Filters. However, the dynamics of the joints are not

easy to model, so we preferred to keep the assumption about

the dynamics as simple as possible as a first step. We leave

the inclusion of a particle filter predictor for future work.



(a) α = 0% (b) α = 1% (c) α = 5%

Fig. 6. Synthesizing imperfect segmentation for synthetic images with
3 noise levels: fraction α pixels removed, followed by an opening-closing
operation on the image.

Fig. 7. Mean square error of 31D pose vector for continuous and non-
continuous recognition

VI. EXPERIMENTS

The experiments are designed to measure the effect of tak-

ing time continuity into account in the hand pose estimation

as described in Equations (2), (3) as opposed to unweighted

averaging

p̂uniform
t = (

k∑

j=1

pj)/k . (4)

Firstly, a quantitative analysis is made, using a synthetic

sequence not included in the database. Secondly, the perfor-

mance of the method is qualitatively evaluated on real images

with hand poses not included in the database.

A. Quantitative Analysis

It is difficult to obtain ground truth poses pt for a real im-

age sequence; this would mean introducing markers, which

would seriously affect the appearance of the hand. Therefore,

a synthetic sequence is created, shown in Figure 4. The

sequence depicts a typical approach-grasp action. Neither the

rest position, the pose after the approach nor the final grasp

pose are included in the database.

The quality of the estimated pose vector p̂t is measured

in terms of Euclidean distance from the ground truth pose

vector pt in JOINT space: Et = ‖p̂t − pt‖.

Fig. 8. General comparison. Row 1: query pose pt, not included in the
database; Row 2: estimated pose p̂t; Row 3: estimated pose p̂

uniform
t

.

Figure 5 shows reconstructed poses p̂t compared to the

baseline of p̂uniform
t . The time continuity constraint is clearly

effective: The estimates p̂uniform
t are much more incoherent

over time than p̂t. Figure 7, leftmost bar, shows that the

mean error of sequence [p̂t], t = 1, . . . , n is 50% lower than

that of [p̂uniform
t ], t = 1, . . . , n.

The comparison becomes more valid if we simulate realis-

tic image noise conditions for this synthetic sequence. Noise

is thus introduced in the segmentation of the image, in order

to simulate imperfect segmentation in real sequences. This

is done by removing a certain fraction of the pixels in the

segmentation mask, followed by opening-closing morpholog-

ical operations. Figure 6 shows how this operation affects the

segmentation mask.

Figure 7 shows how the error (vertical axis) develops

as the image segmentation noise level increases (horizontal

axis). It is apparent that the estimation with pose continuity

is much more robust to segmentation errors up to α = 2%.

α = 5% there is an abrupt increase in error for both methods,

indicating that the segmentation (Figure 6c) then is too poor

to yield descriptive HOGs.

B. Qualitative Analysis

The algorithm was also evaluated with a real image

sequence without known ground truth. The sequence contains

grasps that do not correspond exactly to poses included in

the database. Moreover, some grasps are performed with high

velocity, yielding frames with substantial motion blur.

It should be noted that the experiments were performed

with different people, only changing parameters of color

skin segmentation. The system is quite robust to different

hand shapes. The sequences were recorded with the ARMAR

humanoid head (see Figure I). There is a decrease on

performance when the hand occupies less than approximately

40x40 pixels.

Sample frames from the sequence are shown in Figure 8.

The whole video with the results from the recognition system

can be found at http://www.csc.kth.se/∼jrgn/

handTracking264.mov.

The main point of using continuity is to overcome ambi-

guity arising during a few frames, by taking into account past



Fig. 9. Segmentation error comparison. Column 1: query pose pt; Column
2: segmentation mask; Column 3: estimated pose p̂t; Column 3: estimated
pose p̂

uniform
t

.

(a) t = 1 (b) t = 3 (c) t = 5 (d) t = 7

Fig. 10. Blurriness persistence. Row 1: query pose pt; Row 2: estimated
pose p̂t; Row 3: estimated pose p̂

uniform
t

.

estimations. As expected, Figure 8 shows that the estimates

p̂uniform
t are less robust to temporal ambiguities in the

mapping M. Enforcing continuity over time also improves

the robustness towards motion blur and bad segmentation, as

shown in Figures 10, 9. However, if the different problems

(blurriness, poor segmentation) persist over more than 5–10

frames, the continuity enforcement does not contribute to the

same extent.

Finally, we got some early results on a humanoid LbD

scenario for grasping purposes 2.

VII. CONCLUSIONS

A non-parametric method for 3D hand pose estimation

over time from a monocular video sequence was presented.

Experiments showed that the system estimates the hand pose

in real time robustly against segmentation errors. It was

also shown that enforcing continuity in the hand pose space

improves the quality of the hand pose estimation. Initial

results showed that the system can be used in a LbD scenario

for humanoid imitation.

Future work along these lines includes improving the

motion model; currently, a static model is implicitly assumed.

We can for example include angular velocities in the pose

state space, thus encapsulating velocity information in the

database examples. Furthermore, we will update the database

to represent poses of differently shaped hands under different

illumination conditions. We also plan to investigate methods

for mapping the human hand pose to a lower dimensional

space suitable for the robot hand that is going to actuate the

grasp after LbD.

2http://www.csc.kth.se/∼jrgn/

GraspRecognitionDivx.avi
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