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Abstract— In this paper, we present an monocular vision-
based autonomous navigation system for a commercial quad-
coptor. The quadcoptor communicates with a ground-based
laptop via wireless connection. The video stream of the front
camera on the drone and the navigation data measured on-
board are sent to the ground station and then processed by a
vision-based SLAM system. In order to handle motion blur and
frame lost in the received video, our SLAM system consists of
a improved robust feature tracking scheme and a relocalisation
module which achieves fast recovery from tracking failure.
An Extended Kalman filter (EKF) is designed for sensor
fusion. Thanks to the proposed EKF, accurate 3D positions
and velocities can be estimated as well as the scaling factor
of the monocular SLAM. Using a motion capture system with
millimeter-level precision, we also identify the system models of
the quadcoptor and design the PID controller accordingly. We
demonstrate that the quadcoptor can navigate along pre-defined
paths in an unknown indoor environment with our system using
its front camera and onboard sensors only after some simple
manual initialization procedures.

I. INTRODUCTION

Autonomous navigation of flying robots has drawn in-

creasing attention in recent years. Autonomous unmanned

aerial vehicles (UAV) have great potential in military and

civil applications such as surveillance, search and rescue,

indoor mapping and 3D reconstruction. Various applications

of the UAVs have been demonstrated in both indoor and

ourdoor environments. Kushleyev et al. [1] achieve accurate

formation control of twenty micro UAVs that have weights

around 73 grams using external motion capture system.

In the sFly European Project [2], a team of UAVs with

downward facing cameras scan a large outdoor area and build

a 3D sparse map collaboratively. Autonomous navigation of

micro UAVs in GPS-denied unknown environments is still an

open research question. One of the challenges is that micro

UAVs have limited payload and power supply. Therefore,

color cameras are often preferable sensors for the navigation

control.

In terms of the autonomous navigation of UAVs using

on-board sensors in GPS-denied indoor environments, L.R.

Garcia Carrillo et al. [3] address the road following problem

by adopting a downward looking camera for road detection

and tracking. They also design switching controllers for

stabilizing the pose of the UAV with respect to the road.

As the camera is also used as the major sensor in their
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system, the approach is limited to the straight line segments

appeared in the image. Our visual SLAM system is able to

deal with more general environments and allows the UAV to

follow arbitrary defined paths. M. Achtelik et al. [4] present

a complete autonomous air vehicle system that is capable

of autonomous navigation and exploration in GPS-denied

environments. They design a quadrotor platform capable

of carrying a laser rangefinder, stereo camera rig, color

camera, and on-board computer. In contrast, we aim at a

lightweight approach to autonomous navigation using only

on-board sensors of a toy quadrotor. Our system can be easily

integrated with micro UAVs with limited sensing payload.

Visual SLAM techniques use video cameras for simul-

taneously localisation and mapping. Klein et al. [5] built a

system called PTAM using a color camera for visual SLAM.

Newcombe et al. [6] proposed a dense tracking and mapping

system which can reconstruct dense surfaces of the scene

using a single camera. KinectFusion [7] is a accurate real-

time SLAM system using a RGB-D camera and commodity

graphics hardware. Compared to color cameras, RGB-D

cameras have larger weight and higher power consumption.

Despite these advances in visual SLAM, it is still challenging

to use a monocular camera for autonomous navigation of

an UAV. There are two major challenges. Firstly, a micro

UAV has limited computation power. Thus, a ground station

is often used to carry out the involved computation, with

a Wi-Fi link to communicate with the drone. Since noise

and signal loss during data transmission are unavoidable

in real flights, the SLAM system must be robust to these

problems. Secondly, the scaling ambiguity of monocular

SLAM needs to be solved so that the results can be fused

with the measurements from other on-board sensors.

We present an autonomous navigation system for a low

cost toy quadcoptor called AR.Drone. The quadcoptor com-

municates with a ground-based laptop via wireless connec-

tion. The video stream of the front camera on the drone

and the navigation data measured on-board are sent to the

ground station and then processed by our visual SLAM

system. In order to handle motion blur and frame loss in the

received video, our SLAM system consists of an improved

KLT tracker and a relocalisation module which achieves

fast recovery from tracking failure. An Extended Kalman

filter (EKF) is designed for sensor fusion to solve the scale

ambiguity in visual SLAM. Our system recovers accurate

3D positions and velocities to control the drone with PID

controllers. We further evaluate our system performance with

a motion capture system with millimeter-level precision. It

is demonstrated that the quadcoptor can navigate along pre-



defined paths in an unknown environment using our system.

Similar autonomous navigation system has been developed

in [8] on an AR.Drone. In their system, an extended Kalman

filter (EKF) is designed to fuse all available measurements.

In order to compensate the data transmission latency, drone

pose is predicted by a heuristic motion model assuming fixed

latency. However, in practice, we found the data transmission

latency varies over time. Furthermore, [8] uses a standalone

scale estimator to solve the scaling ambiguity. Specifically,

given a time interval, both of the visual SLAM and on-

board metric sensors estimate the distance traveled by the

drone. Assuming both of the measurements contain Gaussian

noise with constant variance, the scale can be solved by a

maximum likelihood approach. This approach to solve the

scale ambiguity relies heavily on the drone’s vertical motion,

because it requires accurate altitudes from the ultrasonic

sensor. However, vertical motion is not common during

indoor navigation. Nützi et al. [9] present a different method

to solve the scale ambiguity of visual SLAM. They also

designed an EKF, where the scale presents in the state space

and is estimated continuously. The scale is computed by

comparing the position from visual SLAM and the position

from integrating IMU measurements. This scale estimation

suffers from drifting errors caused by integration. Motivated

by both of the approaches, we design a novel EKF to fuse the

visual SLAM and velocity measurement from the on-board

sensors. The position estimated by visual SLAM is able to

correct the position drifting caused by integrating the velocity

measurements. The velocity measurements in turn provide

good reference for the scale estimation. Our EKF fuses both

measurements to solve the scale ambiguity and minimize

drifting errors. At the same time, we design our visual SLAM

algorithm to make it robust to data communication errors and

latencies.

The remaining of the paper is organized as following.

The platform and software used along with our system is

discussed in Section 2. Our visual SLAM system is running

on a ground-based laptop. We adopts the idea from PTAM

to separate the mapping and tracking process for better

efficiency. To achieve better robustness to data transmission

problems, we enhance the feature tracking and include a

re-localization component. The details of our visual SLAM

system are discussed in Section 3. As described by Bristeau

et al. [10], the AR.Drone estimates the linear velocities in

the horizontal plane of the body frame with its on-board

sensors. These velocities are estimated by a navigation filter

integrating the measurements of a downward looking camera

and inertial sensors. We take these on-board measurements

and fuse them with the results of our visual SLAM system

using a novel Extended Kalman filter which is elaborated in

Section 4. Section 5 presents experiment evaluations. The

videos demonstrating the autonomous path following are

available online:http://www.sfu.ca/˜rha55/.

II. PLATFORM

The AR.Drone is a micro Unmanned Aerial Vehicle (UAV)

developed by the Parrot company for the increasing market

Front Camera

Electronic Assistance including a vertical 
camera, ultrasound sensor, 3 axis gyroscope, 
3 axis accelerometer and ARM A8 processor.

Fig. 1. The Parrot AR.Drone 2.0.

of videos games and home entertainment. The drone is low-

cost, safe, and easy to fly by end users. These properties also

make it a suitable platform for our research.

A. Hardware

The AR.Drone platform is detailed in [10]. We briefly

summarize it here to make this work self-contained. The

drone is based on a classic quadrotor design with four brush-

less motors. The on-board electronics consists of two boards,

i.e., Mother-board and Navigation board. The mother-board

is equipped with an ARM9-core processor running at 468

MHz. A Linux based operating system and all on-board

computations are run on the processor. The mother-board

is connected to two cameras including a front camera and

a downward-looking camera. The front camera has a view

angle of 93 degrees and a VGA resolution of 640 × 480.

It can capture at up to 30 Hz. The vertical camera is a 64

degrees diagonal lens camera used to perform the estimation

of the vehicle speed. The navigation board is equipped with

the sensors including a 3-axis accelerometers, a 2-aixs gyro-

scope, a 1-axis vertical gyroscope and 2 ultrosonic sensors.

The ultrasonic sensors provide the altitude estimation and

the vertical displacements of the UAV. The embedded oper-

ating system manages the Wi-Fi communications between

the UAV and the ground station. It is also in charge of

video sampling and compression, image processing, sensors

acquisition, state estimation and closed-loop control. Once

a computer is connected to the broadcasting Wi-Fi network,

the Wi-Fi chip can transmit sensor data and estimated states

at 200Hz, and compressed video frames at up to 30Hz. The

important components of the AR.Drone is highlighted in

Figure 1.

B. Platform Modeling and Controller Design

The attitude stabilization of the drone is performed on-

board and realized by the attitude control loop and the

angular rate control loop [10]. The attitude reference is set

by sending floating number parameters between [−1, 1] to

the four channels including roll angle, pitch angle, vertical

speed, and yaw rate.

http://www.sfu.ca/~rha55/
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In order to design the outer loop controllers, we need to

perform system modeling for the on-board controllers. The

control loop for X,Y positions is illustrated in Figure 2.

The control loop for vertical altitude and yaw angle is

shown in Figure 3. We use the System Identification Toolbox

of MATLAB to fit the system transfer functions for each

channel separately. Firstly, we sample a sequence of a

chirp signal as the control parameters. Then we send the

control signals at the sampling rate to the drone and record

the response using a motion capture system called Vicon

with millimeter precision. The input control signals of roll

angle and corresponding roll measurements are plotted in

Figure 4. The input and output signals are then processed

by the System Identification Toolbox to generate the transfer

functions.

In Figure 2, the PID controller receives position error e
in the local North-East-Down (NED) frame of the drone and

computes control signal u. The transfer function F describes

the relation of control signal u and roll or pitch angles. Then

the velocity along X or Y − axis can be predicted by G.

By integrating the velocity, the predicted position can be

obtained. Figure 3 shows the control loop applied to yaw

angle and altitude control. The control signal u encodes

the desired yaw rate or vertical velocity. Thus, the transfer

function H estimates the yaw rate and vertical velocity based

on the control signals. The identified transfer functions are
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Fig. 4. Input control parameters and roll angle measurements by Vicon.

listed as following.

Fx =
0.76034

0.0247s2 + 0.3144s+ 1
, Gx =

−15.945

1.6583s+ 1
(1)

Fy =
0.74113

0.0215s2 + 0.2935s+ 1
, Gy =

10.130

1.0569s+ 1
(2)

Halt =
0.879

0.0619s2 + 0.2608s+ 1
(3)

Hyaw =
1.5203

0.0359s+ 1
(4)

With the identified system models, we solve our PID

controllers with the filter coefficient parameter N using the

Simulink software of MATLAB. The discrete PID controller

in our implementation is presented below. The control signal

ut is generated at 25 Hz based on the position or angle error

et. the sampling time ∆t = 1

25
seconds. The reference state

xref consists of the drone’s 3D position and its yaw angle.

ut = Pt + It +Dt (5)

Pt = et ·Kp (6)

It =

∫

et∆t ·Ki (7)

Dt =
Dt−1 +Kd ·N · (et − et−1)

1 +N ·∆t
(8)

et = xref − xt (9)

The gains of the PID controllers used in our implemen-

tation are presented in Table I. Note that the control gains

of X Position Controller are negative. With the driver we

are using to control the ARDrone, positive control signals of

the pitch angle make the drone move towards the negative

X − axis. So the error in X position and the control signal

have opposite signs.

TABLE I

PARAMETERS OF OUR PID CONTROLLERS

Controller Kp Kd K i N

X Position Controller -0.144 -0.267 -6.362e-6 203.645

Y Position Controller 0.247 0.241 1.595e-5 186.796

Yaw Angle Controller 6.564 0 0 0

Altitude Controller 0.600 0.100 0.001 138.861

III. VISUAL SLAM

Our visual SLAM system consists of a highly efficient

and robust feature tracking component. The feature tracks

are then used to register the current camera position to a

global 3D map. From time to time, new 3D map points are

triangulated and new key-frames are inserted, to enhance sys-

tem robustness. A local Bundle Adjustment (BA) optimize

the global map in a parallel thread. Our SLAM system also

includes a re-localisation module, which enables it to recover

from tracking failure.



A. Feature Tracking

Our feature tracker detects strong corners [11] and track

them by a sparse iterative version of the Lucas-Kanade opti-

cal flow [12]. To facilitate exploration of new environments,

it detects new corners every five frames. A feature track will

be terminated whenever its correspondence cannot be found.

The drone’s motion could cause blurry frames, especially in

relatively dark indoor environments where longer exposure

is required. Blurry frames leads to rapid and significant

drop in the number of tracked corners, and hence poor

camera pose estimation. A re-localization could address this

problem, while it is relatively computationaly expensive. We

observe most of the blurs last only a few frames (≤ 3), so

we design a ‘rollback’ scheme for the tracker to deal with

frequent and short blurs. If the number of tracked corners

drops significantly at the k-th frame, we try to track from

the frames in [k − 5, k − 1] to the frames in [k + 1, k + 3].
If it succeed, re-localization will not be called.

This rollback scheme cannot solve all tracking problems.

Sometimes, multiple continuous video frames could be lost

due to poor Wi-Fi connection. When this happens, none of

the previously visited frames can be tracked to the current

frame. Such an example is provided in Figure 7, where the

two received consecutive frames have quite a large motion. In

this case, our system will activate the re-localization module

to recover from the tracking failure. Specifically, we count

the number of feature tracks with 3D information in the

current frame. If the percentage of these feature tracks drops

below a threshold, the re-localisation will be triggered. The

details of our re-localisation method is in section III-D.

B. Camera Pose Estimation

The camera intrinsics are pre-calibrated and fixed. We

solve the camera extrinsics Θ = (R, t) by minimizing the

following reprojection error,

Θopt = argmin
Θ

∑

i

ρ(||mi − P(Mi,Θ)||), (10)

where P(Mi,Θ) projects a 3D map point M to the image

plane and m is its corresponding image feature. The function

ρ is the Tukey bi-weight function [13]. We minimize Equa-

tion 10 by the iteratively re-weighted least squares (IRLS)

method. The Θ is initialized as the camera pose at the

previous frame. At each iteration of the IRLS, the Levenberg-

Marquart algorithm is used to solve the non-linear least

square problem.

C. Keyframe Insertion and Map Generation

The current frame will be inserted as a keyframe if it

satisfies the following criteria. Firstly, it is separated from

the last keyframe for a certain interval. Secondly, the number

of tracked 3D map points in it is below a threshold. Further-

more, the number of unmapped feature tracks are more than

a threshold. We cache a keyframe as the full size image, a

downsized thumbnail image, and its tracked corners and their

corresponding 3D map points.

New map points will be generated when the tracking is

stable while the number of tracked map points is dropping.

We evaluate the stability of tracking by the ratio of the

number of tracked corners in the current frames and that

number in the previous frame. If this ratio is higher than

a threshold, we consider the tracking is stable. New map

points are triangulated [14] using the feature points at the

head and tail of feature tracks. The triangulated map points

are accepted only if their reprojection errors are smaller than

a threshold, they are not behind of any cameras, and the

triangulation angle between the two cameras is larger than a

threshold.

D. Relocalisation

Re-localization is critical for the system robustness. Dur-

ing re-localisation, each available input frame will be down-

sized and compared with the cached thumbnails of the

keyframes. We set the width of the thumbnails to be 100

and the threshold of the sum of squared difference (SSD)

between two thumbnails to be 100. If a similar keyframe

K is successfully found for the input frame F , the current

camera position will then be registered to the global map via

the keyframe K. In this way, the SLAM system can recover

from tracking failures.

To register K and F , we search feature matching between

them. In order to obtain high quality matching within rea-

sonable processing time, we firstly detect FAST features [15]

in F and K. We then compute the SIFT descriptors [16] at

these features and match them within a local neighborhood

with diameter of 6 pixels. Then the two sets of descriptors

are matched using the FLANN matcher [17]. Although the

algorithm is designed to produce high quality feature match-

ing, there are still outliers in the output feature matches. We

further eliminate the outliers by fitting the essential matrix

with RANSAC alorithm [14].

In order to boost the number of feature matchings, we de-

tect additional correspondences by masking the existing ones.

These new features and their corresponds will be triangulated

to generate additional 3D map points. The triangulated 3D

point is valid if its reprojection errors are smaller than

3 pixels. Otherwise, it is discarded and the corresponding

feature match is considered as an outlier. Empirically, we

find this step is important, since it ensures sufficient features

with 3D information when the system is recovered. Without

it, the system is likely fail again soon and re-localization will

be triggered repetitively. The pipeline of our vision system

is illustrated in Figure 5

IV. SENSOR FUSION

The results of visual SLAM are up to a scale. This

scaling ambiguity must be solved so that the reconstructed

3D information can be used for navigation control. On the

other hand, the on-board sensors of an AR.Drone estimate

the drone’s altitude and its velocities on the horizontal

plane. In principal, we could obtain the drone’s position by
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integrating its horizontal velocities over time. However, such

an integration suffers from bad drifting errors. We describe

a sensor fusion algorithm based on extended Kalman filter

to fuse the results from visual SLAM and the outputs from

onboard sensors.

While Engel et al.[8] also employed EKF for sensor

fusion and scale estimation, our solution has the following

advantages. Firstly, we use a much simplified state space

to reduce the computation, thanks for the good accuracy

of the on-board attitude and velocity measures. Secondly,

unlike [8], our scale estimator does not rely much on vertical

motion of the drone, which is not common in the real flights.

Our proposed EFK is inspired by Nützi et al. [9], where

the scale is estimated by comparing the results of visual

SLAM and integration of IMU measurements. To address the

drifting errors in integrating IMU measurements, we solve

the scale factor by comparing velocities from visual SLAM

and onboard sensors.

A. Our EKF

In this section, we introduce the state space of the EKF

followed by the prediction model and the measurement

model. We empirically found the attitude returned from the

drone’s onboard sensor is quite robust. So the state space

only consists of the position p in meter, velocity ṗ in meter

per second and scaling factor s in meter. These are the only

inputs to our controller for generating control commands.

The state space is:

x =





p
ṗ
s



 . (11)

This state space involves the one-dimensional position p and

velocity ṗ for the sake of simplicity. However, it is easy to

be extended to multiple dimensions.

The prediction model is:

xk|k−1 = f(xk−1,uk−1) +wk−1 (12)

There is no u, since we do not have an input control. This

prediction model can be further expressed as the following,

xk|k−1 =





1 ∆t 0
0 1 0
0 0 1



 · xk−1 +G · ak−1 (13)

and

G =





∆t2/2
∆t
0



 (14)

In this constant acceleration model, we assume the accelera-

tion a of the drone is constant during ∆t and follows a zero-

mean normal distribution with standard deviation. Therefore,

the covariance Q of the state transition noise w can be

computed as the following,

Q = GGTσa
2 (15)

The state transition matrix is defined by,

F =





1 ∆t 0
0 1 0
0 0 1



 (16)

and the predicted estimate covariance is obtained by,

Pk|k−1 = FkPk−1|k−1Fk
T +Qk. (17)

The measurement model considers two measurement

sources, i.e., visual tracking and onboard sensors. We obtain

the estimated position directly from the visual SLAM system.

To compute the velocity at time t measured by the visual

SLAM system, we differentiate the positions pt and pt′ at

frames Nt and Nt′ . The time stamps t and t′ are recorded

with the video frames. The frame difference ∆N is set to

30 in our experiments to avoid sudden jump in velocity

estimation.

The first measurement model for the position pv and

velocity ṗv from the visual SLAM system is,

zv = h(xv) + vv (18)

where

h(xv) =

[

1/s 0 0
0 1/s 0

]

· xv, (19)

zv =

[

pv
ṗv

]

, (20)



t
1

Second

Fig. 6. Measurement update scheme

and vv is the observation noise of the visual tracking. Thus

the observation matrix is

Hv =

[

1/s 0 −s−2 · p
0 1/s −s−2 · ṗ

]

(21)

The second measurement model for the estimated velocity

ṗn from the navigation data is,

zn = h(xn) + vn (22)

where

h(xn) =
[

0 1 0
]

· xn, (23)

zn = ṗn, (24)

and vn is the observation noise of the navigation data

obtained from the onboard sensors. Thus the observation

matrix is

Hn =
[

0 1 0
]

. (25)

Once there is a new measurement from either visual

tracking or onboard sensors, the EKF will be updated. The

innovation residual and covariance are,

yk = zk − h(xk|k−1) (26)

Sk = HkPk|k−1Hk
T +Rk (27)

The Kalman gain is computed as,

Kk = Pk|k−1Hk
TSk

−1 (28)

Finally, the state x and covariance P are updated by,

xk = xk|k−1 +Kkyk (29)

and

Pk|k = (I−KkHk)Pk|k−1 (30)

respectively.

B. Filter Update Scheme

We now consider the update scheme of different mea-

surements. The AR.Drone transmits the navigation data and

video frames to the ground station for processing. Both data

transmission and processing cause latency. We then propose a

measurement update scheme for compensating these delays.

The navigation data including the estimated velocity are

buffered in a queue once received. The EKF will only be

updated permanently when a measurement from the visual

tracking is ready. The updates are based on the time stamp

when the data are received from the drone. Then we use the

buffered navigation data to predict the states to the current

time.

As illustrated in Figure 6, red arrows represent the up-

dates of the EKF using available measurements from visual

Frame 508 Frame 509

Fig. 7. The video is discontinuous at frame 508 and 509 due to the frame
loss caused by unstable Wi-Fi link

Our Result PTAM

Fig. 8. The left figure shows our results of camera position reconstruction.
The relocalisation algorithm is activated in the period highlighted by the
orange rectangle. The right figures shows the failed result of PTAM.

tracking at t1, t2. The blue arrows in between represent the

updates of the EKF using the buffered measurements from

navigation data. To obtain a better estimation of the current

states before the next visual measurement is available, we

only use the buffered navigation data received after t2 to

do the prediction as shown by yellow arrows. The state of

the EKF will be updated up to time t3 which is closest to

the current time. The latest measurement used for update is

shown in the green arrow.

V. EXPERIMENTS

Our visual SLAM system can achieve real-time perfor-

mance and the control signal is generated at 25 Hz on the

ground station and sent to the drone. We first evaluate the

individual SLAM and EKF components respectively. Then,

the whole system is tested in real flights and the ground truth

positions measured by the Vicon system are examined. The

experiment environment is shown in Figure 14.

A. SLAM system

Our system is robust to feature tracking failures which

can happen due to multiple reasons, including blurry frames

and frame loss in transmission. A typical example of frame

loss is shown in Figure 7, where two received consecutive

frames have significant change to make feature tracking fail.

Our system is robust to these kinds of problems, owing to the

‘rollback’ scheme in tracking and the re-localization module.

We show a comparison with the well known monocular

SLAM system PTAM [5] on the videos recorded by our

AR.Drone. Figure 8 shows the reconstructed camera trajec-

tories from both systems. In this example, the drone is facing

a table and moves surround it and then back to the starting

point. Our system can successfully reconstruct the camera

trajectory for the whole sequence. Note that the position



Frame 508 Frame 509

Fig. 9. Snapshots of tracking from PTAM

Frame 508 Frame 509 Frame 517

Fig. 10. Snapshots of tracking from our system

jumps as highlighted by the orange rectangle in the left of

Figure 8. This sudden change in position is due to the frame

loss. Our method can deal with this type of problems better.

Empirically, we find our feature tracking is superior than

that in PTAM. PTAM’s feature tracker adopts a motion model

to predict the feature’s location in the coming video frame.

It only search correspondences nearby the predicted feature

location. In practice, we find this pre-defined motion model

is often inconsistent with the drone’s motion. Thus, the

true feature is significantly different in orientation and scale

with the predicted one. This problem makes PTAM’s feature

tracking fragile. As presented in Figure 9, the sudden view

change causes a significant drop in the number of tracked

features for PTAM. The estimated plane and the pose are

obviously wrong. In comparison, our method is free from

this problem. As shown in Figure 10, we indicate the tracked

feature points with corresponding 3D map points in green. A

sudden viewpoint change will cause significant drop in the

number of green points (see the middle of Figure 10). Once

that happens, our relocalisation will be triggered to revive

the system (see the right of Figure 10).

Figure 11 shows another challenging example, where the

camera makes a quick turn at a corner. As the scene changes

quickly during the navigation, it is difficult for a visual

SLAM system to register map points to image features.

Our system tracks feature well and detect new features

whenever the number of tracked feature drops significantly.

Furthermore, our map points triangulation is not limited to

the keyframes. New map points can be generated timely

and added to the map. This makes the system robust to

scene occlusion and large view change. Figure 12 shows

the comparison of the results generated by our system and

PTAM. It is clear that our system also tracked more feature

points than PTAM as shown in Figure 13.

B. EKF based Sensor Fusion and Scale Estimation

We evaluate our proposed extended Kalman filter in this

section. Our EKF directly provides the position estimation

of the drone in real metric unit. The scaling ambiguity of

the visual SLAM results is solved as a state in the filter. We

Fig. 11. Camera moving around a corner formed by two planes with
textures

Our Result PTAM

Fig. 12. The left figure shows our results of camera position reconstruction.
The right figures shows the result of PTAM. PTAM failed when the camera
is turning at the corner

compare the estimated positions with Vicon measurements

to have quantitative evaluation for our approach. This result

is shown in Figure 15. In this flight, the drone is mainly

navigating along the Y − axis. We register the Vicon

coordinate system to the one used in our visual SLAM,

so that the Vicon measurements can be transformed to the

North-East-Down (NED) frame of the drone. The blue curves

shows the Vicon measurements of position in Y − axis and

our estimated positions are in red. Our estimated positions

match the Vicon measurement closely. For a comparison, we

also plot the positions computed by directly integrating the

onboard velocity measurement. It is clearly shown that the

integration suffers from large drifting errors.

Figure 16 shows the state space of the EKF along Y−axis.

The third row presents the estimation of scaling factor.

Although the initial state is far from the correct scale, the

filter can converge in less than 15 seconds. The initializa-

tion process can be done manually before the autonomous

navigation starts.

Our Result PTAM

Fig. 13. During the navigation, our system (Left) tracked more features
than PTAM (Right).



Fig. 14. The experiments are performed in an unknown environment. The
textures pasted in the environment are only used to boost the features in the
original environment with poor textures.
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Vicon Measurements
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Fig. 15. The blue curves shows the Vicon measurements of position in
Y −axis and our estimated positions are in red. The integrated position in
green shows a large drifting error.

0 10 20 30 40 50 60
−1000

0

1000

2000

3000

Second

P
o
s
it
io

n
 (

m
m

)

0 10 20 30 40 50 60 70
−1000

0

1000

Second

V
e
lo

c
it
y
 (

m
m

/s
)

0 10 20 30 40 50 60 70
0

2000

4000

SecondS
c
a
lin

g
 F

a
c
to

r 
(m

m
)

Fig. 16. The state space of the EKF

−1000

−500

0

500

1000

−1000

−500

0

500

1000
0

500

1000

1500

2000

X Position (mm)Y Position (mm)

Z
 P

o
s
it
io

n
 (

m
m

)

Fig. 17. 3D position of the UAV measured by Vicon system in the hovering
test

0 10 20 30 40 50 60 70
−500

0

500

Time (Second)

X
 P

o
s
it
io

n
 (

m
m

)
0 10 20 30 40 50 60 70

−500

0

500

Time (Second)

Y
 P

o
s
it
io

n
 (

m
m

)

0 10 20 30 40 50 60 70
1000

1100

1200

Time (Second)

Z
 P

o
s
it
io

n
 (

m
m

)

Fig. 18. 2D plot of the hovering test result. The UAV position measured
by the Vicon system is shown in blue and the set point is denoted by the
red line.

C. Complete System Performance

We firstly verify our system with a hovering test in an

unknown indoor environment. After initializing the visual

SLAM system manually, we sent the hovering command to

the AR.Drone. The drone then tries to hold to the reference

position using the estimated pose. Meanwhile, we use the Vi-

con system to record the precise positions of the flying drone.

The root-mean-square-error (RMSE) of the drone’s position

is computed for quantitative evaluation. In this hovering test,

the RMSE of the position errors are 70.1821mm in X−axis,

86.51mm in Y −axis, and 16.75mm in Z−axis. The error

is smaller in the Z−axis because our EKF module fuses the

altitude measure of the ultrasonic sensor. Figure 17 shows the

position of the UAV in 3D space. Figure 18 demonstrates the

positions measured by Vicon system (blue) and the reference

positions (red) along individual axis.

We further carry out path following experiments to make

the drone autonomously follow a pre-defined 3D path. The

input path is generated with a sequence of set-points with

reference positions and velocities. We adopted a similar

approach used in [18] and [19] to generate the reference tra-

jectory with continuous and limited velocity and acceleration.



RMSE X-axis Y-axis Z-axis

Square: path tracking (mm) 178.578 122.28 16.84

Square: position estimation (mm) 190.20 139.40 28.40

Circle: path tracking (mm) 81.31 98.91 18.88

Circle: position estimation (mm) 190.63 227.79 72.63

TABLE II

PERFORMANCE EVALUATION
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Fig. 19. 3D position of the UAV measured by Vicon system in the
square path following test. The path reference is shown in red. The Vicon
measurements are in green. The estimated positions are in blue.

The generated reference path includes continuous reference

positions, velocities and accelerations. Given user-specified

control points, we optimize the overall time span of the

trajectory to obtain a time optimal path. The B-spline based

optimization algorithm is adopted to constrain the deriva-

tives of the continuous trajectory. The optimization problem

is solved by non-linear programming. The generated path

prevents spikes in control input and helps the localization

algorithm to achieve a stable and smooth performance. We

sample the reference points on the generated path with the

control frequency and update the reference point with the

same frequency. The PID controller generates control signal

according to the current reference point. The experiments

show that the UAV is able to follow the reference trajectory

smoothly using our navigation system.

We tested two flight paths including a 2m×2m square and

a circle with the radius of 1m. Figure 19 and 20 present the

performance of the square path following. The circle path

following results are shown in Figure 21. We record the

Vicon measurements of the drone’s position for quantitative

evaluation. We evaluate both the path tracking performance

and the position estimation accuracy in Table II. It is shown

in the experiments that our system can produce reasonably

accurate position estimation for indoor navigation of the

UAV.

VI. CONCLUSION

We have presented an autonomous navigation system for

a low-cost toy UAV, the Parrot AR.Drone. This paper gives

detailed descriptions of the platform and system modeling

using a motion capture system. Our visual SLAM system
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Fig. 20. The result of square path following test. The position reference is
shown in red. The Vicon measurements are in green. The estimated positions
are in blue.
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Fig. 21. The result of circle path following test. The position reference is
shown in red. The Vicon measurements are in green. The estimated positions
are in blue.

contains a robust feature tracker and a relocalization module

to estimate accurate poses in real time. The proposed EFK

fuses measurements from the visual SLAM and the on-board

navigation filter to correct the local drifting error and solve

the scaling ambiguity. It has been shown in the experiments

that the AR.Drone can perform robust autonomous naviga-

tion using our system. The results have been verified in real

flights with ground truth positions measured by Vicon. The

position accuracy is within 10 cm, which is reasonable for

autonomous indoor navigation of UAVs. Our system can be

easily adapted to other platforms with inertial sensors and

video transmitter.
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