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Abstract

We present a monocular 3D reconstruction algorithm for inextensible de-

formable surfaces. It is based on point correspondences between the actual

image and a template. Since the surface is inextensible, its deformations are

isometric to the template, for which the surface shape is known. We exploit

the underlying distance constraints to recover the 3D shape. Though these

constraints have already been investigated in the literature, we propose a new

way to handle them. As opposed to previous methods, ours does not require a

known initial deformation. Spatial and temporal smoothness priors are easily

incorporated. The reconstruction can be used for 3D augmented reality pur-

poses thanks to a fast implementation. We report results on synthetic and real

data. Some of them are faced to stereo-based 3D reconstructions to demon-

strate the efficiency of our method.

1 Introduction

Recovering the 3D shape of a deformable surface from a monocular video and a template

is a challenging problem, illustrated in figure 1 (a). It has been addressed for years and

several algorithms have been proposed. The 3D shape seen in the template is usually

known. This problem is ill-posed due to depth ambiguities. Additional consistency con-

straints are thus required. Most commonly, ad hoc constraints are used. These include

spatial and temporal surface smoothness [3, 4] and the low-rank shape model [2, 3].

Our algorithm is dedicated to inextensible surfaces such as those shown in figure 1.

It uses point correspondences to compute upper bounds on the points’ depth using the

inextensibility assumption. We show that these bounds directly provide a good 3D recon-

struction of the surface. The algorithm does not require an initial guess and easily handles

additional constraints. The same constraints have also been recently studied by [10].

There are two main differences between our method and the previous ones. Firstly,

we treat the inextensibility constraints as hard constraints instead of as a penalty. It makes

the result less empirical because we guarantee to find an inextensible surface. Indeed,
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smoothing terms that are used to handle priors on the surface do not alter the inextensi-

ble property of the solution. Other methods usually mix different penalties and so have

to carefully trade off various terms to get convincing results. Secondly, our algorithm

does not need any assumption about the surface deformation in the video, contrarily to

other methods such as [11] for which the first frame of the video must be ‘similar’ to the

template. Our algorithm is simple and fast, and can therefore be used to provide a good

initialization to more sophisticated algorithms.

The paper is organized as follows. Related work on monocular deformable recon-

struction is reviewed in §2. The evaluation of upper bounds is presented in §3 and the

surface recovery procedure in §4. An experimental study on the reconstruction error is

proposed in §5. Results on synthetic and real data sets are reported in §6. Eventually, we

give our conclusion and research perspectives in §7.
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deformation
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3D surface
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Image of the deformed
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(b)
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Figure 1: Monocular reconstruction of a deformable surface. (a) Problem setup. (b)

Examples of paper sheets: the template (left) and two deformed sheets, a smooth one

(middle) and a creased one (right). (c) Example of a can: template image (left), 3D
template (middle), and the input image of the deformed can (right).

2 State of the Art

There are three main components in monocular deformable scene reconstruction: the

general low-rank shape model, the assumption that the object of interest is a surface and

the knowledge of a template. They can be independently used or combined together so as

to handle ambiguities in monocular reconstruction.

The low rank factorization solution to the non rigid shape recovery problem has been

introduced by [2]. The object is represented by a combination of unknown basis shapes.

The algorithm recovers both the basis shapes and the configuration weights.The surface

hypothesis has recently been incorporated through priors [3]. The method needs the whole

video to compute the solution and thus is not suited for reconstruction on the fly.

Learning approaches have proven efficient to model deformable objects [11]. The

main drawback is the lack of generality when the trained model is too specific. To deal

with videos, temporal consistency is used to smooth the deformations. It requires one



to know the initial 3D shape. It usually needs a template, and the video is such that the

object deformation in the first frame is close to the one in the template.

Methods using only the surface assumption have been proposed. They require strong

priors on the surface. One of the motivations for these methods is to perform paper scan-

ning from images of deformed paper sheets. For this kind of applications, a template is

obviously not available. Under the surface smoothness assumption, [4] solves a system of

differential equations on the page borders to obtain the 3D shape. Other approaches such

as [7] use textual information to evaluate the surface parameters. These methods perform

well on smoothly bent paper but cannot be extended to arbitrary inextensible objects.

The method we propose is dedicated to surfaces and uses a template. It assumes the

internal parameters of the camera to be known. It is more flexible than other approaches

since it applies to any inextensible surface such as paper, garment or faces. Only one

frame is needed to compute the reconstruction and there is no need for a reference image

in the video, i.e. an image for which the 3D surface is known in advance.

3 Finding Upper Bounds on the Surface Depth

3.1 Principle

We focus on inextensible deformable objects imaged by projective cameras. A surface

template is assumed to be known. The template is composed of the 3D surface shape

registered with an image of the object. Examples are shown in figure 1. For the paper

sheets, the reference shape is a plane, and for the can, it is a cylinder. Assuming that

point correspondences are established between the image of the deformed object and the

template, we show that the region of space containing the object is bounded. The internal

camera parameters allow one to compute the backprojection of the matched feature points,

known as sightlines. Since the camera is projective, the sightlines intersect at the camera

center and are not parallel to each other. The consequence is that the distance between two

points increases with their depths. The template gives us the maximal distance between

two points (when the real dimensions of the template are available, the scale ambiguity

can be resolved). This is used to compute the maximal depth of the points.

First of all, correspondences are established between the image and the template using

for instance SIFT [8] or a detection process designed for deformable objects [9]. We

assume that there is no mismatch. The bounds are evaluated through a two step algorithm:

• Initialization. (§3.2) A suboptimal solution is computed by using pairwise con-

straints.

• Refinement. (§3.3) An iterative refinement process considers the upper bounds as

a whole and tunes all of them to get a fully compatible set of bounds.

Our notation is shown in table 1.

3.2 Initializing the Bounds

The initialization of the bounds is computed pairwise. Two points and the inextensibility

constraint are sufficient to bound the position of these two points along their sightlines.

For n correspondences, it gives n− 1 bounds for each point. Only the most restrictive



T template

qT
i point i in the template

I image of the deformed object

P camera matrix for I

C camera centre for I

qI
i point i in the image

Si sightline for point qI
i

vi direction of the sightline Si

αi j the angle between Si and S j

q̄i point i in homogeneous coordinate

‖.‖ vector two norm

di j = ‖qT
i −qT

j ‖ Euclidean distance between qT
i and qT

j

µi depth of the point i

Qi = Qi(µi) 3D point i

µ̂i true depth of the point i

Q̂i true 3D point i

µ̃i reconstructed depth of the point i

Q̃i reconstructed 3D point i

i⋆
index of the point constraining

the depth of point i
µ̆i = µ̆ii⋆ maximal depth of the point i

Q̆i deepest 3D point i

Table 1: Our notation for this paper.

bound (i.e. the tightest one) is kept as the initial bound. The sightlines are computed in

the image of the deformed object I, (details can be found in e.g. [6]). The camera matrix

P = [M|p4] is composed of a (3×3) matrix M and a (3×1) vector p4. The camera center

is C =−M−1p4. The vector vi orienting the sightline passing through the point qI
i is:

vi =
M−1q̄I

i

‖M−1q̄I
i‖

.

A 3D point Qi on the sightline Si can be expressed as:

Qi(µi) = µi vi +C.

The depth µi is the distance of the point to the camera center; it is positive [5]. As fig-

ure 2 illustrates, the inextensibility of the object gives the following constraint between the

points: whatever the actual deformation, the Euclidean distance between two 3D points is

lower or equal to the geodesic distance between them on the template:

‖Q̂i − Q̂ j‖ ≤ ‖q
T
i −qT

j ‖= di j.

qT
i

qT
j

Q̂i

Q̂ j

di j

‖Q̂i− Q̂ j‖

Template

isometric deformation

3D surface

Figure 2: Inextensible object deformation. The template is deformed to the 3D surface by

an unknown isometric transformation. The dashed line is the geodesic curve between Q̂i

and Q̂ j, it has the same length di j as the geodesic distance in the template. The Euclidean

distance between the 3D points is shorter due to the deformation.

As figure 3 illustrates, the coordinate frame system can be choosen such that:

Qi =

(

µi

0

)

Q j =

(

µ j cos(αi j)
µ j sin(αi j)

)

.



Given µi, the two points Q j such that ‖Qi−Q j‖ equals di j are given by:

µ j (µi) = µi cos(αi j)±
√

d2
i j−µ2

i sin2(αi j). (1)

So there exists a real solution if and only if:

µi ≤

√

d2
i j

sin2(αi j)
.

The bound µi is then computed from the whole set of correspondences (without loss of

generality, we assume αi j ≤
π
2

which holds with most of the common lenses):

µ̆i = µ̆ii⋆ = min
j = 1..n

j 6= i

(

di j

sin(αi j)

)

.

The point that induces the minimum upper bound has index i⋆. We refer to this point i⋆

as the anchor point of point i. The notation i→ i⋆ reads “point i⋆ constraints the upper

bound of point i”. This property is not symmetric: i→ j does not imply j→ i. It is one

of the reasons why this initialization is suboptimal, as explained in the next paragraph.

C

v j

αi j

vi

Q j(µ j)

di j

Qi(µi)

µ̆ j

µ̆i
x

y

S j

Si

Figure 3: Point parameterization along the

sightlines.

µ̆ ′ki
µ̆ki

Sk

dik

µ̆i j µ̆ik

Si

µ̆ ji
S j

Qi

Q j

Qk

Figure 4: Bound refinement. The initial

bound µ̆ki gets refined to µ̆ ′ki.

3.3 Refining the Bounds

The set of initial bounds is not optimal for the whole set of points, as illustrated in figure 4.

We consider three points, and their pairwise computed bounds. The bounds for the points

Q j and Qk are given by the point Qi. The points Q j and Qk are used to compute two

bounds for the point Qi. Only the most restrictive one is kept i.e. µ̆i j. It means that the

point Qi cannot be deeper than µ̆i j. This gives the new bound µ̆ ′ik for the point Qk.

We propose an iterative implementation of bound refinement. During one iteration, for

each point, the upper bounds of the other points induced by the actual point are computed.

If they are smaller than their actual bounds, these are updated. The iterations stop when

there is no change during one iteration, meaning that the bounds are coherent.

To derive the update rule, we refer to equation 1 that links the depth of two points such

that the distance between the points is equal to their distance measured in the template,



i.e. the maximal distance between the two points. We study the upper bound on point j
induced by point i: it is given by the largest value of µ j:

µ j (µi) = µi cos(αi j)+
√

d2
i j−µ2

i sin2(αi j). (2)

As figure 5 illustrates, this function has a global maximum:

µmax
i =

di j
tan(αi j)

µ j(µmax
i ) =

di j
sin(αi j)

(3)

C
αi j

di j

S j

Si

µ j(µmax
i )

µ̆i

µ j(µ̆i)

µmax
iµi

µ j
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µ j(µ̆i)
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Figure 5: Function giving depth of point j against depth of point i. (left) Parameterization.

(right) Graph of the function.

The upper bound for point j with respect to point i is thus:

µ̆ ji =







µi cos(αi j)+
√

d2
i j−µ2

i sin2(αi j) if µ̆i ≤
di j

tan(αi j)
di j

sin(αi j)
otherwise,

and the formula to update the bound is the following:

µ̆ j = min (µ̆ j j⋆ , µ̆ ji) .

In our experiments, this process converges in 3 or 4 iterations. It gives the upper

bound and the anchor point of each point; both are used to recover the surface.

4 Recovering the Surface

Our surface recovery procedure has two main steps:

• Reconstruction of sparse 3D points. (§4.1) The 3D points are computed using the

upper bounds and the distances to their anchor points,

• Reconstruction of a continuous surface. (§4.2) The surface is expressed as an

interpolation of these points, possibly using surface priors.

4.1 Finding a Sparse Set of 3D Points

The set of bounds gives the maximal depth of the points. For a fast surface reconstruction

algorithm, one can directly use the upper bounds as points on the surface:

µ̃i = µ̆i. (4)



In practice, the error due to this approximation is small, as shown in figures 6, 7 and 8.

However, this is not satisfying considering the inextensibility constraint. Indeed, the

distance between two upper bounds ‖Q(µ̆i)−Q(µ̆i⋆)‖ can be larger than their distance

in the template dii⋆ . For instance, when there is a symmetry between a point and its

anchor point: i→ i⋆ and i⋆→ i, the distance is equal to dii⋆ · cos−1
(

1
2
αii⋆
)

. To get a more

consistent surface, we propose an optimization scheme to enforce the length equality

between a point and its anchor point. Since the upper bounds give good results, the points

depth such that these length equalities are satisfied are sought near the upper bounds.

The optimization can also handle other priors on the points. For instance, with a first

order temporal smoother, it has the following form:

µ̃ = argmin
µ

(

n

∑
i=1

(µ̆i−µi)
2 +γ(µi(t)−µi(t−1))2

)

subject to ‖Qi−Qi⋆‖= dii⋆ for i = 1..n ,

(5)

with µ the points depth vector, µi(t) the depth of the i−th point for the current frame t and

γ the balancing weight. This is a linear least squares problem under non-linear quadratic

constraints, solved with the Levenberg-Marquardt algorithm [6] (the initial solution is

given by equation (4)).

4.2 Interpolating to a Continuous Surface

The reconstructed 3D points are eventually treated as control points of a mapping Γ from

the template to the 3D space. This allows us to represent the surface by transferring a

regular mesh designed on the template. In practice the mapping we choose is composed

of three 2D to 1D Thin-Plate Splines. These have proven efficient in the representation

of deformable objects [1]. Getting a continuous surface makes it possible to deal with

surface priors. At this stage, another optimization process can be used to include these

priors. They are written as penalty terms of a cost function that is minimized with respect

to the depth of the control points. For priors on the temporal and geometric smoothness

of the surface, one can write this optimization as:

µ̃ = argmin
µ

n

∑
i=1

(µ̆i−µi)
2 +λ

m

∑
i=1

∥

∥

∥

∥

∂ 2Γ
∂q2

(qi)

∥

∥

∥

∥

2

+γ ‖qi(t)−qi(t−1)‖2

subject to ‖Qi−Qi⋆‖= dii⋆ for i = 1..n ,

(6)

with qi a vertex of the mesh, m the number of vertices of the mesh and λ , γ the bal-

ancing weights controlling the trade-off between the distance to the bounds, the geomet-

ric smoothness and the temporal one. Fixing the deformation centers of the Thin-Plate

Splines in the template, problem (6) shows to be linear least squares under non-linear

quadratic constaints. It can be similarly solved as problem (5).

5 Error Analysis

The quality of the reconstruction depends on the number of correspondences and the

noise in the images. Though the latter has been ignored in the theoretical derivation, we



show how to deal with it in the reconstruction algorithm. The experiments to assess the

reconstruction error against the number of points or the noise magnitude are performed on

synthetic surfaces. They are modeled by developable surfaces, which are isometric to the

plane. In practice we use a 200mm wide square shape. The feature points are randomly

drawn on the shape. The reconstruction error for the i−th feature point is defined as:

e(i) = ‖Q̃i− Q̂i‖. (7)

5.1 Number of Points

Figure 6 shows the average reconstruction error against the number of correspondences.

The dashed curve represents the fast implementation error (equation (4)) and the full one

corresponds to the optimized points under length constraints only (equation (5)). As ex-

pected, the error decreases thanks to the point optimization. The curves decrease: the

higher the number of points, the lower the error. The accuracy of the reconstruction is re-

lated to two situations: the amount of deformation between the points and the orientation

of the points with respect to the camera. Their respective influences are explained below.

Due to lack of space, we do not show any quantitative results.

While deforming, the Euclidean distance between the 3D points decreases. Since our

algorithm is somehow based on the preservation of the Euclidean distance between a point

and its anchor point, the less it deforms between these point pairs, the better the results.

The 3D orientation of a point and its anchor point changes the relative position of

their projections in the image. There exist a configuration where the angle between the

sightlines of the two points is maximum. This is the optimal orientation since it leads to

a closer upper bound, and thus minimizes the reconstruction error.

For both situations, the increasing number of points gives more chance to get an op-

timal situation, i.e. the points and their anchor points are well-oriented and the surface is

not deformed too much between them.

5.2 Influence of the Noise

There are two ways to see the noise on our point primitives because one can arbitrarily

choose in which image (the template or the image) the exact points are and in which one

they are noisy. This choice induces differences in our algorithm: the ‘noise in the image’

changes the orientation of the sightlines whereas the ‘noise in the template’ modifies the

reference distances di j between the points. Since our 3D points are parameterized along

their sightlines, we choose the second possibility. The noisy distances measured in the

template lead to lower upper bounds if they are under evaluated. With the refinement

process on the bounds, this error is propagated to other points, spoiling the reconstruction

accuracy. To avoid this, we add a constant corrective term k to the reference distances:

di j←− di j + k. (8)

This term reflects how reliable the distances are. Its efficiency is related to the noise level,

as shown in figure 7. The curve presents a minimum at 55% of the average noise magni-

tude, giving an empirical way to choose the term. This curve shows also that it is better to

over-estimate this parameter than to under-estimate it. However it is difficult in practice

to evaluate the noise magnitude. This term is fixed to one pixel in our experiments. The



precision of the reconstruction gracefully degrades with the noise magnitude, as shown in

figure 8. The relation between the noise magnitude and the reconstruction error is nearly

linear. For a noise magnitude of 5 pixels, the average error is below 5.5mm.
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Figure 6: Error against num-

ber of correspondences.
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6 Experimental Results on Real Data

To evaluate the quality of our reconstructions, we have compared them to stereo-based 3D
reconstructions. We report results on three objects: two A4-paper sheets and a can. The

templates and the images of the deformations are shown in figure 1. The reconstructions

are registered to the stereo-based reconstructions using a rigid transformation and a scale

factor before evaluating the discrepancy. They are shown in figure 9.

(a) (b) (c) (d)

Figure 9: Reconstruction results. (a) Reprojections of our estimated surfaces. (b) Stereo

reconstructions. (c) Our reconstructions. (d) Discrepancy between the reconstructions.

The shape of the smoothly bent paper sheet is well recovered by our algorithm and

looks like the stereo-based reconstruction. The reconstruction has been performed using

80 point correspondences. The Root Mean Squared error is 1.2mm, meaning that our

reconstruction is close to the stereo one.



The reconstruction of the creased sheet has been done using 78 point correspondences.

It is simlar to the 3D shape from the stereo algorithm. The RMS error is 3.3mm. It is larger

than the one of the smooth deformation. Actually, the creases make the deformations less

adapted to our algorithm. However, the accuracy is still very satisfaying.

We also used our method to reconstruct the deformed can shown in figure 1. We suc-

cessfully recovered the shape using 72 point correspondences: the RMS error is 1.6mm.

7 Conclusions

The algorithm we presented has been designed for inextensible surfaces imaged by a

perspective camera. It evaluates the 3D bounds on the points such that the inextensible

constraints can be satisfied. A surface optimization can then be run to handle priors such

as surface smoothness or temporal consistency. Our results are convincing, and show that

our algorithm brings a simple and effective solution to the monocular deformable recon-

struction problem. Possible extensions include coupling our algorithm with a matching

process for deformable environments such as [9].
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