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Abstract: Robotic interventions in hazardous scenarios need to pay special attention to safety,

as in most cases it is necessary to have an expert operator in the loop. Moreover, the use of a

multi-modal Human-Robot Interface allows the user to interact with the robot using manual control

in critical steps, as well as semi-autonomous behaviours in more secure scenarios, by using, for

example, object tracking and recognition techniques. This paper describes a novel vision system

to track and estimate the depth of metallic targets for robotic interventions. The system has been

designed for on-hand monocular cameras, focusing on solving lack of visibility and partial occlusions.

This solution has been validated during real interventions at the Centre for Nuclear Research (CERN)

accelerator facilities, achieving 95% success in autonomous mode and 100% in a supervised manner.

The system increases the safety and efficiency of the robotic operations, reducing the cognitive fatigue

of the operator during non-critical mission phases. The integration of such an assistance system is

especially important when facing complex (or repetitive) tasks, in order to reduce the work load and

accumulated stress of the operator, enhancing the performance and safety of the mission.

Keywords: vision; robotic interventions; eye-in-hand; tracking; hazardous environments; radioactive

scenarios; human-supervisory control; telerobotics

1. Introduction

Maintenance of equipment in scientific research organisations, like the European Centre for

Nuclear Research (CERN), is critical in order to ensure the correct operation of the experimental

infrastructure. However, people’s access to experimental facilities is not always possible due to

their hazardous characteristics such as the presence of radiation, high magnetic field and possible

lack of oxygen in the context of underground areas. Telerobotic platforms can perform some of the

maintenance tasks in a safer and more reliable manner. As a matter of fact, up until now, the CERNBot

robotic platform [1] has been used in more than one hundred real interventions, which have been very

successful, and has enabled the accumulation of experience in order to improve future works.

Besides this, it is important to take into consideration the fact that, due to the huge amount

of equipment to be maintained, the operations can be repetitive. As an example, in the Large

Hadron Collider (LHC) accelerator there are around 4500 BLM sensors, which have to be checked

regularly to assure the good performance of the system. In these situations, the use of standard and
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semi-autonomous automation techniques can help with designing accurate and safe robotic systems

to perform the interventions [2,3]. Moreover, other kinds of necessities exist, such as recovering

radioactive targets, which need a great level of expertise on both the robot manual operation and

the scientific machine. In these scenarios, the presence of unexpected situations might come up,

such as obstacles (e.g., cables), magnetic fields and radiation that might produce communication loss,

among others.

Considering such necessities, it is important that the operator is able to interact with the remote

robotic systems in a multimodal way, being able, for example, to launch high-level semi-autonomous

behaviours when the tasks are repetitive and safe (e.g., inspection for creating radiation maps) and

also permitting the control of the robots at low level (e.g., master-slave bilateral control with force

feedback). The use of such a multimodal human-supervisory telerobotic system helps enormously in

order to avoid the operator’s cognitive fatigue [1,4].

In fact, the use of a human-supervisory control system enables the ability to always have a human

expert in the loop, so as to achieve the required safety measures.

The success of the operations has been possible thanks to the modularity of the system, which

permits the adapting of the mechanical design and software architecture to the specific mission

plan. For this, the CERNBot modular robot has been designed [5] (see Figure 1). The robot can

be easily adapted by changing the tools, the position, number of arms and wheels, among others.

In addition, the server software architecture (i.e., CERN Robotic Framework) and the user interface

adapt dynamically to the current robot configuration, using a multimodal and unified human–robot

interaction (HRI) [6].

Figure 1. Unified multimodal human–robot interaction (HRI) to control the modular and reconfigurable

CERNBot robotic system.

According to the acquired experience on robotic interventions and taking into account their

growing complexity, further steps need to be performed in order to guarantee safety and efficiency.

For this, reliable computer vision, object recognition and grasping modules need to be studied and

integrated in the system, providing the expert operator with more sophisticated tools in order to reach

the expected quality during operation, while also increasing safety and accuracy. The computer system

also needs to be rapidly configured and installed, so the context of this paper focuses on the use of

monocular cameras for on-hand robotic vision control, which can be easily installed in specific places of
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the gripper or tools. Moreover, the vision system needs to be reliable under occlusions, reflections and

on metallic surfaces with lack of features, also providing specific added-values such as the automatic

calculations of depth. These are in fact the main goals of the vision system described in this paper.

1.1. State of the Art

In the scientific literature a great pool of computer vision systems providing the position and

orientation of targets with respect to the current camera situation can be found. Some of these systems

incorporate robotic actuators with an on-hand 2D camera [7], attached in conjunction with sensors

such as a laser [8,9], or a sonar [10]. Others are based on the use of single monocular cameras [11].

Different hardware setups can be used according to the issue to be addressed, such as the installation

of cameras on the mobile robot, or on the scene (in a fixed position) [12,13], in order to provide an

environmental third view, using also eye-in-hand techniques [14,15].

Sensor fusion systems can make use of cameras with depth information like Kinect [16] and

RealSense [17]. Additionally, some related works make use of stereo cameras to track a target,

in which both cameras are placed at a predetermined distance and rotation, calculating a whole

3D reconstruction of the scene [18–20] using Epipolar Geometry [21]. A single-camera system can also

be deployed [22] simulating a stereo system, either using markers [23], or previously establishing the

separation parameters among two images [24], knowing the relationship between the key-points of

both images, necessary to build the Epipolar Geometry. Nobakht and Liu [25] proposed a method to

estimate the position of the camera with respect to the world, using a known object to compute the

position by Epipolar Geometry.

Although time-of-flight (ToF) cameras [26] procure a set of key-points (based upon low modulation

infrared light (20 MHz)) for a 3D reconstruction by the camera intrinsic parameters, they depend

largely on the object material.

All the systems presented above lead to a significant growth in the robotic platform hardware, for

which the accuracy depends to a great extent on the environmental light, on the reflection against the

target, and on the material. Only a few have faced the problem to recognise metallic objects, giving

some promising results by the use of neural networks, while still presenting errors above 10% [27].

The present paper provides an step forward in order to allow a remotely supervised robotic

system to recognise, track and estimate the position of metallic targets in real industrial and scientific

scenarios. Results are very promising, which have been tested and validated in real interventions in

the CERN tunnel facilities, during maintenance operations.

1.2. Problem Formulation

According to the current state of the art and the real necessities to be solved in robotic operations

at CERN, to the best of the authors’ knowledge, there is no vision-based system that allows reliable

object recognition and tracking of metallic targets in scenarios with partial occlusions, reflections

and luminosity constraints, permitting also the calculation of distances to the object using a simple

monocular camera, which can be installed in a specific position of the gripper. As a matter of fact,

for further experimentation and user operator efficiency, it is also necessary to provide a grasping

determination module, which can approach and guide the robot to the target in a simple and

safe manner.

Moreover, considering the necessity to use such an Real-Time (RT) tracking vision system for

both the operator’s feedback and the robot arm control to assist teleoperation, we deemed fit to focus

on these techniques, which provide the robot position and orientation in relation to an image pattern

taken from the scene and optimising them by adding the utility of computing the depth information

of metallic objects (e.g., screws, connectors, etc.), focusing on the robustness and efficiency of the

algorithm. As stated in the results, the integration of such tracking techniques have already been done

and validated within the structure of the CRF (CERN Robotic Framework), with the purpose of using

them in the interventions that are currently being carried out. With that in mind, the proposed solution
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contained in this paper exploits the transformation matrix of the robot to localise the current camera

position (eye-in-hand configuration) and to determine the distance to the target (i.e., depth estimation).

After the integration of the system in the CERN’s HRI [28] (see Figure 1), this can trigger the tracking

and depth estimation for any of the objects present in the scene.

The vision system also includes an object recognition module (deep neural network-based), which

does not only accept the Region of Interest (ROI) input over an unknown target selected manually

by the operator but also searches autonomously for the objects, letting the operator interact with the

robot by referring to objects instead of bounding boxes, and enabling further experimentation to carry

out semi-autonomous tasks on the recognised metallic pieces (e.g., motion planning and grasping

execution).

It is very important that the vision system works at a high performance, since most remote

operations rely on real time visual feedback to the operator, although the 100% real-time capability

cannot be really fulfilled because the 4G network does not provide such feature. This information

is the main link between the human-expert and the robot, which is being operated remotely.

The visual feedback needs to be provided to the user at a minimum delay, in order to avoid

move-and-wait human-robot interactions, which would affect the efficiency of the system. Thus,

when the teleoperation is carried out, the visual feedback has to work concurrently with the estimation

and guidance process, which provide information that can be represented in the user interface using

augmented reality techniques. On the other hand, for the autonomous and semi-autonomous tasks

that do not require the RT feedback to the user, it is possible to gather visual data for further analysis.

In summary, this paper presents a novel solution to extend the capabilities of a supervised HRI in

order to improve the guidance of a robotic arm (see Section 4). For this, the system includes a novel

depth estimation solution, as well as a deep learning-based Faster-Regions with Convolutional Neural

Network (RCNN) Features model [29] with Resnet-101 object recognition, which work efficiently

in metallic surfaces, having unexpected reflections, partial occlusions and lack of visibility. Besides

this, the vision system has been designed to work on board, without needing special hardware, also

enabling the use of a broad range of monocular cameras in the market (e.g., black&white, endoscope

and large full-High Definition (HD) Pan–Tilt–Zoom (PTZ) cameras), as can be seen in Table 1. This also

enables the increase of the number of available cameras to the operator, facilitating the operation task.

Table 1. Specifications of the Used Cameras for System Validation.

Image Model Description

Endoscope VOLTCRAFT
BS-24

HD 720p, 54°field of view, IP67-rated,
diameter 8 mm., length 50 mm., 4 white
LEDs light source, USB 2.0 connection

iDS uEye XS
HDTV 720p, 8MP CMOS sensor,
dimensions: 23 × 26.5 × 21.5 mm., 12
grams weight, USB 2.0 connection

Axis F1005-E
Full HD 1080p, 113°field of view,
IP66-rated, Ethernet connection

iDS uEye-se
VGA to 10.5 MP, CMOS sensor, up to 93
fps in AOI mode, USB 2.0 connection

Logitech C930e
Full HD 1080p, 90°field of view,
Auto-focus, zoom to 4X in 1080p, USB
3.0 connection
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2. Preliminary Experiments

As a preliminary step, in this section a comparative of different tracking algorithms using the

above cameras and their calibration procedure is presented.

2.1. Tracking Algorithms Comparison

First of all, several tracking algorithms from the scientific literature were tested in order to better

understand their performance in real robotic intervention conditions. The results can be summarised

as follows:

• The Boosting algorithm [30] uses a set of techniques that mixes several weak classifiers algorithms

to create a more robust solution. It showed the fastest performance when evaluating the features,

while presenting a very low accuracy.
• Babenko et al. [31] present a robust object tracking Multiple Instance Learning (MIL)-based

algorithm [32], which, although it was showing high precision, the computational time was

higher too, due to the fact that it considers a set of training samples that can be ambiguous, as a

single object can have many alternative instances that describe it.
• The Tracking-Learning-Detection (TLD) algorithm [33] tries to localise all the similarities within

the scene. Thanks to this behaviour, it is capable of facing temporal occlusions, but it obtains a

large number of miss-detections in scenarios with metallic parts, as well as higher computational

time consumption.
• A version of the Kernelized Correlation Filters (KCF) algorithm [34] has been implemented. This

algorithm, which is based on Histogram of Oriented Gradients (HOG) [35,36], has shown good

computational performance and the greatest accuracy by tracking different kinds of objects. This

is the algorithm that has been used as the basis for the solution implementation presented in this

paper.

In fact, Hare et al. [37] compared their own tracking algorithm with the recently released ones,

obtaining interesting results regarding those arising from HOG descriptors, instead of others derived

from Haar-like features [38–40] such as Boosting, since HOG describes the object shape by way of

edges detection or its distribution of intensity gradients after histograms concatenation from a set of

small connected regions that were split from the main ROI. Then, in order to gain an improvement

that is invariant to shadows and luminosity, it increases the accuracy, normalising these histograms.

Therefore, since our work is based on the tasks’ execution on metallic surfaces, the appearance of

a large number of reflections can be readily detected, forcing us to dismiss the Haar-based algorithms

as they are grounded in the pixel’s light intensity instead of HOG, which provides a solution more in

accordance with our requirements.

2.2. Camera Calibration

The calibration of the set of cameras that were used in this project becomes a critical preliminary

step in order to obtain the necessary parameters that allow a proper execution of the robotic

task. The camera calibration can be performed in two steps, by calculating both the intrinsic and

extrinsic parameters:

• Intrinsic parameters: The OpenCV solution [41] was used for this purpose, by applying the

classical black-white chessboard, obtaining the distortion coefficient and the camera matrix (see

Equation (1)).

CM =

∣
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∣
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∣

∣
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fx 0 cx
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∣
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∣
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∣
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(1)

Although the well-known distortion present in current pinhole cameras, this does not present an

issue for the aim of this work, as it is possible to discard the distortion coefficient. However, the
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camera matrix provides the essential values for this aim, where fx and fy are the focal length in X

and Y axis, respectively, and cx and cy are the optical centres expressed in pixels coordinates.
• Extrinsic parameters: Unlike the intrinsic parameters, this calibration provides the camera position

and orientation in regards to the frame (i.e., the base of the robot). In Reference [42] a fast technique

to carry out the task is presented, which is fully implemented in the ViSP library [43]. Due to the

fact that the robotic system has been designed to be modular and easily re-configurable, including

tools, actuators and sensors re-positioning, this calibration technique has been demonstrated to

be very appropriate, due to the fact that the camera selection, as well as its position, changes

assiduously (see Table 2).

Table 2. Examples of grippers set and configuration of the cameras.

Setup Description

Default CERNBot’s end-effector with 7 cm fingers length
and eye-in-hand mono-camera attached to the Schunk
GP15 gripper

2 monocular cameras TCP system: red box shows an
eye-in-hand camera; green circle shows an end-effector
endoscope camera on the pneumatic angular screwdriver
key held by the Schunk GP15 gripper

Axis monocular camera attached to a ROBOTIQ 2-Finger
140 mm Adaptive gripper

Endoscope eye-in-hand camera on the Schunk GP15
gripper with extension fingers (22 cm. length) for fragile
and hardly reachable radioactive source manipulation

Webcam attached to the screwdriver head and carried by
a Schunk GP15 gripper

Therefore, the estimation of the camera position in regards to the end-effector (Mc
e) is estimated

by the Equation (2), which is linear least squares-based, making use of a set of the homogeneous

transformation matrix of the robot (M
f
e ) and the transformation matrix of the camera with respect to

the pattern (Mc
o), both for each picture.
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Finally, the transformation of the camera, with respect to the end-effector, is added to the robot

matrix as the last joint of the robot configuration.

Mc
e → {M

f
ei

, Mc
oi
} (2)

3. System Overview

A new vision-based set of software engineering tools, consisting of a tracking algorithm, in

conjunction with an object recognition module and depth estimation system, has been deployed to

enhance the usability of a multimodal User Interface, which is in fact the user expert entry point to the

system. The vision system acts as a server, listening for requests from the user interface, triggering the

method shown in Figure 2.

Figure 2. Diagram of the general principle of the system’ operation.

The algorithm is based on tracking traces and computes the distance between any kind of

mono-camera attached at the end-effector of the robotic arm (as shown in Tables 1 and 2), to a selected

metallic object with a lack of vision features, partially occult, or under reflections.

The procedure needs, as an input, a region of interest to be tracked. The ROI is extracted from

the object recognition module and confirmed by the selection of the user. This ROI is split into four

isolated and coordinated tracking areas (i.e., four trackers), which will depend on a parent one. Then it

will lay a virtual set of key-points from the centre of each tracker and these key-points will be used

as a correlation between the pair of images. The whole procedure shall be taken as a reference and

replicated for every current frame, with the aim of triangulating the position of the target regardless of

the movement performed on the X and Y-axis.

Taking advantage of the transformation matrix of the robot, once a pair of frames with different

robot TCP positions have been analysed by the system, a normal distribution begins to be fed, with the

purpose of deciding on the estimation of the target’s depth, looking for an error under a minimum

pre-established experimental threshold (0.05% by default). If so, all the data (depth estimation,

the percentage of error, and the distance between the ROI and the centre of the scene) shall be shown

through the GUI by the AR module. If the system detects any tracking problems triggered by the
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implemented thresholds, or is taking a long time for such an estimation, it will restart the triangulation

with a new reference.

It is important to clarify that current robot architecture uses three main computers: (1) the

server on the robot where the cameras are connected, (2) the HRI operator computer and (3) the

object recognition module computer where the neural network is being executed. In fact, the object

recognition server is provided with a NVidia GTX1080 GPU and 32 GB of RAM, in order to improve

its performance.

The tracking and depth estimation loop is going to be enhanced by a Grasping Determination

module that is under development, enhancing previous experiments on fast 2D/3D grasping

determination and execution. This module will allow the calculation of a list of stable grasping points

that can be used by the operator to perform a picking task in a safe, accurate and supervised manner.

4. Target Tracking, Surrounding and Approach

One of the most important steps on the human-supervised telerobotic interventions is to track the

target, maintain the camera’s focus on it and help the operator to bring the robot to an approached

position in order to prepare the required interaction.

For that purpose, the computer vision system maintains the target in the field of view and assists

the operator while approaching the target, in a remote controlled supervised manner.

The main difficulties to be solved in order to accomplish the task are the following:

• Track the target: The tracking system must be performed in a reliable and close to real-time

manner in order to avoid adding extra time, resulting in a delay, to the telerobotic task. Also, the

ROI of the tracked object has to be well adjusted to the target contour in order to obtain better

performance and accuracy. For this, it must be taken into account that the KCF algorithm is not

invariant to scale. Therefore, when the camera approaches the lens, the ROI should be increased

accordingly, avoiding losing the tracking that would otherwise occur. Likewise, when the camera

is moving away from the target, the ROI has to be decreased, avoiding to track a wrong area,

since the depth of the whole unstructured environment (where the robot is often used to perform

the interventions) could generate errors. In summary, the tracking must be invariant to scale,

orientation, translation, reflections due to metallic parts, lack of luminosity and partial occlusions.
• Surround the target: During intervention, according to the expert telerobotic human operators’

experience, it is very common to have to turn around the target once it is detected, due to the

fact that the location of the components in an unstructured environment might need to dribble

obstacles and study the best trajectory to reach the goal. Meanwhile, the tracking system has to

be able to follow the ROI, helping to keep the target at the centre of the view.

The way to fulfil all the requirements listed above is to develop a system in which both KCF

and a feature detector and extractor algorithm, work in a coordinated manner. In Reference [44] the

most significant algorithms for that purpose were tested, the SURF [45] being the one that better suits

our needs.

The unified developed vision algorithm presents a greater tracking enhancement in terms of

performance and accuracy. In fact, when KCF needs to adapt the ROI dimensions, this is rescaled by

making use of the SURF-based homography estimation, by adjusting the ROI to the dimensions of

the SURF bounding-box (see Figure 3). Instead, taking advantage of the fact that, broadly speaking,

tracking algorithms try to follow what is being shown inside their ROI area frame by frame (unlike

those feature extraction algorithms such as SIFT [46] or SURF among others, which focus on the search

for an existing pattern), it allows to turn around the target without losing it. With that in mind, when

SURF has problems to detect the target, KCF (that follows the object throughout the rotation and/or

translation) provides a new pattern using the current ROI square, thus updating the existing one,

allowing to the homography to improve its performance under the new visual orientation. As seen in

Figure 4, the first two screenshots (both in the upper row) are sharing the same pattern and yet, the
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two in the second row use updated patterns, which have been obtained from the ROI’s covered area as

soon as the homography begins to have issues with the area/object detection.

Figure 3. Left to right: Initial state; Rotation and/or translation in the same direction; Reduction of the

region of interest (ROI) due to estrangement; Increased ROI due to the approach.

Figure 4. SURF+KCF system sequence working with different patterns in the same execution. The red

square shows the position where the pattern was taken. The colourful square depicts the SURF-based

homography estimation, and the blue square represents the tracked ROI.

5. Tracking-Based Depth Estimation

The proposed solution to retrieve the depth estimation while tracking metallic objects must

work close to RT with the aim of fulfilling the mission requirements. For this, aspects such as the

visual operator feedback (critical to avoid the delay) and the data collection for both autonomous

and semi-autonomous tasks must be taken into account. Besides, the robustness of the algorithm is

a highly relevant key point, due to the fact that it is used in real robotic interventions on harsh and

costly environments, where the safety of humans and scientific material is crucial.

As a first step, the correlation between the key-points drawn from the pair of images has to be

calculated, so as to triangulate the target position (see Figure 5), which will serve in order to: (1) adapt

the robot velocity to the necessities with respect to the measured distance, and (2) to carry out the

calculation of an adaptive trajectory to approach and reach the target, which is under development at

the moment of writing.
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For this purpose, it is mandatory to compute the camera world coordinate position at every time,

which is achieved by means of the use of the forward kinematics [47] through at least 6 DoF robotic

arms [48,49], which provides the current position of its end-effector (where the camera is attached)

with regards to its frame (its base).

Figure 5. Triangulation proposal in X and Y axis. X1P1 and Y1P1 are the projection of the point (P) on

the first image, and X2P2 and Y2P2 the projection of the same point on the second picture.

Hence, by applying a last homogeneous transformation to the matrix of the robot (as explained in

Section 2.2), it is possible to get the exact position and orientation of the camera with regards to the

robotic arm base, which leads to the transformation matrix calculation.

Once the system starts, the ROI of the first frame will be used as reference, and the second

area of interest of the peer will be obtained from the current frame. For determining the correlation

points set, the movement of the camera is calculated by the difference among the inverse of the initial

homogeneous transformation matrix of the camera coupled to the end-effector (as explained above),

and its current transformation matrix, getting the translations in X and Y-axis. In order to make

balance on the correlation system regarding to the possible rotations done, Euler [50] is applied to get

the angular of these from the Equation (3).

M f = M−1
f ·MC (3)

Having calculated the correlation of the key-points inside of the ROIs, the Sinus Theorem (see

Algorithm 1) is applied to achieve the triangulation for each key-point (for the purpose to extract their

average, due to the fact that the piece/area might no be a flat surface), in which the estimation of

the distance among the target and camera is based on the translation and rotation of the camera (see

Equations (4)–(6)) where: P1 and P2 are the projection of the key-points on the origin and current picture

respectively, as well as hypo1 and hypo2 are the hypotenuses for each image, both the focal length ( fx,y)

and the center point (CP) come from the intrinsic parameters of the camera (see Equation (1)), and
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T (translation) and R (rotation, always the opposite to the translation) are the intrinsic parameters

determined by applying the Equation (3).

Algorithm 1 Depth estimation algorithm based on the tracking solution.

Require: distanceX ≥ 0.001 OR distanceY ≥ 0.001
function depthEstim(Translx, Transly, Rotx, Roty)

for square← 0 to NSquares do

if square is not outlier then

distance(Translx, Rotx, Depthx)
distance(Transly, Roty, Depthy)

end if

end for

normalDistribution(Depthx, Depthy)
if depth is estimated then

Show the estimation and the error by AR and to adapt the arm velocity regarding to the depth
end if

end function

function distance(T, R, Depth)
hypo1 =

√

(P1x,y − CPx,y)2 + ( fx,y)2

hypo2 =
√

(P2x,y − CPx,y)2 + ( fx,y)2

if P1 < P2 then

hypo1 ⇔ hypo2 ⊲ Swapping pictures position
end if

αx,y = π/2− arcsin((P1x,y − CPx,y)/hypo1)
βx,y = −(π/2− arcsin((P2x,y − CP)/hypo2) + Rx,y)
γx,y = π − αx,y − βx,y

Depth = (−Tx,y sin(αx,y))/ sin(γx,y)
end function

αx,y =
π

2
− arcsin

P1x,y − fx,y

hypo1
(4)

βx,y = −(
π

2
+ Ry,x − arcsin(

P2x,y − fx,y

hypo2
)) (5)

DEx,y = −Tx,y · sin(αx,y)/ sin(π − αx,y − βx,y) (6)

To perform this estimation, it has been mandatory to carry out the camera calibration beforehand,

by obtaining the focal length from its intrinsic parameters (explained on the intrinsic parameters layer

of the Section 2.2), which is strictly required to display the key-points projection on the 2D plane that

is generated by each image of the triangulation system (see Figure 5).

Considering that the system design is made to allow free movement in space, it does not need to

know the original position of the system reference frame and the camera rotation in X and/or Y axes

during the motions.

5.1. Metallic Pieces Detection

With the aim of offering to the user a higher level of interaction with the system, a deep

learning-based module for object recognition [51] has been integrated (see Figure 6), which allows

metallic object recognition in a robust manner (e.g., connectors, sockets and patch panels) upon

non-textured attributes. The module is based on Faster-RCNN already pre-trained in COCO [52].

The neuronal model that showed greater accuracy for this technique, by detecting a large number

of metallic parts of our interest, is the ResNet-101 [53], which obtained total losses below 0.05%, better
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results than other models such as Inception-v2 [54] and ResNet-50, where the score was over 0.1%. In

total, 500 pictures of 6 different objects of interest (see at Section 7.2) were used to train the method

along 100,000 steps. However, the loss function already converges for classification and box estimation

in step 30,000, by using the same COCO parameters. The performance of this solution is capable of

detecting objects at the remote robotic site in under 1 s (network dependency), delivering a bounding

box for each detected object to the HRI, which will be offered to the operator, allowing him to directly

choose the object to be tracked, starting the depth estimation procedure.

Figure 6. Deep Learning integration diagram.

Also, it is important to clarify that the metallic pieces detection using the neural network

techniques is applied when required by the operator, normally when the target is faced to the robot

and before the intervention starts. On the other hand, the tracking system is working continuously

on the robot side. We cannot tell the system is working in real time because the 4G network that

connects the robot to the surface is not providing this capability. Anyway, the system looks for the best

performance in order to improve the efficiency of the intervention.

5.2. Features-Extractor-Based Key-Points Correlation

As a first approach, the system has been designed using the SURF-algorithm as a basis, which has

been used to obtain an adequate set of key-points for finding the correlation between the origin and

current images. The ensemble of features provided by SURF have to be treated appropriately in order

to be useful to the next step of the algorithm.

Since the set of key-points are extracted from the ROI of the scene (reducing the computing time),

these must be reallocated on the plan (looking for the real position upon the view) increasing X and Y

with regards to the ROI origin coordinates.

Then, the outliers are filtered, which include both the points out of the bounding box, as well

as those that, according to the Euclidean-distance [55], are greater than the experimental threshold

established previously (see Figure 7).
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In order to help the robot operator reach the proper position to perform the task, or to guide

the mobile manipulator autonomously to attain the target, the system must send the robot’s next

position meanwhile the estimation of the distance to the target is carried out. Because of the instability

of the homography performed by SURF in these kinds of scenarios where the lack of features and

metallic surfaces are the most common situation, KCF was used instead, with the goal of smoothing

the current position of the interest area, tracking it and estimating the next position. The use of the

vision system and depth estimation has also demonstrated the improvement the focus and quality

feedback sensation of the operator, avoiding undesired cognitive fatigue.

Figure 7. (Top) key-points correlation between two images in raw. (Middle) key-points correlation

among two pictures after the isolated ROI (used as a pattern) translation adaptation. (Bottom)

key-points correlations after filtering with the euclidean distance-based threshold.

Besides this, the robotic arm work-space and reach-ability [56–58] was considered in the algorithm,

since the limits of the robot movements or the positions reached due to singularities [59,60] can affect

directly the estimation, being necessary in those undesired situations to correct the arm position and

restart the assessment.
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5.3. Tracking-Based Key-Points Correlation

Despite the fact that SURF-based results show an excellent performance in terms of accuracy, they

also show instability in the required scenarios, where the object and its surroundings are metallic, with

very poor texture features, and the possibility of glares and partial occlusions. Due to this situation, it

has been necessary to redesign and find out an extended solution to fix the weakness of the approach

exposed above (Section 5.2).

KCF has been used as a replacement for SURF as key-points supplier with the aim of gaining

this necessary stability, sacrificing such essential characteristics as the homography and the partial

occlusions that feature extractor algorithms commonly offer, facilitating the correlation task.

In order to take advantage of the enhancements made with the use of KCF and with the goal of

overcoming the above-mentioned disadvantages, the algorithm proposed uses five tracking regions

instead of one (see Figure 8). The main frame represents the whole ROI, which is divided into four

mini-trackers, of which the centre will be considered as the key-points. Then, each little square will

work independently, tracking its own area, correlating the key-points (within our selected screen

region), between the points of the original and current images.

Figure 8. Rotation solution for the homography.

Because of this, the problems presented by the partially hidden targets and the constraints from

the invariance to rotations are arranged, allowing full freedom movements to the camera, crucial to the

proper system performance, which joins the properties of each algorithm, compensating the weakness

of one another.

On the other hand, due to the featureless ROIs covered by the trackers, a Euclidean-distance-based

threshold has been established (see Algorithm 2), which compares the behaviour of each tracking

with each other, trying to predict the performance of each tracker. This allows the detection of the

potential misbehaving of the squares. This guarantees the supply of a set of data with best key-points

correlations, after filtering the outliers and avoiding the disturbance of the estimation made by the

triangulation. The estimation can also be restarted if necessary.
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Algorithm 2 Euclidean-based threshold to avoid the wrong behaviour of the squares, where rR f is the
initial reference position of each ROI, and thresholdErr the threshold set by the user.

function checkRoiStatus(rR f , thresholdErr)
for ROI ← 0 to N_ROIs do

if ROI is not outlier then

edp = calculate_eucliDisPoint[ROI, rR f [ROI]];
euclideanDistPoint.push_back(edp);
distance_average += euclideanDistPoint[ROI];

end if

end for

distance_average/ = N_ROIs;
for ROI ← 1 to N_ROIs do

error = (distance_average*(thresholdErr)/100)
if euclideanDistPoint[ROI] > |error| then

avoidRoiToDepthStimation[ROI] = true;
end if

end for

end function

6. System Testing and Commissioning

Object tracking and depth estimation have been integrated and tested in both autonomous and

supervised systems, which are already fully integrated into CERN’s robotic framework, endowing

it with an artificial intelligence capable of guiding the operator (i.e., supervised performance) or

performing the task by itself (i.e., autonomous behaviour).

The testing and commissioning on real interventions have been carried out under the use

of different kind of industrial cameras, from normal webcams to endoscopic ones (see Table 1 in

Section 1.2).

In fact, in this section the following use cases are going to be described: (1) example of vision-based

autonomous behaviour, where the tracking and depth information is used to automatically perform an

intervention in the panel of a machine present at the LHC; (2) example of a semi-autonomous vision

human-supervised task, where the operator uses the vision system to assist in an intervention task

with a connector; and (3) the contingency behaviours added to the vision algorithm to enhance its

safety and accuracy for real interventions.

6.1. Example of Vision-Based Autonomous Behaviour

This system is a state machine developed with the aim of detecting a switch on a Heater Discharge

Power Supply (QPS) to turn it on/off, which is largely present at the LHC tunnel. The system has

shown very good results, being a nice example of how powerful the ecosystem created by SURF+KCF

can become (see Figure 9). The state machine is composed by the following states:

Figure 9. Task sequence carried out by CERNBot2: (a) target detection through a Pan–Tilt–Zoom (PTZ)

camera, (b) approaching to the target, (c) depth estimation (d) switch actuation.
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• PTZ-Camera Visual Servoing Robot Control: A visual servoing system has been deployed to drive

the robot (see Figure 10) to the target through an Axis PTZ-camera (see Figure 11), which is in

charge of finding out the QPS, making use of the SURF algorithm, and a set of patterns previously

loaded. Due to the fact that the camera’s framework uses the internet network protocols, a request

and response communication-based Python controller has been embedded on the system (see

Listing 1) to guide the platform and position it in front of the target in a proper distance, so that

this can be reached.
• Vision control for arm orientation: With the robot arm already approaching the target, the robotic arm

is triggered to a specific position and the gripper camera is switched on, while the PTZ-camera

remains disabled. Thus, the orientation of the robot with regards to the target device is calculated

by the homography provided by SURF through the gripper camera. For that purpose, the

intersection of the opposite corners of the square-homography gives the current orientation, as

seen in Figure 12.

Figure 10. CERNBot in scorpion setup. Here it can be seen how the robot wears the two kind of Axis

cameras outline above.

(a) (b)

Figure 11. Cameras PTZ: (a) Axis V5914 PTZ, usually attached on the CERNBot platform. (b) Bowtech

BP-DTR-100-Z underwater camera for further use in radioactive dust and underwater scenarios.
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Listing 1: Request & response for PTZ-camera control via Ethernet network using Python and

CURLib in parallel.

#include <python2 .7/ Python.h>
#include <curl/curl.h>
....
// It launches a request to the camera and returns its orientation
int queryPositionPTZCam(std:: string &queryAxis) {
std:: string readBuffer;
CURLcode res;
CURL *curl = curl_easy_init ();

if (curl) {
curl_easy_setopt(curl , CURLOPT_URL , queryAxis.c_str ());
curl_easy_setopt(curl , CURLOPT_WRITEFUNCTION , WriteCallback);
curl_easy_setopt(curl , CURLOPT_WRITEDATA , &readBuffer);
res = curl_easy_perform(curl);
curl_easy_cleanup(curl);
}
// Extracting the orientation figure from the response received
return std::stoi(readBuffer.substr(readBuffer.find("=") + 1,
readBuffer.find("\n") - readBuffer.find("=") - 1));
}

void movingCamera(const cv:: Point centerScreenPoint , cv::Point &centerError) {
// If target position is reached , stop PTZ -Camera
if (queryPositionPTZCam(queryAxis) == targetPosition) goto stopCamera;

Py_Initialize (); // Instantiate a Python ’s interpreter

// Lambda function , it executes Python ’s instructions within the
// scope of the interpreter
auto sendRequest = [&]( std:: string &URLRequestAxis) -> void {
PyRun_SimpleString("import requests");
PyRun_SimpleString(URLRequestAxis.c_str ());
};
// If the target is not center in the scene
if ((abs(centerError.x) > 1 or abs(centerError.y) > 1)) {
sendRequest(movementURLPythonRequestAxis);
} else if ((abs(centerError.x) <= 1 and abs(centerError.y) <= 1)) {
stopCamera:
sendRequest(stopURLPythonRequestAxis);
}
Py_Finalize (); // Closing the interpreter
}

Figure 12. Use of the square-homography intersection to fix the orientation. The squares meaning is:

the left one needs to turn right, the one at the centre is well oriented, the right one needs to turn left.

• Depth Estimation: insofar as the switch detection is done (by using the split left side of the frame,

since the switch location is perfectly known), the depth estimation presented in this document is

launched, providing the distance to the camera and placing the gripper towards the switch.
• Fine-grained approach to the target: Apply TZ (see Equation (7)) translation upon approaching

direction by inverse kinematics to reach the switch, where dZ
c
e is the distance from the camera

to the end-effector, taken from the approach parameter on Equation (8) (wherefore M
f
c and M

f
e

are the position of the camera and the end-effector respectively with regards to the TCP), and

Depth is the measure done by Depth Estimation algorithm. The velocity is adapted to the distance

estimated for a proper performance.
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dZ
c
e ∈ (M

f
c

−1
·M

f
e ) (8)

6.2. Example of Semi-Autonomous Vision Human-Supervised Task

Taking into consideration that the vision system can work autonomously in controlled

environments, it is worth mentioning that, in order to perform such an intervention on unstructured

hazardous environments and expensive scientific facilities, it is necessary to keep an operator always

in the loop, which can supervise the semi-autonomous behaviours, stop them if necessary and even

take manual control of the robots due to unexpected situations.

The proposed human-supervised control solution has been integrated in the CRF, including both

the server controller and the client Human-Robot Interface. The CRF gets the required ROI from the

HRI, as explained in Section 5, either from an area of interest selected by the operator, or running

some object detection solutions, after the required training and setup. Then, the HRI will show to

the operator the sensors feedback provided from the system, through a multimodal and augmented

reality module and it shall adapt the robot velocity to the perceived depth. Besides this, if the operator

considers it necessary and safe, the automatic tracking can take control of the arm to approach the

target in an smooth manner, trying to avoid mistakes on the approaching time and keeping the goal

centred in regards to the frame (see Figure 13).

Figure 13. Operator guidance by tracking-based Depth Estimation system upon metallic surface.

It is worth noting that the visual feedback to the operator runs according to the frame rate of the

camera used, since the frame shown on the GUI shall be the current one, although the information

goes relative to computational load, avoiding bad sensations to the operator as well as dealing with

the possible tiredness.

6.3. Contingency Behaviours

Bearing in mind the robustness and stability that the system must show working in costly and

unstructured scenarios, the contingency plans become primordial by anticipating the possible losses of

the targets generated by the uncontrollable situations (i.e., full target occlusion, ROI disappearance due

to the robotic platform has gone through an obstacle/crack, etc.). If so, the estimation and guidance

stop, switching on SURF (which will deal with the retrieval of the tracker) making use of a pattern that

was previously extracted from the main ROI, which can be traced back from Figure 14 (binary pictures)

when the tracking updates its situation. Meanwhile, the robot gets stabilised afterwards in order to get

out from the crack (or the operator turns the view to the target again) and the system looks for the

reference in the scene, which shall allow the continuation of the estimation and the guidance that was
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being carried out. Hence, applying a feature extractor (such as SIFT or SURF) collaboratively with the

enhanced tracker exposed on the document, generates a greater robust ecosystem, able to deal with

undesired situations as well as to self-heal from the issues (Figure 15).

Figure 14. System behavior under partial occlusions.

Figure 15. Recovering System diagram.

7. Results

7.1. Accuracy Experiments

The presented module, which is currently being used in real robotic interventions within CERN’s

facilities in a successful and robust manner, is capable to run in both harsh and featureless environments,

providing guidance and surrounding (either for a robotic platform as for the operator in charge), and

a depth estimation by correlating a set of key points in a novel way and be close to RT performance.

The system that is integrated in the CERN’s HRI, achieves an accuracy of over 90% in the depth

estimation measurements (see Figure 16), with under one centimetre of error.
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Figure 16. Confidence test. Grey and blue lines represent the current distance range. Orange line is the

estimation. Red box shows the only one error over 1 cm.

With these matters, the set of current tracking algorithms tested and described above (see

Section 2.1) has been integrated into the system developed to prove its performance, and thus

demonstrate why all those whose properties do not provide what is necessary for the development

of our tracking system have been rejected. Therefore, as seen in Figure 17, KCF showed the best

performance in consideration of both computational time and accuracy.

Figure 17. The performance of monitoring algorithms tested prior to system development, where it is

shown the origin position, the translation in X, and translation in Y. Translations are with respect to the

robot TCP.

Figure 18 shows the yield of the novel algorithm that is proposed in this document, where the

depth estimated by SURF and KCF solutions are compared against known distances, which present
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large differences in terms of stability. Regardless of the high accuracy that both solutions have proved

(see Table 3) with an average error under 0.5 cm, is the KCF-based one that represents the higher level

of stability, achieving more than 94%. This percentage comes from the amount of frames that provides

the correct measurement. Once the distance is achieved, it keeps the camera in the final position,

removing the frame outliers per thousand samples.

Figure 18. Difference of stability in the performance of the two solutions proposed (SURF-based and

KCF-based), where the abscissa axis represents the distance to the target and the ordinate axis the

percentage of frames providing the correct measurement.

Table 3. Stability and accuracy from both solutions presented.

Real Dist. SURF-Error (m) KCF-Error (m) SURF-Stability (%) KCF-Stability (%)

0.20 m. 0.0022346 0.0047224 0.083957663 0.970001464
0.30 m. 0.0046036 0.0043484 0.088593119 0.963883933
0.40 m. 0.0020228 0.0055516 0.12287338 0.92588872
0.50 m. 0.0038266 0.0033858 0.055642677 0.959756087
0.60 m. 0.0033424 0.0044288 0.049432454 0.932125796
0.70 m. 0.003555 0.0051822 0.068023731 0.959685824
0.80 m. 0.0041976 0.0060142 0.111163444 0.926650095
0.90 m. 0.002221 0.0045714 0.1359251 0.952898557
1.00 m. 0.0020276 0.0026512 0.108168958 0.939239064

Average 0.00311458 0.004539556 0.09153117 0.947792171

Furthermore, joining the opposite corners from the isolated little squares, the system overcomes

to the well-known rotations constraints that the tracking algorithms show (see Figure 8 in Section 5.3)

and the partial occlusions (see Figure 14) that could happen in the time frame that the robot moves

carrying out the interventions, besides allowing the possibility to calculate the homography for those

systems with missing matrix of the robot.

In addition, the algorithm endows maximum freedom of movement to the robotic arm, translating

and rotating the camera either in X and Y-axis. Due to this, the translation must be increased in regards

to the rotation done (see Figure 19), compensating it and avoiding the drop of the set of key-points

outside of the scene or the exchange of their position within the triangulation system.
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Figure 19. Relationship among translation and rotation (X and/or Y axes) to achieve the triangulation.

7.2. Metallic Targets Data-Set for Tracking and Object Recognition Benchmarking

In order to enable further tracking and object recognition experimentation on metallic

targets, the used data-set is provided, which is available at (https://cernbox.cern.ch/index.php/

s/08vGzLeQ1w9CFac).

In Table 4 the list of objects that have been used to train the object recognition neural network can

be found .

Table 4. Summary of the Data-set used to train the metallic targets object recognition module.

Image Metallic Object Description

Collimator
Device present in the LHC accelerator
to filter particles that got not aligned in
the beam

Guide
Beacons for alignment used in different
tasks according to the ending placed on
top

Socket Electrical socket connection

Separator
Device to separate the collimator from
the beam

Relay
Switch to turn off/on the machine
functions

Spikes
Guide designed to help the the separator
installation

https://cernbox.cern.ch/index.php/s/08vGzLeQ1w9CFac
https://cernbox.cern.ch/index.php/s/08vGzLeQ1w9CFac
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7.3. Videos

Some videos of the experimentation are also provided in this section.

• Contingency behaviour: this video shows a safety contingency procedure used in the tracking

and depth estimation algorithm, to avoid the robot to move once the tracking has been lost,

and also helping it to recover the track once the object is facing the camera. For this, once the

tracked object is lost, the last tracked ROI is used by a tracking thread to explore the next camera

frames, which allows the system to better recover the track according to the new reflections and

luminosity target state. (https://cernbox.cern.ch/index.php/s/kEIIK6hdPwnUdDk)
• Depth Estimation: in this video a robotic arm with on-hand camera facing a pool of metallic

connectors (i.e., targets) is presented. First of all, the video shows the selection of the ROI by the

operator, which enables the tracking and depth estimation procedure. Also, in the second part of

the video the connectors are recognized by the deep learning algorithm. Then, once the operator

selects to object to track, the system calculates its depth. (https://cernbox.cern.ch/index.php/s/

Qguw2RMNLr0SwuO)

8. Conclusions and Future Work

This paper has presented a tracking based depth estimation system including the recognition of

metallic objects, which has been successfully developed (see Figure 20) and validated at CERN

to perform real telerobotic interventions in radioactive environments. The system permits the

calculation of the depth at which a metallic target is located, once this has been detected by either

an operator selection, or using a deep learning algorithm, with the aim of assisting the expert

operator during human-supervisory control of the robot platform, including semi-autonomous

vision-based interventions. The information obtained from the vision system is represented in the

HRI in a multimodal and augmented reality manner. Due to the necessity of using the system in real

interventions in the LHC tunnel, which is a huge responsability in terms of equipment where the

operation has to be accomplished, the priority of the system is to guarantee the safety, while providing

efficiency and reliability. For this, the vision system needs to work appropriately in the presence of

reflections, light constraints and in partially occluded scenarios.

Figure 20. System execution, where the tracking and estimation is shown by AR.

https://cernbox.cern.ch/index.php/s/kEIIK6hdPwnUdDk
https://cernbox.cern.ch/index.php/s/Qguw2RMNLr0SwuO
https://cernbox.cern.ch/index.php/s/Qguw2RMNLr0SwuO
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As shown in Figures 21 and 22, current and further work will focus on enhancing the vision

system in order to calculate the grasping determination of the target in a fast and reliable way.

Figure 21. Grasping Determination calculation on a metallic connector, to be grasped and inserted

(specular symmetry).

Figure 22. Grasping Determination calculation on a rounded and symmetric metallic object

(radial symmetry).

Having this objective in mind, the contour extracted from the tracking and object recognition

algorithm is going to be processed by calculating the list of stable grasping points by using the

algorithm explained in Reference [61], according to the symmetry knowledge.
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The 2D grasping determination can also be adapted in 3D using a more sophisticated extension of

the algorithm, as explained in Reference [62].
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Abbreviations

The following abbreviations are used in this manuscript:

CERN European Organization for Nuclear Research

LHC Large Hadron Collider

BLM Bean Loss Monitor

HRI Human-Robot Interface

ToF Time-of-Flight

RT Real-Time

HD High Definition

PTZ Pan–Tilt–Zoom

MIL Multiple Instance Learning

TLD Tracking-Learning-Detection

KCF Kernelized Correlation Filters

HOG Histogram of Oriented Gradients

ROI Region of Interest

RCNN Regions with Convolutional Neural Network

TCP Tool Center Point

SURF Speeded-Up Robust Features

SIFT Scale Invariant Feature Transform

DoF Degrees of Freedom

QPS Heater Discharge Power Supply

CRF CERN Robotic Framework

GUI Graphical User Interface
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