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Monocular Semantic Occupancy Grid

Mapping With Convolutional Variational

Encoder–Decoder Networks
Chenyang Lu , Marinus Jacobus Gerardus van de Molengraft, and Gijs Dubbelman

Abstract—In this letter, we research and evaluate end-to-end
learning of monocular semantic-metric occupancy grid mapping
from weak binocular ground truth. The network learns to pre-
dict four classes, as well as a camera to bird’s eye view map-
ping. At the core, it utilizes a variational encoder–decoder net-
work that encodes the front-view visual information of the driving
scene and subsequently decodes it into a two-dimensional top-view
Cartesian coordinate system. The evaluations on Cityscapes show
that the end-to-end learning of semantic-metric occupancy grids
outperforms the deterministic mapping approach with flat-plane
assumption by more than 12% mean intersection-over-union. Fur-
thermore, we show that the variational sampling with a relatively
small embedding vector brings robustness against vehicle dynamic
perturbations, and generalizability for unseen KITTI data. Our
network achieves real-time inference rates of approx. 35 Hz for an
input image with a resolution of 256 × 512 pixels and an output
map with 64 × 64 occupancy grid cells using a Titan V GPU.

Index Terms—Semantic scene understanding, object detec-
tion, segmentation and categorization, computer vision for
transportation.

I. INTRODUCTION

E
NVIRONMENT perception is a key task in mobile robot

and intelligent vehicle operation. In the past decade, signif-

icant progress has been made, mainly due to increased computa-

tional power that has unlocked deep learning-based approaches

for real-time usage, such as semantic segmentation [1]–[5] and

object detection [6]–[9]. However, it can be argued that, for

higher levels of robot and vehicle autonomy, perception and

the incorporation of information derived from perception into

a consistent world-model, is still a bottleneck. In this letter, we

therefore research and evaluate the usage of semantic occupancy
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Fig. 1. An illustration of the proposed variational encoder-decoder approach.
From a single front-view RGB image, our system can predict a 2-D top-view
semantic-metric occupancy grid map.

grid maps, as a means for end-to-end learning of monocular in-

put data to form a world-model.

A world-model typically consists of multiple conceptual lay-

ers [10], e.g. layers of dynamic objects, permanent static objects,

and movable static objects. Furthermore, one can distinguish

layers that contain a priori knowledge from the environment,

e.g. a global topological map, and layers that are estimated lo-

cally while the vehicle is traversing the environment. An occu-

pancy grid map is particularly well-suited to represent the local

free-space around the vehicle that is estimated in real-time from

sensory input. This is also how we use it and we extend it with

three different semantic sub-classes for free-space, namely road,

sidewalk, and terrain, besides the usual non free-space class.

A particular branch of deep learning research focuses on

convolutional neural networks (CNNs), which have significantly

advanced computer vision in the past decade [11]–[13]. At a

specific intermediate layer in CNNs, the feature map contains

the semantic abstraction of the pixels as well as the inter-pixel 2-

D spatial relations between them. The same inter-cell relations

also hold for occupancy grids, thereby CNNs are potentially

well-suited for end-to-end learning of occupancy grid maps with

semantics from image data, which is proposed in this letter. We

discuss the related work on occupancy grid maps and neural

network approaches in more detail in Section II.

Our approach, which is detailed in Section III, contains the

following contributions:
� To the best of our knowledge, we are the first to perform

end-to-end learning on monocular imagery to produce a

semantic-metric occupancy grid map and to achieve real-

time inference rates.
� We show that this end-to-end monocular approach

is intrinsically robust to pitch and roll perturbations,

2377-3766 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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and can generalize on unseen data from different

Cameras.
� We show that, our approach can be trained from weak

ground truth and is inherently robust to the sparseness of

input data.

Considering the above, end-to-end learning of occupancy

grids is a promising extension of, or even potentially can par-

tially replace, traditional point-cloud processing techniques. Our

approach is evaluated on Cityscapes [14] and KITTI [15] and

the details on this are provided in Section IV after which our

conclusions are put forward in Section V.

II. RELATED WORK

The occupancy grid map [16] is one of the most popular local

metric map representations for mobile robots. Besides range

sensors such as RaDAR and LiDAR, occupancy grid maps can

also be generated from RGB-D cameras [17], stereo vision [18],

and from fusion of multiple sensors [19]. However, the classical

occupancy grid maps are without semantics, i.e. cells only have

two possible states: occupied or not occupied.

More efficient and reliable navigation can be realized if se-

mantics of the environment are utilized. Semantic segmentation

is a potential approach to provide additional semantic scene

understandings. Most semantic segmentation research has been

carried out on RGB images with the goal to estimate a semantic

class label for each individual pixel. For this particular task, it

can be noted that deep learning methods are surpassing other

classical methods in terms of both accuracy and efficiency. One

state-of-the-art framework is the fully convolutional network

(FCN) [1] that utilizes the convolutional feature extractor from

other classification networks, such as VGG [12] or ResNet [13].

Another framework named SegNet [2], has a similar structure

of auto-encoders. Further research shows that the segmentation

quality can be enhanced by applying a conditional random field

(CRF) as a post-processing step [4]. To integrate this in an end-

to-end manner, CRFasRNN [20] is proposed to form a CRF as

a recurrent neural network (RNN) that can be trained directly.

Recent research has also performed semantic segmentation in

an adversarial manner to produce improved result in terms of

segmentation accuracy [21].

Image-based semantic segmentation methods are usually not

directly compatible with vehicle mapping and planning systems.

The reason is that in the mainstream state-of-the-art, metric

mapping of the environment is deterministically performed in

parallel with the semantic segmentation, by which the image-

based semantic 3-D mapping is achieved. Sengupta et al. [22]

project the image semantic labels into 3-D using stereo vision.

Based on this, dense pairwise CRFs [23], [24] and higher order

CRFs [25], [26] are proposed to optimize the 3-D labels. Re-

cently, CNNs are integrated into the mapping pipeline [27]–[29]

for a better image segmentation, and furthermore, even depth

and pose estimation, which are used in deterministic metric

mapping.

Instead of conducting metric mapping and semantic scene

understanding separately, our long-term aim is to develop

a holistic approach that can estimate metric, semantic, and

topological information simultaneously and in real-time. For

this we take inspiration from recent work that has shown that

deep learning approaches excel in estimating 3-D depth informa-

tion from monocular [30]–[32] and binocular data [33], which

means that the metric information can be learned from photo-

metric data directly. This motivates us to research mapping the

environment into semantic-metric occupancy grid maps directly

from monocular input data in an efficient, end-to-end manner

with deep neural networks.

III. SEMANTIC OCCUPANCY GRID MAPPING

In this section, we discuss the details of the aforementioned

semantic-metric occupancy grid representation and the detailed

structure and training of the proposed deep neural network.

A. Map Representation

We extend the classical definition of occupancy grid maps

[16] to make the map representation contain semantic and metric

information as well as suitable for modern deep neural networks.

Grid size and perceiving distance: Sensors mounted on au-

tonomous vehicles such as cameras, RaDARs, and LiDARs

usually have a fixed field of view (FOV), and the perception

reliability decreases when the perceiving distance increases. To

ensure each cell in the grid map, which is represented in 2-D

vehicle coordinates, has a reliable status even at large distance,

we set each grid map to contain 64 × 64 cells, with the size of

each cell being 0.5 × 0.5 meters. As the region within 5 meters

in front of the vehicle center is never visible, due to the camera’s

point of view, we apply a 5-meter offset in the grid map w.r.t.

the vehicle center.

Semantic encoding: Each cell in the grid map is encoded

with one of the following four semantic classes: road, sidewalk,

terrain, and non free-space (including undetected girds that are

behind the foreground objects and out of the camera’s FOV). In

this configuration, instead of a binary occupancy grid map (free-

space or non free-space), the ground area in the map is extended

with semantics, which potentially benefits the navigation of

mobile robots and autonomous vehicles.

B. Network Structure and Training

In this letter, instead of implementing a deterministic point

cloud based mapping algorithm, we propose an end-to-end

learning approach. The proposed system is composed of two

components: a low-level feature extractor and a modified ver-

sion of variational auto-encoder (VAE) [34] network on top of

the extracted feature map. As in our usage the input and out-

put are not the same, as with a traditional VAE, we refer to

our network as a variational encoder-decoder (VED) network.

The input of this network is one front-view monocular RGB

image, and the output is the top-view occupancy grid map in

which each cell is assigned with a semantic class. The network

is implemented in PyTorch [35] and Fig. 2 shows the detailed

structure of the network.

Feature extractor: We use a modern CNN model, e.g. VGG-

16 [12], pre-trained on ImageNet [36], to extract the low level
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Fig. 2. The proposed network structure during the training phase. Every col-
ored block represents a feature map and the arrows between them are neural
network layers. Yellow indicates the encoder part while blue indicates the de-
coder. A pre-trained VGG-16 Net (without fully connected layers) is utilized
for feature extraction on top of the input image. Legend: CP = VGG-like con-
volutional layers (2 layers) with kernel size 3 and 2 × 2 max pooling, FC =
fully connected layer, SR = sample the latent vector with Normal distribution
from zm ean and zstddev and reshape, UC = one up-convolutional layer and
VGG-like convolutional layers (2 layers) with kernel size 3, C = one VGG-
like convolutional layer with kernel size 3. Every convolution layer uses batch
normalization except the output layer.

features from the input monocular image. The receptive field

of the VGG-16 network is 224 × 224 pixels. For reasons of

efficiency, we use an input resolution of 256 × 512 pixels. As

the receptive field is smaller than the input, the latent features

in the output of the VGG-16 network are encoding the semantic

information locally instead of on the entire image. This ensures

that the spatial information is naturally preserved in the feature

map, which is required for decoding the feature map into a

top-down view.

Training with variational sampling: The variational auto-

encoder [34] is originally proposed for learning variational

Bayesian models in a neural network fashion. The learned cod-

ing vector contains the high-level representation of the input

data, which is sampled from a standard normal distribution

for later reconstruction. Recent research has shown that, when

ground truth for voxel-based learning is incomplete, VAE can

be used to produce a reconstruction output that surpasses the

ground truth in term of completeness [37]. In our VED case,

the ground truth is relatively imprecise (as will be explained in

the following subsection), and we aim to mitigate this by using

the variational sampling’s robustness to imperfect ground truth.

In contrast to the VAE model in [37], several important mod-

ifications are made for our VED model: 1) taking the feature

map from a modern feature extractor as input, and 2) training in

supervised encoder-decoder manner instead of an auto-encoder

manner.

We denote the encoding probabilistic model as qφ(z|x),
where x = fγ (i) is the high-level feature from the input image

i and z is the latent embedding combined with spatial infor-

mation and semantics. On top of the encoder, the probabilistic

decoder pθ (m|z) produces the 2-D grid semantic map m from

the latent embedding z. The models f , q, p are organized as

neural networks and their parameters γ, φ, θ can be learned

simultaneously with end-to-end training. As we enforce the la-

tent embedding z to obey the standard normal distribution, the

latent loss Llatent is defined as Kullback-Leibler divergence be-

tween z and N (0, I). The mapping loss Lmapping is defined as

cross-entropy between the softmax output layer and the one-hot

semantic coding of the ground truth. Therefore, the overall loss

L for training is twofold, namely latent loss and mapping loss:

L = λ1 · Llatent + λ2 · Lmapping (1)

where λ1 and λ2 are the weights for the balancing of two objec-

tives, which is set as 0.1 and 0.9 respectively in the experiments.

We train the network using Adam [38] optimizer with learning

rate = 0.0001, β1 = 0.9, β2 = 0.999, and mini-batch sizes of 8

for 60 epochs.

Weak ground truth for training: One major challenge of our

approach is that there is no direct ground truth available, as the

top-down view semantic occupancy grid representation is not

provided in any publicly available dataset. However, one can

utilize datasets that contain front-view image semantic anno-

tations and 3-D information that can be pixel-wised registered

as depth/disparity maps. To automatically generate the (weak)

ground truth for training, we reconstruct the 3-D point cloud

for each frame in vehicle coordinates from the corresponding

depth/disparity map, given the intrinsic and extrinsic (the cam-

era’s pose in the vehicle coordinates) camera calibration. For

each frame of the generated point cloud, given the corresponding

front-view image semantic ground truth annotation, a semantic

label can be assigned to each 3-D point. Next, we project the

3-D points to the 2-D ground plane and subsequently fill the

occupancy grid with pre-defined size. For each cell, a semantic

label is assigned, based on the label statics of the cell’s points

(majority vote).

The 3-D information registered for the pixels can be noisy

(e.g. a disparity map estimated using a stereo matching method)

or sparse (e.g. a depth map from LiDAR measurements). It can

be argued that the automatically generated ground truth con-

tains noise mainly from the imprecise depth/disparity map, e.g.

grid cells can be missed on the road, due to the corresponding

depth/disparity region is invalid. For this reason, we refer to

the automatically generated ground truth as weak ground truth.

Some automatically generated weak ground truth examples can

be seen in Fig. 3(c). Note that only for evaluation we have man-

ually annotated 70 top-view grid maps, which is too few for

end-to-end training. The ability to train from weak ground truth

is an important feature of our neural network based approach.

IV. EXPERIMENTS

We conduct the following experiments to demonstrate our

approach and to compare its accuracy and robustness with three

baseline approaches being: 1) a traditional monocular method

that relies on a flat-plane assumption, 2) a traditional binocular

approach, and 3) a CNN based approach which is commonly

used for segmentation tasks:
� Quantitative evaluation: In this experiment, we use the

Cityscapes [14] dataset to measure performances employ-

ing metrics from semantic image segmentation.
� Input disturbance invariance: We simulate roll and pitch

movements of the camera, to investigate the invariance of

our approach to such perpetuations.
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Fig. 3. Some visualized mapping examples on the test set with different methods. (a) is the input image from the left RGB camera mounted on the vehicle.
(b) is the satellite image corresponding to the RGB image based on the GPS signal from Cityscapes for a better understanding of our work. The region in the white
rectangle is focused in the mapping task. (c) is the weak ground truth map with ground truth semantic segmentation and semi-global matching disparity. (d) is the
manually improved ground truth map based on the weak ground truth. (e)–(h) are the mapping result with predicted semantic segmentation and the same disparity,
flat-plane assumption geometric transformation, SegNet [2] baseline method, and our proposed VED method. Grids with black mask are ignored in evaluation as
they are out of the camera’s FOV or with ignored semantic labels.

� Generalizability to unseen scenarios: The unseen KITTI

[15] dataset containing a semantic domain gap and differ-

ent camera parameters is used to evaluated the generaliz-

ability of the proposed approach.
� Ablation study: We compare the results of the proposed

network trained with and without variational sampling to

better motivate the usage of the variational sampling.
� Mapping quality invariance w.r.t. resolutions: We generate

maps using two deterministic baseline methods and the

proposed neural network method in different resolutions

and investigate the advances of the neural network based

approach.
� Semantic latent embedding: In this small experiment, we

research what high-level information is encoded in the

latent embedding of our VED approach.

A. Dataset and Ground Truth

We use the Cityscapes dataset [14] for ground truth genera-

tion and experiments, as it provides stereo images with disparity

and fine semantic annotations for each pixel. We use the 2975

images in the training set for training, and the 500 images in

the validation set for evaluation and comparison. In our exper-

iments, all the images are resized from 1024 × 2048 to 256 ×
512 for efficiency. The disparity maps provided from Cityscapes

with semi-global matching (SGM) method [39] for weak ground

truth generation. As discussed in Section III-B, the automatically

generated ground truth contains noise. To perform a valid quan-

titative evaluation, we also manually improved and annotated

70 top-view grid maps in the validation set, based on the visual

cue in the corresponding front-view image, which are referred

as ground truth and visualized in Fig. 3(d). Furthermore, we use

KITTI [15] semantic dataset, which contains 200 images with

publicly available semantic annotation, depth maps and camera

parameters, to verify the generalizability of different methods.

The same procedure is applied for weak ground truth genera-

tion and another 70 KITTI samples are manually improved as

ground truth for evaluation.

B. Baseline Methods

Other than our VED approach, there are multiple methods

available for mapping sensory data to the proposed map rep-

resentation. In this letter, we compare our approach with two

canonical point cloud based methods and one CNN based Seg-

Net [2] method:

1) Monocular Mapping With Flzat-Plane Assumption (Flat-

Plane Assumption): Our first baseline method does not use di-

rect 3-D information, but instead uses a flat-plane assumption

to map the output of the semantic segmentation, obtained with

a VGG-16 based FCN [1] on front-view images, to a top-down

view. More precisely, in this method, we assume each pixel in

the RGB image which is predicted as one of the ground-like

classes (road, sidewalk, and terrain) is located on the ground in

3-D (height being 0 in vehicle coordinates if the vehicle local

dynamics is compensated by an IMU w.r.t. the static world).

With this assumption, the free-space pixels’ position in 2-D co-

ordiates can be deterministically solved and mapped using the

same method as ground truth generation. However, even given

the perfect IMU data, the flat-plane assumption cannot handle

scenarios where there is a slope in front of the vehicle, which

leads to a map with large offsets. Furthermore, the IMU data

can be noisy at each data point, which might further hurt the

mapping results, due to the vulnerability of flat-plane assump-

tion. Considering the above reasons and that the data is collected

in a relative steady situation, we only use the camera calibra-

tion (intrinsic and extrinsic, i.e. the camera’s pose in vehicle

coordinates) instead of IMU data in the experiments. The aim

is to outperform this straightforward monocular baseline using
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TABLE I
QUANTIFIED PERFORMANCE FOR DIFFERENT MAPPING METHODS

our end-to-end learning approach. This method is referred to as

flat-plane assumption in all figures and tables.

2) Binocular Mapping (With Disparity): To provide an up-

per bound on what we realistically could achieve with our

monocular approach, we also validate against a binocular ap-

proach. For this baseline, we use the same procedure as for

generating the weak ground truth, but the key difference is that

now the semantic information is estimated using a VGG-16

based FCN [1] instead of the labeled Cityscapes ground truth

annotations. This baseline uses binocular image pairs to obtain

the corresponding disparity maps for 3-D point cloud genera-

tion. In the implementation, the 3-D point clouds are obtained

from the Cityscapes disparity maps with SGM method [39] and

used to fill the occupancy grid. However, note that the disparity

maps can also be obtained from other methods, such as stereo

network-based approaches [33] and monocular network-based

approaches [30]–[32]. This method is referred to as with dispar-

ity in all figures and tables.

3) Mapping Using Canonical CNNs (SegNet): We also use

a convolutional encoder-decoder based SegNet [2] to perform

the same task. As the size of the input image and output are

256 × 512 and 64 × 64, instead of using the original SegNet,

we drop the last two decoder modules and applied an additional

max-pooling layer with kernel size and stride 1 × 2 after the last

up-pooling layer. We train the SegNet using the same optimizer

settings with mini-batch sizes of 2 for 35 epochs. SegNet uses

the same VGG-16 [12] as backbone, and the number of train-

able parameters are similar between SegNet (≈28.9 M) and

the proposed VED network (≈27.5 M), which constructs a fair

comparison. Note that the SegNet has a significantly larger in-

formation bottleneck (8× 16× 512) than the proposed network

(1 × 512). Hence, it can pass more information to the decoder,

which is beneficial for map generation while introducing risks

in terms of robustness and generalizability. These will be further

discussed in the experimental results. This method is referred to

as SegNet in all figures and tables.

C. Results

1) Quantitative Evaluation: As our target maps are orga-

nized in an image-like fashion, we evaluate the results in terms

of mean accuracy and mean intersection-over-union (IoU), av-

eraged over the test samples. The performances of the three

mapping methods are provided in Table I. Note that in this let-

ter, the grid cells out of the camera’s FOV are used in training

but ignored in evaluation and visualization with black mask

as they are consistent and trivial for each frame. We report

the metrics evaluated on both weak ground truth and manually

improved ground truth. The performance of the binocular map-

ping method (with disparity) on weak ground truth is higher

than that on manually improved ground truth by a large margin,

while the other three methods remain at the same level. This is

because the binocular mapping baseline uses exactly the same

Cityscapes disparity maps as are also used for weak ground truth

generation, which leads to the positive bias when evaluating on

the weak ground truth. The aforementioned bias is removed in

the metrics evaluated on the manually improved ground truth. In

either ground truth setting, it can be seen that the binocular map-

ping method outperforms the other three monocular methods,

as expected. Concerning the monocular methods, the results

clearly show that two neural network based methods surpass

the flat-plane assumption method by nearly 5% mean accuracy

and 12% mean IoU. SegNet [2] provides slightly better perfor-

mance than our VED network with a margin less than 2%. This

is because that it has a significant larger (8× 16× 512 instead

of 1 × 512) information bottleneck without prior distribution

regularization, which brings small performance improvements

but also introducing disadvantages in terms of robustness and

generalizability. These disadvantages will be discussed in the

following experiments. Given an input with resolution 256 ×
512, our method requires about 28 milliseconds and is thereby

able to achieve frame-rates of approx. 35 Hz on a Nvidia Titan

V GPU.

2) Input Disturbance Invariance: While driving, the cam-

era will exhibit roll and pitch perturbations w.r.t. to a stand-still

situation. If not accounted for, these perturbations significantly

degrade the performance when using a monocular approach

based on a flat-plane assumption. Clearly, IMUs can provide ori-

entation information, but the measurement accuracy and time

synchronization can be problematic. Ideally, one would want

to make the mapping from image coordinates to top-view co-

ordinates intrinsically invariant to such perturbations without

using an IMU. We illustrate that our VED network exhibits

this invariance. We simulate new input images in the cases of

different common orientation disturbances in pitch (simulated

with vertical pixel offsets) and roll (simulated with in-plane

rotations around the imaging center) and feed them into differ-

ent methods. Table II shows the metrics and Fig. 4 visualizes

some examples with different orientation disturbances. It can be

concluded that VED exhibits intrinsic levels of invariance w.r.t.

to pitch and roll perturbations, compared to the other monoc-

ular baselines. This is mainly because VED network learns to

extract the high level semantic-metric information into a low

dimensional space, rather than deterministic mapping or direct

large feature map passing. Furthermore, it is interesting to note

that these results are obtained without data augmentation tech-

niques during training that simulate pitch and roll perturbations,

which would probably increase the invariance even further.

3) Generalizability to Unseen Scenarios: The neural net-

work based methods, i.e., our VED network and SegNet [2]

baseline do not need the camera parameters during testing,

which makes the task more challenging when the image is
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TABLE II
ROBUSTNESS EVALUATION W.R.T. VEHICLE LOCAL DYNAMICS. THE NUMBERS IN THE BRACKETS INDICATE THE PERFORMANCE DOWNGRADE W.R.T.

THE ORIGINAL PERFORMANCE WITHOUT PERTURBATION

Fig. 4. Visualized comparison for different pitch and roll perturbations. We present two examples which are divided by the black horizontal line. For each
example, the most left column shows the input RGB image and its corresponding (weak) ground truth. The other columns show the predictions of three monocular
approaches in different perturbation settings.

TABLE III
QUANTIFIED PERFORMANCE FOR DIFFERENT MAPPING METHODS EVALUATED

ON THE UNSEEN KITTI DATASET

from a different camera. To investigate this, we evaluate our

VED network, which is trained on Cityscapes, on the unseen

KITTI dataset, which has different camera parameters and se-

mantic domain gaps. We compare the results with the flat-

plane assumption (using updated KITTI camera parameters)

and the SegNet baseline, see Table III. Obviously, the flat-plane

assumption can perform deterministic mapping with the new

camera parameters. For the neural network based approaches,

in order to make the KITTI data compatible with the networks

trained on Cityscapes, we align the horizontal field of view (by

cropping KITTI images) and align the vanishing point (by ver-

tical image translation). The results, provided in Table III and

Fig. 5, show that, although the VED network is trained on cam-

era parameters from Cityscapes [14], the network can still work

with some performance degradation, while the SegNet baseline

fails. This degradation (nearly 10% compared to the flat-plane

assumption) is expected, as the camera pose is significantly dif-

ferent between the two datasets. We also observe that without

cropping and alignment of the images, the performance of the

VED degrades by nearly 13% for both metrics, which means

that these pre-processing steps are necessary when dealing with

unseen data. Furthermore, when applying the pitch perturba-

tions on the unseen KITTI dataset, our approach exhibits better

performance than the flat-plane assumption, in both degradation

and absolute values, which shows the robustness and generaliz-

ability of our approach even with changed camera settings and

scene domain gaps.

4) Ablation Study: To better motivate the usage of varia-

tional sampling, we perform an ablation study to investigate the

effectiveness of the variational sampling in our mapping task.

We train the proposed VED network with only one modification:
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Fig. 5. Some visualized mapping examples on the unseen KITTI [15] dataset using different methods. (a) is the manually improved ground truth map based on
the weak ground truth. (b) is the deterministic mapping result with predicted semantic segmentation and ground truth depth. (c)–(e) is the mapping result using
flat-plane assumption geometric transformation, SegNet [2] baseline method, and our proposed VED method, with and without pitch perturbations. The black
FOV mask is the same as in the Cityscapes, as the input images are cropped for aligning the FOVs of two cameras.

TABLE IV
QUANTIFIED PERFORMANCE FOR THE PROPOSED VED APPROACH TRAINED

WITH AND WITHOUT VARIATIONAL SAMPLING

the embedding vector is directly passed from the encoder to the

decoder, instead of randomly sampled and regularized based on

the outputs of two fully-connected layers. Table IV, shows the

performance of the VED network with and without the vari-

ational sampling. Two networks exhibit similar performance

when no perturbation is applied. However, the usage of varia-

tional sampling improve the robustness against perturbations:

the performance degradation with sampling is about 2% less

than that without sampling.

5) Mapping Quality Invariance: In our experiments, the res-

olution of the map representation is set to be 64 × 64 pix-

els, while it can be extended to any other resolution, such as

128 × 128 pixels or even higher. With the output resolution in-

creasing, the side effects will appear in point cloud based map-

ping approaches: the artifacts will exhibit because the points

registered for the grid at far distance are insufficient for a reli-

able majority vote. In Fig. 6, we show some prediction examples

using deterministic approaches and our VED approach with the

map resolution being 128 × 128 pixels. It can be observed that

at large distance, semantic information is lost in some grids

with certain patterns in point cloud based methods, which de-

grades mapping quality, while the network based method will

not exhibit this behavior. Our approach is intrinsically invariant

to point cloud density as we extract high level semantic-metric

information from images directly and achieve higher map reso-

lution with up-convolution operations.

6) Semantic Latent Embedding: The latent representaion in

our proposed network is supposed to encode both high-level

semantic and spatial information into an embedding vector with

Fig. 6. Examples of weak ground truth map and predictions from different
mapping approaches in high resolution (128 × 128 pixels) setting. Both point
cloud based approaches produce maps with certain artifact patterns, while the
VED network produces maps with acceptable quality.

Fig. 7. PCA perturbation analysis. The numbers are indicating the perturba-
tion values applied on the first and second principle axis.

512 dimensions. As our system handles complicated data in

real urban environments, some attributes in the vector might

be highly correlated, which makes it difficult to perform direct

attribute analysis. To analyze the effectiveness of our encoding

and decoding system separately, we conduct the principal com-

ponent analysis (PCA) on 500 test images’ embedding vectors.

We apply perturbations on the first and second principal axises

and visualize the modified map predictions, which are illustrated

in Fig. 7. It can be noted that the first principal axis is mainly
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encoding the width of the drivable space in front of the vehicle,

and the second one is encoding the size of the non free-space

area near the center of FOV. This shows that our network in-

deed learns to encode semantic and spatial understanding from

monocular image into a latent embedding vector. As mentioned

earlier this spatial understanding provides the network with ro-

bustness to pitch and roll perturbations as well allows for up-

sampling the resolution of the occupancy grid map.

V. CONCLUSION

In this letter, we proposed a novel real-time neural network

based end-to-end mapping system, which requires a single front-

view image from a monocular camera and from it estimates a

top-view semantic-metric occupancy grid map. It is shown that

our VED approach outperforms a monocular system using a

flat-plane assumption, and exhibits better robustness and gener-

alizability, due to its variational sampling over a relatively low

dimensional embedding space, when compared to the canoni-

cal neural network baseline. We have verified that the network

can learn semantics as well as metric spatial information, by

investigating the latent embedding that it uses. Although fur-

ther research is certainly required to bring our VED approach

to a level at which it can be applied, our work demonstrates

that, occupancy grids, although already several decades old, are

still a very relevant and powerful representation and that they

link very well with state-of-the-art methods from deep learning,

which can enhance or even partially replace traditional point

cloud processing techniques. In future work, we aim to further

leverage on deep learning and predict the road layout beyond

the camera’s FOV.
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