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This paper describes in a detailed manner a method to implement a simultaneous localization
and mapping (SLAM) system based on monocular vision for applications of visual odometry,
appearance-based sensing, and emulation of range-bearing measurements. SLAM techniques are
required to operate mobile robots in a priori unknown environments using only on-board sensors
to simultaneously build a map of their surroundings; this map will be needed for the robot to track
its position. In this context, the 6-DOF (degree of freedom) monocular camera case (monocular
SLAM) possibly represents the harder variant of SLAM. In monocular SLAM, a single camera,
which is freely moving through its environment, represents the sole sensory input to the system.
The method proposed in this paper is based on a technique called delayed inverse-depth feature
initialization, which is intended to initialize new visual features on the system. In this work,
detailed formulation, extended discussions, and experiments with real data are presented in order
to validate and to show the performance of the proposal.

1. Introduction

The online robot estimation position from measurements of self-mapped features is a class
of problem, in the robotics community, known as simultaneous localization and mapping
(SLAM) problem. This technique consists in increasingly building a consistent map of the
environment and, at the same time, localizing the robot’s position while it explores its world.
SLAM is perhaps the most fundamental problem to solve in robotics in order to build truly
autonomous mobile robots.

Robot sensors have a large impact on the algorithm used in SLAM. Early SLAM ap-
proaches focused on the use of range sensors as sonar rings and lasers, see [1, 2]. Nevertheless
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there are some disadvantages with the use of range sensors in SLAM: correspondence or data
association becomes difficult, they are expensive, and some of them are limited to 2D maps
and computationally inefficient when the number of features is large (see [3, 4] for a complete
survey).

The aforementioned issues have propitiated that recent works move towards the use
of cameras as the primary sensing mode. Cameras have become more and more interesting
for the robotics research community, because they yield a lot of valuable information for
data association. A wide variety of algorithms can be obtained from the computer vision
research community in order to extract high-level primitives from images. Those primitives
are matched with the primitives stored in the map allowing thus the data association. This is
still an open problem. A camera is a sensor that yields 3D information. Even for indoor robots
whose pose can be represented in 2D, the ability to gather 3D information of the environment
is essential. Cameras are also suitable for embedded systems: they are lightweight, cheap,
and power saving. Using vision, a robot can locate itself using as landmarks common objects
that encounters along its path.

In this context, the 6-DOF (degrees of freedom) monocular camera case (monocular
SLAM) possibly represents the most difficult variant of SLAM; in monocular SLAM, a single
camera can be freely moving by its environment representing the sole input sensor to the
system. On the other hand, while range sensors (e.g., laser) provide range and angular
information, a camera is a projective sensor which measures the bearing of image features.
Therefore, depth information (range) cannot be obtained in a single frame. This drawback
has triggered the emergence of especial techniques for feature initialization approaches in
order to allow the use of bearing sensors (such as cameras) in SLAM systems.

As computational power grows, an inexpensive monocular camera can be used to
perform simultaneously range and appearance-based sensing replacing typical sensors for
range measurement (laser and sonar rings) and for dead reckoning (encoders). Thus, a
camera connected to a computer becomes a position sensor which could be applied to
different fields such as robotics (motion estimation basically in humanoids robots), wearable
robotics (motion estimation for camera-equipped devices worn by humans), tele-presence
(head motion estimation using an outward-looking camera), or television (camera motion
estimation for live augmented reality) [5].

Monocular SLAM is closely related to the structure-from-motion (SFM) problem for
reconstructing scene geometry. SFM techniques, which originally come from the computer
vision research community, are sometimes formulated as off-line algorithms that require
batch, simultaneous processing for all the images acquired in the sequence. Nevertheless,
several recursive solutions to the SFM problem can be found in the literature. In this sense,
one of the first works was presented byMatthies et al. in [6] though in this work it is assumed
that the camera motion is known. By contrast, Gennery in [7] proposes a method to estimate
motion from a known structure. A method for addressing the problem of the two above
works, unknown structure as unknown motion, was first introduced by Azarbayejani et al.
in [8]. Other SFM-based techniques are presented in works [9, 10]. Some hybrid techniques
(SFM-Kalman Filtering) based on stereovision, as stated in [11], have also appeared.

Monocular SLAM has received much attention in the last years. In [12], Deans and
Martial proposes a combination of a global optimization BA (bundle adjustment) for feature
initialization and a Kalman filter for state estimation. Strelow proposes in [13] a similar
method but mixing camera and inertial sensors measurements in an iterated extended
Kalman filter (IEKF). In [14], Bailey proposes a variant of constrained initialization for
bearing-only SLAM, where past estimates for the vehicle pose are retained in the SLAM state
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and thus feature initialization can be deferred until its estimates become well-conditioned.
Moreover there are some works that use other estimation techniques (apart from EKF) like
particle filters (PF) methods. In [15, 16], Kwok and Dissanayake propose a method based in
particle filtering techniques. In this case the initial state of features is approximated using a
sum of Gaussians, which defines a set of hypothesis for landmark position. In subsequent
steps, bad hypotheses of depth are pruned while observations are done. A similar approach
is presented in [17] for bearing-only tracking.

Davison et al., [5, 18], proposes a real-time method based on the well-established EKF
framework as the main estimation technique. In those works a Bayesian partial initialization
scheme for incorporating new landmarks is used. A separate particle filter, which is not
correlated with the rest of the map, is used in order to estimate the feature depth prior to
its inclusion in the map. It is important to note that prior to Davison, the feasibility of real-
time monocular SLAM was first demonstrated by Jin et al. in [19].

In [20], Smith et al. presents a real-time method based on straight lines detection using
the EKF estimator. Jensfelt et al. in [21] presents a method where the main idea is to let
the SLAM estimation lag behind n frames; those n frames will determine which points are
good landmarks to find an estimation of their 3D location. In [22], Solà et al. presents a
method based on federate Kalman filtering technique. With an initial probability distribution
function (PDF) for the features, a geometric sum of Gaussians is defined. The method is an
approximation of the Gaussian sum filter (GSF) that permits undelayed initialization with an
additive simple growth of the problem size. In [23] Lemaire et al. present a similar method to
[22] but the features are initialized with a delayed method.

In [24], Eade and Drummond proposes a FastSLAM-based [25] approach. In that
work the pose of the robot is represented by particles and a set of Kalman filters refines
the estimation of the features. When the inverse depth collapses, the feature is converted
into a fully initialized standard Euclidean representation. Montiel et al. in [26] present a new
approach where the transition from partially to fully initialized features does not need to be
explicitly tackled, making it suitable for direct use in EKF framework in sparse mapping. In
this approach, the features are initialized in the first frame they are observed with an initial,
fixed inverse depth and uncertainty heuristically determined to cover the range from nearby
to infinite; therefore distant points can be coded.

In delayed methods, a feature observed in the instant t is added to the map in a
subsequent time t + k. Usually the delay is used, in this kind of methods, for collecting
information that permits to initialize the feature in a robust manner. On the other hand, the
undelayed methods take advantage of the observation of the feature from the instant t for
updating the system. Conversely the system update step should be computed carefully.

In authors’ previous works, [27, 28], a monocular SLAM approach is proposed. In
this paper a method, the so-called delayed inverse-depth feature initialization, is used to
initializing new features in the system. This method, which is based on the inverse depth
parameterization, defines a single hypothesis for the initial depth of features by the use of a
stochastic technique of triangulation.

This paper presents an extended and detailed version of the monocular SLAM scheme
proposed in [27, 28]. Though the fundamental idea of the original method remains the
same, some important and remarkable improvements have been made and included in
this paper. Moreover, the implementation of the proposed method is presented in a very
detailed manner. New experiments with real data and discussion are also included in order
to show the performance of the proposed method and its importance as an open problem in
autonomous robotics engineering.
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Figure 1: Block diagram showing the architecture of the system.

2. Method Description

In this section, the proposed scheme for monocular SLAM is described. In Figure 1 a block
diagram indicating the flow information and main sub-processes of the system is shown.
All its components are explained in detail in subsequent sub-sections. It is important to
remark that once the system is initialized, the detection and measurement of image features
represents the sole sensory input of the system.

2.1. System Parameterization

The complete system state x̂ consists of:

x̂ =
[
x̂v, ŷ1, ŷ2, . . . , ŷn

]T
, (2.1)

where x̂v represents the state of a free robot camera moving in any direction in R
3 × SO(3),

and ŷi represents a feature point i in the 3D scene. At the same time, x̂v is composed of:

x̂v =
[
rWC qWC vW ωW

]T
, (2.2)

where
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rWC =
[
xv yv zv

]T
, (2.3)

represents the camera optical center position in Cartesian coordinates, and:

qWC =
[
q1 q2 q3 q4

]T
(2.4)

represents the orientation of the camera respect to the navigation frame by a unit quaternion.
Unit quaternions provide a convenient mathematical notation for representing orientations
and rotations of objects in three dimensions. Compared with Euler angles they are simpler
to compose avoiding the problem of gimbal lock. Compared with rotation matrices they are
numerically more stable and inmany cases they are more efficient. A good review for attitude
representations is given in [29]. The following expressions:

vW =
[
vx vy vz

]T
,

ωW =
[
ωx ωy ωz

]T
,

(2.5)

denote linear and angular velocities, respectively. The superscripts W and WC denote
magnitudes expressed in the world reference, and in the camera reference respectively.

A feature ŷi is composed of the following 6-dimension state vector:

ŷi =
[
xi yi zi θi φi ρi

]T
, (2.6)

which models the 3D point located at:

⎡
⎣
xi

yi

zi

⎤
⎦ +

1

ρi
m

(
θi, φi

)
, (2.7)

where xi, yi, zi corresponds to the optical center coordinates of the camera when the feature
was observed for the very first time; and θi,φi, represent the azimuth and the elevation re-
spectively (respect to the world reference W) for the directional unitary vector m(θi, φi):

m
(
θi, φi

)
=

[
cosφ sin θ − sinφ cosφ cos θ

]T
(2.8)

The point depth ri is coded by its inverse value, ρi = 1/ri, as quoted in [26]. Figure 2
illustrates the camera and features parameterization.

2.2. System Initialization

In a robotics context, obtaining the metric scale of the world can be very useful. However, in
monocular SLAM the scale of the observed world cannot be obtained using only vision, and
therefore another sensor or the observation of a known dimension reference have to be used
in order to retrieve the scale of the world.
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Figure 2: Camera and features parameterization.

(x2, y2, 0)

(x3, y3, 0)

(x1, y1, 0)

(x4, y4, 0)

x

y

W

z

t

C

RCW

Figure 3: Perspective of 4 coplanar points (P4P) problem.

In this work, the systemmetric initialization process is analogous to a classical problem
in computer vision: the perspective of n-point (PnP) problem [30]. The PnP problem is to find
the position and orientation of a camera with respect to a scene object from n correspondent
points. In [30] it is demonstrated that, when the control points are coplanar, the perspective
on 4-point (P4P) problem has a only solution.

Therefore, in the present work it is assumed that 4 coplanar points are known (for
instance, the dimensions of a black paper sheet over a white background). It is also assumed
that the intrinsic parameters of the camera are already known: (i) f (focal length); (ii) i0, j0
(displacement to the image center), and (iii) k1, . . . , kn (radial lens distortion).

The problem consists in estimating two extrinsic camera parameters: RCW (world to
camera rotation matrix for camera orientation) and t (translation vector for the position of
the camera center), given 4 coplanar points with spatial coordinates (xi, yi, 0), with i in [1..4],
and their corresponding 4 undistorted image coordinates (i, j), as shown in Figure 3.
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In order to estimate RCW and t, the method is based in the approach proposed in
[31]. The following system of linear equations is formed with the vector b as an unknown
parameter:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1f y1f 0 0 −i1x1 −i1y1 f 0

0 0 x1f y1f −j1x1 −j1y1 0 f

x2f y2f 0 0 −i2x2 −i2y2 f 0

0 0 x2f y2f −j2x2 −j2y2 0 f

x3f y3f 0 0 −i3x3 −i3y3 f 0

0 0 x3f y3f −j3x3 −j3y3 0 f

x4f y4f 0 0 −i4x4 −i4y4 f 0

0 0 x4f y4f −j4x4 −j4y4 0 f

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

i1

j1

i2

j2

i3

j3

i4

j4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.9)

where

b =

[
r11
t3

r12
t3

r21
t3

r22
t3

r31
t3

r32
t3

t1
t3

t2
t3

]T
. (2.10)

The linear system in (2.9) is solved for b = [b1 b2 b3 b4 b5 b6 b7 b8]
T . Then t3 is obtained as

follows:

t3 =

√√√√ f2

b21 + b23 + f2b25
. (2.11)

The extrinsic parameters RCW and t are obtained using the following equations:

RCW =

⎡
⎣
t3b1 t3b2 (R21R32 − R31R22)

t3b3 t3b4 (R31R12 − R11R32)

t3b5 t3b6 (R11R22 − R21R12)

⎤
⎦, (2.12)

t =
[
t3b7 t3b8 t3

]T
. (2.13)

In (2.12) the third column of matrix RCW is formed by the combinations of the values
of first and second column of the same matrix. A good review of algorithms for coplanar
camera calibration can be found in [29].

At the beginning of the iterative process, the system state x̂ini is formed by the camera-
state x̂v, and the four initial features used for estimating the extrinsic camera parameters:

x̂ini =
[
rWC
ini qWC

ini vW
ini ωW

ini ŷ1 ŷ2 ŷ3 ŷ4

]T
, (2.14)
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where

rWC
ini = t, qWC

ini = q

((
RCW

)T
)
, vW

ini = [03×1],

ωW
ini = [03×1],

(2.15)

rWR
ini has the same value that the extrinsic parameter t calculated by (2.13). qWC

ini is estimated
using the rotation matrix to quaternion transformation q(R), described by (A.2) in the

Appendix, from the transpose of the rotation matrix (RCW)
T
obtained by (2.12).

Each initial feature ŷi with i in [1..4] is composed by:

ŷi =

[
rWC
ini atan2

(
g1, g3

)
atan2

(
−g2,

√
g2
1 + g2

3

)
1∥∥rWC
ini

∥∥

]T

, (2.16)

where

[
g1 g2 g3

]
=

[
xi yi 0

]
− rWC

ini , (2.17)

atan2 is a two-argument function that computes the arctangent of y/x for given values of y
and x, within the range [−π , π]. If certain confidence is assumed in the estimation process for
the initial system state x̂ini, then the initial covariance matrix of the system Pini can be filled
with zeros or ε, being this value an arbitrary very small positive value:

Pini = [ε37×37]. (2.18)

2.3. Camera Motion Model and Filter Prediction Equations

An unconstrained prediction model for a constant-acceleration camera motion can be defined
by the following equation [5, 32]:

fv =

⎡
⎢⎢⎢⎢⎢⎢⎣

rWC
k+1

qWC
k+1

vW
k+1

ωW
k+1

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

rWC
k

+
(
vW
k

+ VW
k

)
Δt

qWC
k

× q
((
ωW

k
+ ΩW

)
Δt

)

vW
k

+ VW

ωW
k

+ ΩW

⎤
⎥⎥⎥⎥⎥⎥⎦
, (2.19)

being q((ωW
k
+ΩW)Δt) the quaternion computed from the rotation vector (ωW

k
+ ΩW)Δt. This

transformation from rotation vector to quaternion is defined by (A.1) in the Appendix.
No prior assumption can be made about the camera movement. Therefore, the model

defined in (2.19) supposes, at every step k, that the changes in linear and angular velocity vW

and ωW are produced by an input u of unknown linear and angular velocity VW and ΩW ,
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with linear and angular acceleration with zero-mean and known Gaussian process covari-
ance, aW and αW , respectively:

u =

[
VW

ΩW

]
=

[
aWΔt
αWΔt

]
. (2.20)

The unknown linear and angular velocity VW and ΩW are incorporated into the sys-
tem by the process noise covariance matrix U:

U =

[
(σVΔt)2I3×3 03×3

03×3 (σΩΔt)2I3×3

]
. (2.21)

If a static scene is assumed where the landmarks remain in a fixed place, the prediction
step for the Extended Kalman Filter (EKF) is defined as follows:

x̂k+1 =

⎡
⎢⎢⎢⎣

fv(x̂v)

ŷ1

...
ŷn

⎤
⎥⎥⎥⎦, (2.22)

Pk+1 = ∇FxPkF
T
x +∇FuQ∇FT

u , (2.23)

where Q and the Jacobians ∇Fx and ∇Fu are defined as follows:

∇Fx =

⎡
⎣

∂fv

∂x̂v
013×n

0n×13 In×n

⎤
⎦, ∇Fu =

⎡
⎣
∂fv

∂u
013×n

0n×6 0n×n

⎤
⎦, Q =

[
U 06×n
0n×6 0n×n

]
. (2.24)

∂fv/∂x̂v are the derivatives of the equations of the prediction model fv with respect to the
camera state x̂v. ∂fv/∂u are the derivatives of the equations of the prediction model fv
with respect to the parameters of the covariance matrix U. In this case n corresponds to the
dimension of the features ŷi in the system state x̂v.

2.4. Measurement Prediction Model

The different locations of the camera, along with the location of the features already mapped,
are used by the measurement prediction model hi to forecast the distorted pixel coordinates
ud and vd for each feature ŷi:

[
ud

vd

]
= hi

(
x̂v, ŷi

)
, (2.25)
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hi(x̂v, ŷi) is derived using the following procedure: the model observation of any point ŷi

from a camera location defines a ray expressed in the camera frame as follows, see Figure 2:

hc =

⎡
⎣
hx

hy

hz

⎤
⎦ = RCW

⎛
⎝

⎡
⎣
xi

yi

zi

⎤
⎦ +

1

ρi
m

(
θi, φi

)
− rWC

⎞
⎠. (2.26)

hC is observed by the camera through its projection in the image. RCW is the transformation
matrix from the global reference frame to the camera reference frame. RCW is computed

by RCW = (RCW(qWC))
T
where RWC(qWC) is a rotation matrix depending on the camera

orientation quaternion qWC using (A.3)which computes a rotation matrix from a quaternion.
The directional unitary vector m(θi, φi) is computed with (2.8).

The vector hC is projected to the normalized camera retina by the following:

[
u
v

]
=

⎡
⎢⎢⎣

hx

hz

hy

hz

⎤
⎥⎥⎦. (2.27)

The camera calibration model is applied to produce the undistorted pixel coordinates uu and
vu:

[
uu

vu

]
=

[
u0 − fu
v0 − fv

]
, (2.28)

where u0, v0 is the camera center in pixels, and f is the focal length. Finally, a radial distortion
model is applied to obtain the distortion pixel coordinates ud, vd. In [18] the following
distortion model is proposed being K1 the distortion coefficient:

[
ud

vd

]
=

⎡
⎢⎢⎢⎣

uu − u0√
1 + 2K1r2

+ u0

vu − v0√
1 + 2K1r2

+ v0

⎤
⎥⎥⎥⎦, r =

√
(uu − u0)

2 + (vu − v0)
2. (2.29)

2.5. Features Matching and Filter Update Equations

If the feature ŷi is predicted to be appeared in the image (0 < ud < image height & 0 < vd <
image width), then an active search technique [33] can be used to constrain the features
matching from frame to frame inside elliptical regions around the predicted hi= [ud, vd]. The
elliptical regions are defined by the innovation covariance matrix Si:

Si = ∇HiPk+1∇HT
i + Ruv. (2.30)
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Figure 4: An active search is used to maximize the computational speed and to reduce the mismatch
likelihood in the data association process. Feature search is constrained to regions around the predicted
hi. The regions are defined by the innovation covariance Si as in (2.30).

Measurement noise is incorporated into the system by the noise covariance matrixRuv:

Ruv =

[
σ2
u 0
0 σ2

v

]
. (2.31)

Variances σ2
u and σ2

v are defined in pixel units. Pk+1 is the prior state covariance
estimated by (2.23). ∇Hi is the Jacobian derived from the measurement model hi:

∇Hi =

[
∂hi

∂x̂v
· · · 02 × 6 · · ·

∂hi

∂ŷi
· · · 02 × 6 · · ·

]
, (2.32)

∂hi/∂x̂v are the derivatives of the equations of the measurement prediction model hi with
respect to the camera state x̂v. ∂hi/∂ŷi are the derivatives of the measurement prediction
model hi with respect to the parameters of the feature ŷi. Note that ∂hi/∂ŷi has only a nonzero
value at the location (indexes) of the observed feature ŷi.

The size of the axis sx, sy for the elliptical search region defined by the matrix Si is
determined by (see Figure 4):

[
sx
sy

]
=

[
2n

√
Si(1,1)

2n
√
Si(2,2)

]
, (2.33)

where n is the number of standard deviations for the desired region of search.
When a feature ŷi is added to the map, a unique image patch of n-by-n pixel is stored

and linked with the feature. For matching a feature in the current image frame, a patch cross-
correlation technique, [33], is applied over all the image locations (ud, vd) within the search
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region defined in (2.33). If the score of a pixel location (ud, vd), determined by the best cross
correlation between the feature patch and the patches defined by the region of search, is
higher than a threshold then this pixel location (ud, vd) is considered as the current feature
measurement zi.

If the matching process is successful, then the filter is updated as follows:

x̂k = x̂k+1 +Wg,

Pk = Pk+1 −WSiW
T ,

(2.34)

where the innovation g is as follows:

g = zi − hi, (2.35)

and W is the Kalman gain:

W = Pk+1∇HT
i Si

−1. (2.36)

In SLAM, it is well known the injurious effect of incorrect or incompatible matches.
In monocular SLAM systems, when delayed feature initialization techniques are used (as
in this work), implicitly some weak image features are pruned prior to their addition
to the stochastic map, for example, image features produced by fast lighting changes,
shines in highly reflective surfaces, or even caused by some dynamic elements in the
scene. Nevertheless, the risk of incorrect or incompatible matches could remain due to
several factors as: (i) incompatibility due repeated design; (ii) fake composite landmark; (iii)
incompatibilities produced by reflections on curved surfaces and materials; (iv) detection of
landmarks running along edges. The above drawbacks can be mitigated by the used of batch
validation techniques [34, 35] (or variants of them), with the penalty of the increment of
computational time.

On the other hand, for the standard EKF-SLAM algorithm, there exists significant
empirical evidence which demonstrates that the computed state estimates tend to be
inconsistent. Thus, if the covariance matrix is underestimated, then the search regions
determined by the active search technique could even collapse, leading the tracking to fail.
A feasible solution to this problem could be implemented by fixing a minimum possible size
for the axes sx, sy in (2.33).

2.6. Delayed Inverse-Depth Feature Initialization

As it is stated before, depth information cannot be obtained in a single measurement
when bearing sensors (e.g., a single camera) are used. To infer the depth of a feature, the
sensor must observe this feature repeatedly as it freely moves through its environment,
estimating the angle from the feature to the sensor center. The difference between those angle
measurements is the parallax feature. Actually, parallax is the key that allows estimating
features depth. In case of indoor sequences, a displacement of centimeters is enough to
produce parallax; on the other hand, the more distant the feature, the more the sensor has
to travel to produce parallax. For incorporating new features to the map, special techniques
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Figure 5: New features will be added to the map if the number of predicted features ŷi to be appearing
in the image is lower than a threshold. First, random feature-free areas are detected in the image (green
rectangle). Then, a saliency operator is applied in order to detect new candidate points λi.

for features initialization are needed in order to enable the use of bearing sensors in SLAM
systems.

In this work, authors propose a novel method called delayed inverse-depth feature
initialization in order to incorporate new features ŷnew to the stochastic map from the bearing
measurements of the camera. The proposed method uses the inverse-depth parameterization
and implements an stochastic technique of triangulation, bymeans of delay, in order to define
hypothesis of initial depth for the features. The use of the inverse-depth parameterization,
in the context of motion estimation and scene reconstruction using vision, was introduced
earlier by Favaro in [36], and extended later in [24, 26].

The proposed method states that a minimum number of features ŷi is considered to be
predicted appearing in the image, otherwise new features should be added to the map. In this
latter case, new points are detected in the image with a saliency operator. In this particular
case, Harris corner detector is applied, but other detectors should also be used.

These points in the image, which are not added yet to the map, are called candidate
points, λi. Only image areas free of both, candidate points λi and mapped features ŷi, are
considered for detecting new points with the saliency operator, see Figure 5.

When a candidate point λi is detected for the first time, some data are stored:

λi =
(
rλ, σr , qλ, σq, u1, v1

)
, (2.37)

where rλ is taken from the current camera optical center position rWC:

rλ =
(
x1, y1, z1

)
=

(
xv, yv, zv

)
, (2.38)



14 Mathematical Problems in Engineering
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Figure 6: Representation for the feature initialization process.

σr represents the associated variances of rWC, taken from the state covariance matrix P :

σr =
(
σx1, σy1, σz1

)
=

(
P(1,1), P(2,2), P(3,3)

)
, (2.39)

qλ is taken from the quaternion qWC representing the current camera orientation:

qλ = qWC, (2.40)

σq represents the associated variances of qWC, taken from the state covariance matrix P :

σq =
(
σ1q1, σ1q2, σ1q3, σ1q4

)
=

(
P(4,4), P(5,5), P(6,6), P(7,7)

)
, (2.41)

and u1, v1 are the initial pixel coordinates where the candidate point λi was detected for
the first time. In subsequent frames, each candidate point λi is intended to be tracked
(this approach is independent of the used tracking method) in order to maintain the pixel
coordinates u and v updated for such a candidate point. In practice, not all the candidate
points λi can be tracked, nevertheless the method takes advantage of this fact in order to
prune weak image features. For each candidate point λi, the tracking process is realized until
the point is pruned or initialized in the system as a new feature ŷnew. In practice for each
frame, the candidate points λi could be detected, pruned or considered to be added to the
map.

A candidate point λi is added as a new feature ŷnew when a minimum threshold of
parallax αmin is reached. Parallax α is estimated using (as it can be seen in Figure 6):

(i) displacement base-line b;

(ii) λi and associated data;

(iii) the current camera state x̂v and current measurement zi.

For each candidate point λi, when a new measurement zi is available then parallax
angle α is estimated by the following:

α = π −
(
β + γ

)
. (2.42)
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The angle β is determined by the directional unitary vector h1 and the vector b1 defining the
base-line b in the direction of the camera trajectory by the following:

β = cos−1
(

h1 · b1
‖h1‖‖b1‖

)
, (2.43)

where the directional projection ray vector h1 = [h1x h1y h1z], expressed in the absolute frame
W , is computed from the camera position and the coordinates of the observed point when it
was observed for the first time, using the data stored in λi.

h1 = RWC(qλ
)
hC
1 (u1u, v1u). (2.44)

RWC(qλ) is the transformation matrix from the camera reference frame to the global reference
frame, depending on the stored quaternion qλ; (A.3) is used for computing a rotation matrix
from a quaternion.

hC
1 (u1u, v1u) = [h1x h1y h1z] is the directional vector, in the camera frame C, pointing

from the position when the candidate point λi was observed for the first time to the feature
location, and it can be computed by the following:

hC
1 (u1u, v1u) =

[
u0 − u1u

f

v0 − v1u

f
1
]
. (2.45)

The undistorted pixel coordinates u1u and v1u are obtained from u1, v1 applying the inverse
of the distortion model in (2.29):

[
u1u

v1u

]
=

⎡
⎢⎢⎢⎣

u1 − u0√
1 − 2K1r2

+ u0

v1 − v0√
1 − 2K1r2

+ v0

⎤
⎥⎥⎥⎦, r =

√
(u1 − u0)

2 + (v1 − v0)
2. (2.46)

b1 = [b1x b1y b1z] is the vector representing the camera base-line b between the camera optical
center position [x1 y1 z1], where the point was observed for the first time, and the current
camera optical center rWC = [xv yv zv], taken from the current camera state x̂v:

b1 =
[
(xv − x1)

(
yv − y1

)
(zv − z1)

]
. (2.47)

The angle γ is determined in a similar way as β but using instead the directional projection
ray vector h2 and the vector b2:

γ = cos−1
(

h2 · b2
‖h2‖‖b2‖

)
. (2.48)
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The directional projection ray vector h2 expressed in the absolute frame W , is com-
puted in a similar way as h1 but using the current camera position x̂v and therefore, the cur-
rent undistorted points coordinates uu, vu:

h2 = RWC
(
qWC

)
hC
2 (uu, vu), (2.49)

RWC(qWC) is the transformation matrix from the camera reference frame to the global refer-
ence frame, depending on the current quaternion qWC. Equation (A.3) is used for computing
a rotation matrix from a quaternion.

hC
2 (uu, vu) = [h2x h2y h2z] is the directional vector, in the camera frame C, pointing

from the current camera position to the feature location, and it can be computed as follows:

hC
2 (uu, vu) =

[
u0 − uu

f

v0 − vu

f
1
]
. (2.50)

The undistorted coordinates pixel uu and vu are obtained from the current pixel coordinates
u, v applying the inverse of the distortion model in (2.29):

[
uu

vu

]
=

⎡
⎢⎢⎢⎣

u − u0√
1 − 2K1r2

+ u0

v − v0√
1 − 2K1r2

+ v0

⎤
⎥⎥⎥⎦, r =

√
(u − u0)

2 + (v − v0)
2. (2.51)

b2 = [b2x b2y b2z] is similar to b1 but pointing to the opposite direction:

b2 =
[
(x1 − xv)

(
y1 − yv

)
(z1 − zv)

]
. (2.52)

The base-line b is the module of b1 or b2:

b = ‖b1‖ = ‖b2‖. (2.53)

If α > αmin then λi is initialized as a new feature map ŷnew. The feature ŷnew is made up of:

ŷnew = g(x̂, λi, zi) =
[
xi yi zi θi φi ρi

]T
. (2.54)
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The first three elements of ŷnew are obtained directly from the current camera optical center
position rWC = [xv, yv, zv] taken from x̂v:

⎡
⎣
xi

yi

zi

⎤
⎦ =

⎡
⎣
xv

yv

zv

⎤
⎦,

[
θi

φi

]
=

⎡
⎢⎣
atan2

(
−h2y,

√
h2
2x + h2

2z

)

atan2(h2x, h2z)

⎤
⎥⎦,

(2.55)

where [h2x h2y h2z] is computed using (2.49).
The inverse depth ρi is derived from the following:

[
ρi
]
=

sin(α)

b sin
(
β
) . (2.56)

The new system state x̂new is made up simply adding the new feature ŷnew to the final part of
the vector state x̂. If x̂ = [x̂v ŷ1 ŷ2]

T then x̂new is composed by the following:

x̂ =

⎡
⎢⎣
x̂v

ŷ1

ŷ2

⎤
⎥⎦, x̂new =

⎡
⎢⎢⎢⎣

x̂v

ŷ1

ŷ2

ŷnew

⎤
⎥⎥⎥⎦. (2.57)

The new state covariance matrix Pnew is derived from the error diagonal measurement covari-
ance matrix Rj and the current state covariance matrix P :

Rj = diag
[
σ2
u σ2

v σ2
u σ2

v σx1 σy1 σz1 σ1q1 σ1q2 σ1q3 σ1q4

]
, (2.58)

where Rj is composed by the measurement error variances σ2
u and σ2

v (defined in pixel units),
and the variances stored with the candidate point λi.

The new state covariance matrix Pnew after the initialization process is given by the
following:

Pnew = ∇Y

[
Pk 0
0 Rj

]
∇Y T . (2.59)

The Jacobian ∇Y is composed of the following:

∇Y =

⎡
⎣

In×n 0
∂g

∂x̂v
, 06 × 6, . . . , 06 × 6,

∂g

∂Rj

⎤
⎦, (2.60)



18 Mathematical Problems in Engineering

where I is a n-dimensional identity matrix where n is the dimension of Pk. ∂g/∂x̂v are the
derivatives of the initializations equations g(x̂, λi, zi) with respect to the camera state x̂v.
Note that the derivatives with respect to the previously mapped features are filled with
zeros. ∂g/∂Rj are the derivatives of the initializations equations g(x̂, λi, zi) with respect to
the parameters of the covariance matrix Rj .

For certain environments, those features located far away from the camera will not
produce parallax (for small trajectories with respect to the feature depth). To include features
in themapwith big uncertainty in depth is not very helpful for estimating the camera location
rWC, although this kind of features could provide useful information for estimating camera
orientation qWC.

A special case is when a near feature does not produce parallax. This case happens
when the camera moves in the direction towards the feature position (e.g., β ≈ 0◦). In this
work it is assumed that there exist the necessary conditions for producing parallax at every
time at least for one feature observed by the camera. Furthermore, features located in front of
the direction of the camera movement will be discarded (if β < 20◦).

For the proposed method, regarding whether distant features should be included in
the map, a minimum base-line bmin can be used as an additional threshold for considering a
candidate point λi to be initialized as a new feature ŷnew. In this case, a candidate point λi is
considered to be distant from the camera when b > bmin but α < αmin. Camera moved from its
previous position but no enough parallax has been produced, due to the distant condition of
the landmark.

The value of bmin can be heuristically determined depending on the particularities of
the application. In this case, for initializing a candidate point λi as a new feature ŷnew, where
b > bmin but α < αmin, the simple method for initializing new features proposed in [26] can be
used. Nevertheless, in this work the following equations are proposed in order to determine
initial values ρini, σρ(ini) depending on bmin and αmin:

ρini <
2 sin(αmin/2)

bmin
σρ(ini) =

ρmin

4
. (2.61)

2.7. Map Management

When the number of features in the system state increases then computational cost grows
rapidly and consequently it becomes difficult to maintain the frame rate operation. To
alleviate this drawback, old features can be removed from the state for maintaining a stable
number of features and, therefore, to stabilize the computational cost per frame. Obviously, if
old features are removed, then previous mapped areas cannot be recognized in the future.
However, in the context of visual odometry, this fact is not considered as a problem. A
modifiedmonocular SLAMmethod that maintains the computational operation stable can be
viewed as a complex real-time virtual sensor, which provides appearance-based sensing and
emulates typical sensors as laser for range measurements and encoders for dead reckoning
(visual odometry).

In authors’ related work [37], the virtual sensor idea is proposed, developed, and
extended so that, using a distributed scheme, it is possible to recognize previous mapped
areas for loop closing tasks. In this scheme, the outputs provided by the virtual sensor have
been used by an additional SLAM process (decoupled from the camera’s frame rate) in order
to build and to maintain the global map and final camera pose.
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This present work regards the approach of monocular SLAM as a virtual sensor.

Therefore, if the number of features exceeds a specified threshold, in order tomaintain a stable

amount of features in the system the algorithm removes older features that were left behind

by camera movement as well as those features that have been predicted to be appearing in

the image, but have not been matched in several previous frames.

Removing features from the system state is much easier than adding them. To delete

a feature from the state vectorand covariance matrix, the rows and columns which contain it

have to be removed. As an example, the remaining matrices after the removal of feature y2

will be the following:

⎛
⎜⎜⎝

xv

y1

y2

y3

⎞
⎟⎟⎠ −→

⎛
⎝

xv

y1

y3

⎞
⎠

⎡
⎢⎢⎣

Pxx Pxy1
Pxy2

Pxy3

Py1x Py1y1
Py1y2

Py1y3

Py2x Py2y2
Py2y2

Py2y3

Py3x Py3y1
Py3y2

Py3y3

⎤
⎥⎥⎦ −→

⎡
⎣
Pxx Pxy1

Pxy3

Py1x Py1y1
Py1y3

Py3x Py3y1
Py3y3

⎤
⎦. (2.62)

3. Experimental Results

The proposedmethod has been implemented usingMATLAB in order to test its performance.

First, several video sequences were acquired using two different low cost cameras. Later, the

algorithmwas executed off-line using those video sequences as input signals. In experiments,

the following parameter values have been used: variances for linear and angular velocity,

respectively, σV = 4m/s2, σΩ = 4m/s2, noise variances σu = σv = 1 pixel, minimum base-line

bmin = 15 cm and minimum parallax angle αmin = 5◦.

In the first series of experiments, a Microsoft LifeCam Studio Webcam was used. This

low cost camera has an USB interface and a wide angle lens. It is capable of acquiring HD

color video, but in the present experiments gray level video sequences, with a resolution of

424 × 240 pixels at 30 frames per second, were used.

Figure 7 shows the experimental results for a video sequence of 790 frames acquired in

a desktop environment with the LifeCam Studio webcam. In this case, the camera was moved

from the left to the right following a trajectory similar to the curved front edge of the desktop

(see Figure 9, left side). A black paper sheet was used as the initial metric reference (Frame
1, Figure 7). It is important to remark that the initial metric reference determines the origin of

the world reference. The initial camera position and orientation respect to the coordinates of

theworld reference frame are determined according Section 2.2 explanations. Some candidate

points were detected from the first frame; however, the first feature was not added to the

map until Frame 111. In this frame, two new candidate points were detected (in red), and

two candidate points were tracked (in blue). For simplicity, 3σ feature depth uncertainty is

indicated by red 3D lines in plots illustrating the outputs of the proposed method (central

and right columns in Figure 7). The features are located over these red lines. Of course, full

geometric uncertainties should be represented by 3D ellipsoids. In frame 203 the first features,
corresponding to the initial metric reference, have been left behind by the camera movement.

Other features, corresponding to a painting placed approximately in the same plane that the

initial metric reference, have been initialized. In frame 533 several features, corresponding to

two different PC screens, have been added to the map. Weak image features, due for example

to brightness over reflecting surfaces or changing video in the PC screens, are implicitly
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Figure 7: Input images (left column), camera trajectory (X-Y view; central column), and map estimations
(X-Z view; right column) for a video sequence of 790 frames acquired in a desktop environment. Frames
1, 111, 203, 533, and 688 are displayed.
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Figure 8: Composite top-view picture for a desktop environment (left plot). Corresponding camera
trajectory and map estimations in X-Z view after 790 frames (right plot). Observe that both, camera
trajectory and scene structure, have been recovered in a satisfactory manner.

pruned by the image tracking process of candidates points. At frame 688, several features

have been left behind by the camera movement and removed from the system (in yellow),
while other features close to the range camera view, are maintained in the map (in red).

Figure 8 shows a top view of the experimental environment (left plot), and the final
camera trajectory andmap estimates, in anX-Z view at frame 790 (right plot). Several objects
have been labeled in both plots for illustrating the reconstruction of the scene structure. In this
experiment both, camera trajectory and scene structure, have been recovered in a satisfactory
manner.

In the second series of experiments, a Fire-i Unibrain monochrome webcam was used.
This low-cost camera has an IEEE1394 interface and interchangeable wide angle lens. Video
sequences with a resolution of 320 × 240 pixels acquired at 30 frames per second were used in
experiments. Figure 9 shows the experimental results for a video sequence containing about
1750 frames. This sequence has been recorded walking over a predefined cyclical trajectory
inside a laboratory environment. At the end of the sequence, 390 features were initialized in
the map, but only about 20 or 30 features in average were maintained in the system state
allowing that the computational time per frame was stable along the sequence.

In this experiment, the only reference for recovering the metric scale is a computer
screen (frame 3), that was left behind around frame 300 by the camera movement. In the
frame 565, some features have been clearly removed from the map. Here a feature is removed
if it cannot be detected and tracked in the next 20 frames. In the frame 777 the camera has
completed its first turn (or cycle) to the defined trajectory. In the frame 1635 the camera has
returned next to its initial position (note that the PC screen used as initial metric reference
appears again). At this point the discrepancy between the estimated trajectory and the real
trajectory is very perceptible (the real path followed is like a long rectangle with rounded
edges). The biggest degeneration in the estimated trajectory happens when the camera is
turning the curves, mainly in the second and third curve, because there are not far features
to obtain enough information for the orientation. Without underestimating the importance
of the effects produced by the drift in the trajectory estimations, it can be appreciated in
Figure 10 that the 3D structure of the environment has been recovered reasonably well.
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Figure 9: Input images (left column), camera trajectory (X-Y view; central column) and map estimations
(X-Z view; right column) for a video sequence containing about 1750 frames recorded in a laboratory
environment. Frames 3, 306, 565, 777, and 1635 are displayed.
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Figure 10: 3D view corresponding to the camera trajectory and map estimates after 1750 frames for the
experiment in a laboratory environment shown in Figure 8.

4. Conclusions

In this paper a method for addressing the problem of 3D visual SLAM in a context of visual
odometry using a single free-moving camera has been presented.

Depth information cannot be obtained in a single measurement when a bearing sensor
(i.e., monocular camera) is used. Therefore, in order to incorporate new features to the map,
special techniques for feature system initialization are needed in order to enable the use
of bearing sensors in SLAM systems. In this work a method called delayed inverse-depth
feature initialization is proposed to incorporate new features to the stochastic map from
the bearing measurements of the camera. The proposed method is based in the inverse
depth parameterization and implements, by means of a delay, a stochastic technique of
triangulation in order to define a hypothesis of initial depth for the features.

In SLAM methods based on the extended Kalman filter is difficult to maintain the
frame rate operation when the number of features in the system state increases. Old features
have to be removed from the state in order to maintain a stable computational cost per frame.
Obviously, if features are removed then previous mapped areas cannot be recognized in the
future. However, a modified monocular SLAM method to maintain stable computational
operation can be viewed as a complex real-time virtual sensor, which provides appearance-
based sensing and emulates typical sensors (i.e., a laser) for range measurements and encod-
ers for dead reckoning (visual odometry).

The experimental results, with real data, show that although a small and single metric
reference is used for recovering the world scale, the metric degeneration quantification at the
end of the trajectory is low. In the experiments carried out, the camera trajectory and scene
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structure have been recovered in a satisfactory manner. The results in the trajectory are not
error-free though they are more likely to appear in curves when distant features do not exist.

Even though this work is concerned with the approach of monocular SLAM as a
virtual sensor (e.g., in the context of visual odometry), the effectiveness of the proposed
method has been also verified in a more general SLAM context. A real time implementation
of the proposed method [37], fully adapted as a virtual sensor, provides a rich sensory input
to a decoupled (Global) SLAM process. This Global SLAM is used for loop closing tasks and
therefore for building and maintaining the global map and final camera pose.

Appendix

In this appendix some transformations, repeatedly used along the paper, are included.
A quaternion q can be computed from a rotation vector ω by the following:

q(ω) =

[
cos

(
‖ω‖

2

)
sin

(
‖ω‖

2

) [
ω

‖ω‖

]]T
. (A.1)

A quaternion q can be computed form a rotation matrix R by the following:

q
(
Rb

n

)
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1

Rb
n(3, 2) − Rb

n(2, 3)

4q1

Rb
n(1, 3) − Rb

n(3, 1)

4q1

Rb
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n(1, 2)

4q1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, q1 =
√
1 + Rb

n(1, 1) + Rb
n(2, 2) + Rb

n(3, 3). (A.2)

A rotation matrix R can be computed from a quaternion q by the following:

R =

⎡
⎢⎢⎣

(
q21 + q22 − q23 − q24

)
2
(
q2q3 − q1q4

)
2
(
q1q3 + q2q4

)

2
(
q2q3 + q1q4

) (
q21 + q22 − q23 − q24

)
2
(
q3q4 − q1q2

)

2
(
q2q4 − q1q3

)
2
(
q1q2 + q3q4

) (
q21 + q22 − q23 − q24

)

⎤
⎥⎥⎦. (A.3)
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Informática Industrial, vol. 8, pp. 81–92, 2011.
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