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This paper presents a vision-based technology for localizing targets in 3D environment. It is achieved by the combination of
different types of sensors including optical wheel encoders, an electrical compass, and visual observations with a single camera.
Based on the robot motion model and image sequences, extended Kalman filter is applied to estimate target locations and the robot
pose simultaneously. The proposed localization system is applicable in practice because it is not necessary to have the initializing
setting regarding starting the system from artificial landmarks of known size. The technique is especially suitable for navigation
and target tracing for an indoor robot and has a high potential extension to surveillance and monitoring for Unmanned Aerial
Vehicles with aerial odometry sensors. The experimental results present “cm” level accuracy of the localization of the targets in
indoor environment under a high-speed robot movement.

1. Introduction

Knowledge about the environment is a critical issue for
autonomous vehicle operations. The capability of localizing
targets with a robot for environment is highly demanded.
In [1], it investigates the vision-based object recognition
technique for detecting targets of the environment which
have to be reached by a robot. After the robot finishes the
target detection, it is an essential task for robots to know the
positions of targets. The tasks include navigation and object
tracking. As a result, the approach to localize targets for
specific tasks is an essential issue in some applications. For
UAVs, there are some similar demands [2, 3] that UAVs have
to track the positions of ground objects for reconnaissance
or rescue assistance with monocular vision. Besides, UAVs
need to observe the changing surroundings to understand
the movements of the aircraft better, or the localizing system
has to direct the aircraft to a region of interest after taking
ground observations.

In recent years, odometry sensors have been widely used
for estimating the motion of vehicles moving in a 3D space
environment such as UAVs and Unmanned Ground Vehicles
(UGVs). For instance, Inertial Navigation Systems (INSs)
are applied to measure linear acceleration and rotational
velocity, and capable of tracking the position, velocity and
attitude of a vehicle by integrating these signals [4] or mobile

vehicles use the Global Position System (GPS) and Inertial
Measurement Units (IMUs) for land vehicle applications
[5]. However, most of inertial navigation system sensors are
expensive for some applications in the indoor environment.
Optical wheel encoders and an electrical compass provide
linear and angular velocities respectively. Both of two sensors
are basic odometry sensors and widely used owing to their
low cost, simplicity, and easy maintenance. Encoders provide
a way of measuring the velocity to estimate the position
of the robot and compasses are often used to detect the
orientations of the robot. Based on the sensor information,
motion control is done and then the localization of the robot
is estimated [6, 7]. Despite some limitations of an encoder,
most researchers agree that an encoder is a vital part of the
robot’s navigation system and the tasks will be simplified
if the encoder accuracy is improved. Besides, the additional
sensor, a camera, allows a robot to perform a variety of tasks
autonomously. The use of computer vision for localization
has been investigated for several decades. The camera has
not been at the center of robot localization while most of
researchers have more attention to other sensors such as laser
range-finders and sonar. However, it is surprising that vision
is still an attractive choice for sensors because cameras are
compact, cheaper, well understood, and ubiquitous. In this
paper, the algorithm is achieved by combining different types
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of sensors including optical wheel encoders, an electrical
compass, and a single camera.

Mobile vehicles such as robots, UGVs, and UAVs are
becoming fully intelligent robotic systems which can handle
more complicated tasks and environments. It is necessary to
provide them with higher autonomy and better function-
alities. For instance, robot localization and target tracking
are mandatory. For these tasks, some of sensors such as
GPSs, IMUs, laser range-finders, encoders, and compasses
are possibly combined to describe the time evolution of
the motion model. Additionally, visual sensors, such as
electro-optic or infrared cameras, have been included in the
on-boarded sensor suit of many robots to increase their
value. Therefore, it is a popular research topic regarding
how to combine hybrid sensors to achieve a special task.
Recent researches have shown that the way to improve
sequential estimation and achieve repeatable motion with
multisensors is to adopt the probabilistic method. The
Kalman filter has been widely used for data fusion such as
navigation systems [8], virtual environment tracking systems
[9], and 3D scene modeling [10]. The Kalmna filter is a
mathematical method to provide an iterated procedure for
a least-square estimation of a linear system. The procedure
includes predicting state by using the motion model and
then correcting the state by the measurement innovation.
The EKF is a varied type of the Kalman filter for a non-
linear system such as the target tracking system in this paper.
More details about the Kalman filter are introduced in the
material of [11–14]. In this paper, the algorithm represents
a new approach of EKF-based multisensor data fusion. The
information from different types of sensors is combined to
improve the estimations in the system state. In order to
make our system able to deal with the variety of tasks such
as navigation for a mobile robot or ground target tracking
for UAVs, we are determined to choose monocular vision
rather than binocular vision as one type of our sensors. Based
on the monocular vision, simultaneous robot localization
and target tracking become more complex with a higher
computational loading due to unknown depths of targets in
only one image observation. Thus, it is an important issue
regarding how to make use of computational tricks or adopt
more efficient algorithms to reduce the running time. In
this paper, Chelesky decomposition [15] and forward-and-
back substitution are used to invert the covariance matrix for
improving the computational efficiency because the property
of covariance matrix is semipositive definite.

The rest of this paper is structured as follows. Section 2
presents the proposed algorithm and explains the details.
Section 3 explains two key points about the proposed algo-
rithm. The experimental results are provided in Section 4,
and finally, Section 5 concludes the paper and suggests future
work.

2. Explanation of the Algorithm

The algorithm is mainly divided into five parts including
motion modeling, new target adding, measurement mod-
eling, image matching, and EKF updating. By sequential
measurement from sensors, the EKF is capable of improving
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Figure 1: The robot moves from rwi to rwk . Based on the two
views, the parallax is produced. The initial depth can be refined
to approach the real distance and the position of the ith target is
estimated.

the initial estimate for the unknown information while
simultaneously updating the localization of targets and the
robot pose. Finally, Chelesky decomposition and forward-
and-back substitution are presented to calculate the inverse
covariance matrix efficiently.

2.1. The Origins of the Proposed Algorithm. A single camera
is mounted on our system as one of the sensors. The
monocular vision infers that the depth of the target is not
able to be measured by only one image but estimated by
the sequential images. Therefore, the single camera has to
estimate the depth by observing the target repeatedly to get
parallax between different captured rays from the target to
the robot. The orientations of target are estimated in the
world coordinate system only by one image. Yw

i is a six-
dimension state vector and used to describe the position of
the ith target in 3D space. Its equation is addressed as

Yw
i =

[
rwi

T θwi ϕw
i ρwi

]T
. (1)

rwi is the location of the robot when the robot detects the
ith target in the first time. Gc

i is defined as the position of
the target with respect to the camera coordinate system and
denoted by

Gc
i = Rcw

((
rwi − rwk

)
+

1

ρwi
m
(
θwi ,ϕw

i

))
. (2)

θwi and ϕw
i are the orientations of the ith target and calculated

by the pixel location of the target in only one image. The
relationship between the position of the target Gc

i and the
current robot localization rwk is presented in Figure 1.

Gw
i is the position of the target with respect to the world

frame system. 1/ρwi is defined as the distance from rwi to
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the target and m(θwi ,ϕw
i ) is its unit vector. Consequently,

1/ρwi m(θwi ,ϕw
i ) is seen as the vector from rwi to the target

and then Gw
i is calculated as ((rwi − rwk ) + 1/ρwi m(θwi ,ϕw

i )).
Finally, Gc

i is estimated if the depth 1/ρwi is known in advance.
However, the depth of the target is not able to be measured by
a single image. The EKF is applied to estimate 1/ρwi , θwi , and
ϕw
i and they converge toward more correct values under the

recursive iteration by using sequential image measurement
information. To sum up, (2) is the basic concept and origin
of our proposed algorithm.

2.2. Motion Modeling. We first derive the continuous-time
system model that describes the time evolution in the state
estimate. This model allows us to employ the sampled
measurements of the wheel encoder and the compass for
state propagation. The process state is described by the vector

Xmk =
[

rwk
T qw

k
T vw

k
T

ω
c
k
T
]T

, (3)

where rwk is the position of the robot with respect to the world
frame. qw

k is the quaternion that represents the orientation of
the world frame for the robot. The linear velocity in the world
frame and the angular velocity with respect to the camera
frame are denoted by vw

k and ω
c
k, respectively. In this system,

the control inputs are measured by wheel encoders and the
compass which provide the linear velocity and the angular
velocity, respectively. Besides, the linear velocity is used to
simulate the acceleration data of the robot for describing how
components of the system state vector change completely.
The definition of acceleration is defined as awk = (vw

k −

vw
k−1)/∆t. In order to have similar on-line simulation, we

define awk as (vw
k − vw

k−1)/∆t rather than (vw
k+1 − vw

k )/∆t.
Although the former definition is not better than the later
one which is closer to the real acceleration, an iterated EKF
is still capable of compensating for errors when adopting
(vw

k − vw
k−1)/∆t as the robot’s acceleration. The system model

describing the time evolution of the wheel encoders and of
the compass is given by

Xm−

k+1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

rwk+1

qw
k+1

vw
k+1

ω
c
k+1

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

rwk + vw
k ∆t +

1

2
awk ∆t

2

qw
k × q

(
ω
c
k + Ω

c
k

)

vw
k + awk ∆t

ω
c
k + Ω

c
k

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (4)

The compass is used to measure ∆θk which is defined as
(θk − θk−1). ωc

k+1 and ω
c
k are defined as (θk − θk−1)/∆t and

(θk−1 − θk−2)/∆t, respectively. If ωc
k+1 is assumed to be (ωc

k +
Ω

c
k), Ωc

kc is derived as (θk − 2θk−1 +θk−2)/∆t. qw
k+1 is denoted

by

qw
k+1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

q1 −q2 −q3 −q4

q2 q1 −q4 q3

q3 q4 q1 −q2

q4 −q3 q2 q1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

q′1

q′2

q′3

q′4

⎤
⎥⎥⎥⎥⎥⎥⎦

, (5)

where

q
(
ω
c
k + Ω

c
k

)
=

⎡
⎢⎢⎢⎢⎢⎢⎣

q′1

q′2

q′3

q′4

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos

(
∆θk

2

)

ux sin

(
∆θk

2

)

uy sin

(
∆θk

2

)

uz sin

(
∆θk

2

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

u = [ ux uy uz ]T is equal to ω
c
k+1∆t/‖ω

c
k+1‖∆t.

The covariance is predicted and modified if considering
the control covariance Cov(vw

k , ω
c
k, awk ). We assume that the

process noise of the control vector is not correlated with
the process state vector Xmk so that Cov(Xmk, vw

k , ω
c
k, awk )

is set to be a zero matrix. By using (A.4) in Appendix A, the
predicted covariance of the system model is expressed as

Cov
(

Xm−

k+1

)
= FXmCov(Xmk)FXm

T + Q, (7)

where

Q = FvCov
(

vw
k

)
Fv

T + FωCov
(
ω
c
k

)
Fω

T + FaCov
(

awk

)
Fa

T .

(8)

The first item FXmCov(Xmk)FXm
T represents the noise from

the process state vector and Q describes the noise from the
measurement of the wheel encoders and the compass. The
Jacobian matrix of FXm is shown as

FXm =
∂f

∂Xm
=

[
∂f

∂rwk

∂f

∂qw
k

∂f

∂vw
k

∂f

∂ωc
k

]

13 × 13

. (9)

The Jacobian matrixes of Fv and Fω are as the same as ∂f/∂vw
k

and ∂f/∂ωc
k, respectively.

2.3. Adding New Target. It is remarkable about our algorithm
that new targets are initialized by using only one image.
The initialization includes the state initial values and the
covariance assignment.

2.3.1. Target Initialization. Equation (1) is used to define the
location of the new target and estimate the six parameters of
Yw
i with the EKF prediction-update loop. If the robot senses

the 1st target at the state k for the first time, the new target
information is added and then the process state vector is
modified. The expanded process state vector is represented
by the following equation:

X−

k =

⎡
⎣Xm−

k

Yw
1

⎤
⎦, (10)

where

Yw
1 =

[
rw1

T θw1 ϕw
1 ρw1

]T
6 × 1

. (11)

The first time observation of the 1st target is done at the
current camera location rw1 . m(θw1 ,ϕw

1 ) is defined as an unit
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Figure 2: The orientations of the target with respect to the world
frame can be estimated as a function of its undistorted pixel location
hu.

vector from the location rw1 to the 1st target with respect to
the world frame. Figure 2 illustrates the relationship about

m(θw1 ,ϕw
1 ), θw1 , and ϕw

1 . hu = [ u v ]T is defined as the pixel
location of the 1st target in an undistorted image. gc is the
location of the 1st target with respect to the camera frame.
The location of the 1st target with respect to the world frame
gw is addressed as

gw =

⎡
⎢⎢⎢⎣

gwx

gwy

gwz

⎤
⎥⎥⎥⎦ = Rwcgc = Rwc

⎡
⎢⎢⎢⎢⎢⎣

(u0 − u)Dx

f
(v0 − v)Dy

f
1

⎤
⎥⎥⎥⎥⎥⎦
gcz , (12)

where

Rwc

=

⎡
⎢⎢⎢⎣

q2
1+q2

2 − q2
3 − q2

4 2
(
q2q3 − q1q4

)
2
(
q2q4 + q1q3

)

2
(
q2q3 + q1q4

)
q2

1−q
2
2 + q2

3 − q2
4 2

(
q3q4 − q1q2

)

2
(
q2q4 − q1q3

)
2
(
q3q4 + q1q2

)
q2

1−q
2
2 − q2

3 + q2
4

⎤
⎥⎥⎥⎦.

(13)

Then we get

[
gwx
gwy
gwz

]

gcz
= Rwc

⎡
⎢⎢⎢⎢⎢⎣

(u0 − u)Dx

f
(v0 − v)Dy

f
1

⎤
⎥⎥⎥⎥⎥⎦
. (14)

Only gwx /g
c
z and gwy /g

c
z rather than gwx and gwy are computed

by using hu. It is impossible to know gcz by only one image.
However, it is possible to make use of gwx /g

c
z and gwy /g

c
z to

calculate θw1 and ϕw
1 which are shown as

⎡
⎣θ

w
1

ϕw
1

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

tan−1

(
gwx
gcz

,
gwz
gcz

)

tan−1

(
−gwy

gcz
,

√√√√√
(
gwx
gcz

)2

+

(
gwz
gcz

)2
⎞
⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (15)

The unit vector m(θw
1 ,ϕw

1 ) is derived as a function of the
orientations of the target and described as

m
(
θw1 ,ϕw

1

)
=

⎡
⎢⎢⎢⎣

cosϕw
1 sin θw1

− sinϕw
1

cosϕw
1 cos θw1

⎤
⎥⎥⎥⎦. (16)

The final parameter 1/ρw
1 is not able to be measured by only

one image but estimated by the sequential images with EKF
prediction-update loop. As a result, it is assumed to be an
initial value 1/ρ0.

2.3.2. New Covariance Assignment. The system covariance
is modified after adding a new target. By using (B.1) in
Appendix B, the new covariance Cov(X−

k ) and the function
of Yw

1 are denoted by

Cov
(

X−

k

)
=

⎡
⎣Cov(Xmk) BT

1

B1 A1

⎤
⎦,

Yw
1 = k

(
rwk , qw

k , hd(u, v), ρw1
)

,

(17)

where

k =

⎡
⎢⎢⎢⎢⎢⎢⎣

rw1

θw1

ϕw
1

ρw1

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

rx

ry

rz

tan−1

(
gwx
gcz

,
gwz
gcz

)

tan−1

(
−gwy

gcz
,

√√√√√
⎛
⎝ gwx

gcz

)2

+

(
gwz
gcz

)2
⎞
⎠

ρw1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (18)

B1 is not a zero matrix because the new target’s location is
correlated with the estimates of the robot. According to (B.4)
and (B.5) in Appendix B, B1 and A1 are derived as

B1 = kxCov(Xmk) =
[

kr kq 06 × 3 06 × 3

]
, (19)

A1 = krCov(r)kr
T + kqCov

(
q
)

kq
T + a, (20)

where

a = khd Cov(hd)khd

T + kρCov
(
ρ
)

kρ
T . (21)

2.4. Measurement Modeling. The robot moves continuously
and records the sequential images. This is a process of
detecting and identifying the targets. The parameters of
targets have been set into the process state vector and the
covariance has been estimated with the recursive loop.

2.4.1. Sensor Model. The predicted pixel locations of targets
are estimated as a function of the prior process state vector
which is described in (4). According to (2), the location of
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the ith target in the camera frame can be defined in another
way:

Tc
i =

⎡
⎢⎢⎢⎣

Tc
x(i)

Tc
y(i)

Tc
z(i)

⎤
⎥⎥⎥⎦ = Rcw

((
rwi − rwk

)
∗ ρwi + m

(
θwi ,ϕw

i

))
.

(22)

Our measurement sensor of the camera is monocular vision.
There is a camera sensor model to describe how the sensor
maps the variables in the process state vector into the sensor
variables. By using the pinhole model [16], Tc

i is derived as
a function of the undistorted pixel location of the ith target
(ui, vi) and denoted by

Tc
i =

⎡
⎢⎢⎢⎢⎢⎣

(u0 − ui)Dx

f
(v0 − vi)Dy

f
1

⎤
⎥⎥⎥⎥⎥⎦
gcz(i)ρ

w
i . (23)

Equation (22) and (23) are combined to derive the predicted
pixel location without distortion for the ith target Zk(i) =

(ui, vi). Its equation is addressed as

Zk(i) =

⎡
⎣ui
vi

⎤
⎦ = h

(
Xm−

k

)
=

⎡
⎢⎢⎢⎢⎣

u0 −
f

Dx

Tc
x(i)

Tc
z(i)

v0 −
f

Dy

Tc
y(i)

Tc
z(i)

⎤
⎥⎥⎥⎥⎦
. (24)

By using image correct, the predicted pixel location of the ith
target within distortion Zdk(i) = (ud(i), vd(i)) is addressed as

Zdk(i) = hd

(
Xm−

k

)
=

⎡
⎢⎢⎢⎣

(ui − u0)

1 + 3k1r
2
d + 5k2r

4
d

(vi − v0)

1 + 3k1r
2
d + 5k2r

4
d

⎤
⎥⎥⎥⎦ +

⎡
⎣u0

v0

⎤
⎦, (25)

where k1 and k2 are coefficients for the radial distortion of
the image.

The actual image target the robot takes is the distorted
pixel location rather than the undistorted one. Therefore, we
have to calculate Zdk(i) to get the measurement innovation
for EKF updating.

2.4.2. Measurement Covariance Assignment. The measure-
ment covariance is expected to describe what the likely
variation of measurement is by the sensor under the current
condition. The variation is infected by the variables in the
process state vector and the noise which corrupts the sensor.
The measurement Jacobian matrix Hi is

Hi =

[
∂hd(i)

∂Xmk
02 × 6 · · ·

∂hd(i)

∂Yw
i

02 × 6 · · · 02 × 6

]
,

(26)

where

∂hd(i)

∂Xmk
=

[
∂hd(i)

∂rwk

∂hd(i)

∂qw
k

∂hd(i)

∂vw
k

∂hd(i)

∂ωc
k

]

2 × 13

,

∂hd(i)

∂Yw
i

=

[
∂hd(i)

∂rwi

∂hd(i)

∂θwi

∂hd(i)

∂ϕw
i

∂hd(i)

∂ρwi

]

2 × 6

.

(27)

When there are N targets observed concurrently, they are
stacked in one measurement vector Zdk to form a single
batch-form update equation which is shown as

Zdk =
[

ZdT
k(1) · · · ZdT

k(N)

]T
. (28)

Similarly, the batch measurement Jacobian matrix is derived
as

Hk =

[
∂h

∂Xmk

∂h

∂Yw
1

· · ·
∂h

∂Yw
N

]
=
[

HT
1 · · · HT

N

]T
,

(29)

where

Hk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂h1

∂Xmk 2 × 13

∂h1

∂Yw
1 2 × 6

02 × 6 02 × 6 . . . 02 × 6

∂h2

∂Xmk 2 × 13
02 × 6

∂h2

∂Yw
2 2 × 6

02 × 6 . . . 02 × 6

∂h3

∂Xmk 2 × 13
02 × 6 02 × 6

∂h3

∂Yw
3 2 × 6

. . . 02 × 6

...
...

...
...

. . .
...

∂hN

∂Xmk 2 × 13
02 × 6 02 × 6 02 × 6 . . .

∂hN

∂Yw
N 2 × 6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (30)

2.5. Image Matching by Using Cross-Correlation. The image
patch information of the targets whose variables are set in
the process state vector has been stored in the data-base

when the robot senses them in the first time. The predicted
pixel locations of the targets within distortion are estimated
by using (25). Next important issue is how to search for
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the actual pixel locations of the targets in a 320 × 240
image. Image matching is a fundamental and vital aspect
of many problems in computer vision including motion
tracking and object recognition. The image features are
invariant to rotation, image scaling, change in illumination,
and 3D camera viewpoint. It is still a popular research
topic regarding how to allow a single candidate image to
be correctly matched with high probability. Based on the
estimation of measurement covariance, the small area where
the target lies with high probability is able to be predicted.
The measurement covariance of the ith target is defined as

Cov
(

Zdk(i)

)
2 × 2 =

⎡
⎣σ

2
uu(i) σ2

uv(i)

σ2
vu(i) σ2

vv(i)

⎤
⎦. (31)

The template match technique is used to search the actual
image pixel location of the ith target in the small search area
whose width and length are kσuu(i) and kσvv(i), respectively.
The coefficient k is a constant and defines how large the
search area is. The larger k is, the more is the search time.
There are two advantages regarding the search area which is
estimated by the measurement covariance. One advantage is
that a lot of time is saved because the image pixel location
of the ith target is detected in a small search area rather than
in a 320 × 240 image. The other one is that the successful
search rate increases dramatically because the search area
allows the image pixel location to be correctly matched
with high probability. As a result, it is not necessary to use
a complicated object recognition algorithm such as Scale
Invariant Feature Transform (SIFT) [17] for image matching
in our system. Cross-correlation search is applied to be our
template match algorithm and the computing loading is
lower due to its simplification. This approach uses cross-
correlation of image to search a suitable image patch. ID is
defined as the template image patch for the ith target and
stored in the database. It is defined as a candidate image patch
in the search area whose width is kσuu(i) and length is kσvv(i).
The cross-correlation value of It with ID is given by

1

M2
− 1

∑
uv

(
ID(u, v)− ID

)(
It(u, v)− I t

)

σIDσIt
. (32)

M2 is the number of pixels in an image patch and σID
and σIt are the stand deviations of ID and ID, respectively. ID
and I t are the average values of ID and It, respectively. The
maximum value of cross-correlation of It with ID is the best
template matching and it is seen as the matching target pixel
patch for the ith target.

2.6. Iterated EKF Updating. The EKF is one of the most
widely used nonlinear estimators due to its similarity to
the optimal linear filter, its simplicity of implementation,
and its ability to provide accurate estimates in practice.
We employ the iterated EKF to update the state. At each
iteration step k, the prior process state vector is computed

by using (4) and then Ẑdk is calculated as a function of
Xm−

k by using (28). Next, the measurement innovation
and the measurement Jocobian matrix are computed as

Zdk−Ẑdk and Hk(2N×(13+6N)), respectively. The measurement
covariance and Kalman gain can be performed as

Cov(Zdk)2N×2N = HkCov(X−

k )(13+6N)×(13+6N)HT
k ,

Kk(13+6N)×2N = Cov(X−

k )H
T
k [Cov(Zdk)]−1.

(33)

Finally, the process state vector and its covariance are
updated at each iteration state and presented as

Xk((13+6N)×1) = X−

k + Kk

[
Zdk(2N×1) − Ẑdk(2N×1)

]
,

Cov(Xk)(13+6N)×(13+6N) = Cov
(

X−

k

)
−KkHkCov

(
X−

k

)
,

(34)

where Zdk is the actual measurement and detected by using

image matching search. Ẑdk is the predicted measurement
and computed by the sensor model. The error in the estima-
tion is reduced by the iteration and the unknown depths of
the targets converge toward the real values gradually.

2.7. Fast Inverse Transformation for Covariance Matrices. The
inverse matrix of the measurement covariance has to be com-
puted at each iteration step. It needs plenty of running time
by using the transpose of the matrix of cofactors to invert
the measurement covariance. In order to deal with the large
size of the inverse matrix within the variations of N targets
efficiently, Cholesky decomposition is applied to invert the
measurement covariance and reduce the running time at
each iteration step. The measurement covariance is factored
in the form Cov(Zdk) = LLT for a lower-left corner of the
matrix L because the measurement covariance is positive
semidefinite. The matrix L is not unique, and so multiple
factorizations of a given matrix Cov(Zdk) are possible. A
standard method for factoring positive semidefinite matrices
is the Cholesky factorization. The element of L is computed
by using Cholesky decomposition and addressed as follows:

L j j =

√√√√√A j j −

j−1∑

k=1

L2
jk,

Li j =
1

L j j

⎛
⎝Ai j −

j−1∑

k=1

LikL jk

⎞
⎠,

(35)

where Ai j is the element of A = C(Zdk).
A matrix equation in the form LX = b or UX = b can be

solved by forward substitution for lower triangular matrix L
and back substitution for upper triangular matrix U, respec-
tively. In our proposed method, Cholesky decomposition
and forward-and-back substitution are combined to invert
the measurement covariance for reducing the computational
loading.

3. The Analysis of the Algorithm

In this section, there are two key points about the proposed
algorithm presented as follows. The first key point is that
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the details of algorithm will be analyzed to prove that it is
not necessary to get the depth information in our algorithm
even though it is designed to track the 3D localization of the
targets. The other key point is introduced to explain why the
simple template match technique, cross-correlation search, is
applied.

3.1. Depth Information Analysis in the Proposed Algorithm.
The depth information should be known while the robot
localizes the targets in 3D space by using monocular vision.
However, the proposed algorithm does not need the depth
information to localize targets. As presented in (14), it is not
necessary to know the depth information to calculate θw1 and
ϕw

1 . Similarly, it seems that the depth information should be
known to compute kq in (19). kq is derived as

kq =

[
∂rwi
∂qw

k

T
∂θwi
∂qw

k

T ∂ϕw
i

∂qw
k

T
∂ρwi
∂qw

k

T
]T

6 × 4

, (36)

where

∂θwi
∂qw

k

=
∂θwi
∂gw ∗

∂gw

∂qw
k

. (37)

The depth information gwz has to be known for calculating
∂θwi /∂gw according to the following equation:

∂θwi
∂gw =

[
gwz

(gwx )
2

+ (gwz )
2 0

−gwx

(gwx )
2

+ (gwz )
2

]
. (38)

However, ∂θwi /∂qw
k still can be computed without knowing

gwz because of ∂gw/∂qw
k . The details are proved as follows:

∂θwi
∂qw

k

=

[
gwz /g

c
z(

gwx /g
c
z

)2
+
(
gwz /g

c
z

)2 0
−gwx /g

c
z(

gwx /g
c
z

)2
+
(
gwz /g

c
z

)2

]

×
1

gcz

∂gw

∂qw
k

,

(39)

where

1

gcz

∂gw

∂qw
k

=

[
∂Rwc

∂q1

gc

gcz

∂Rwc

∂q2

gc

gcz

∂Rwc

∂q3

gc

gcz

∂Rwc

∂q4

gc

gcz

]
.

(40)

gwx /g
c
z , gwy /g

c
z , and gwz /g

c
z are computed by (14). Equation (39)

can be calculated without knowing the depth information gcz
due to the following equation:

gc

gcz
=

⎡
⎢⎢⎢⎢⎢⎣

(u0 − u)Dx

f
(v0 − v)Dy

f
1

⎤
⎥⎥⎥⎥⎥⎦
. (41)

In the same way, the depth information should be known
to compute khd in equation (19). khd is derived as

khd =

[
∂rwi
∂hd

T
∂θwi
∂hd

T ∂ϕw
i

∂hd

T
∂ρwi
∂hd

T
]T

6 × 2

, (42)

Frame = 50 Frame = 55 Frame = 60 Frame = 65 Frame = 70

Figure 3: Detect the actual target pixel location by using cross-
correlation search.

where

∂θwi
∂hd

=
∂θwi
∂gw

∂gw

∂gc
∂gc

∂hu

∂hu

∂hd
. (43)

∂gw/∂gc
= Rwc and ∂hu/∂hd can be computed without gc

z but
∂θwi /∂gw cannot be calculated without gwz according to (39).
However, ∂θwi /∂hd still can be estimated without knowing gcz
and gwz if ∂θwi /∂gw and ∂gc/∂hu are combined. The details are
proved by the following equations:

∂θwi
∂gw

∂gc

∂hu
=

[
gwz /g

c
z(

gwx /g
c
z

)2
+
(
gwz /g

c
z

)2 0
−gwx /g

c
z(

gwx /g
c
z

)2
+
(
gwz /g

c
z

)2

]

×
1

gcz
∗

∂gc

∂hu
,

(44)

where

∂gc

∂hu
=

⎡
⎢⎢⎢⎢⎢⎣

−Dx

f
0

0
−Dy

f
0 0

⎤
⎥⎥⎥⎥⎥⎦
gcz . (45)

Therefore, ∂θwi /∂hd is computed without gcz and gwz by using
(44) and applying (14) to calculate gwx /g

c
z , gwy /g

c
z and gwz /g

c
z .

Based on the results of calculating ∂θwi /∂qw
k , ∂θwi /∂hd and

(14), it infers that we have solved a problem that the depth
information, gcz and gwz , is not able to be measured only
by one image. This is a very important characteristic of the
proposed algorithm.

3.2. Analysis Regarding Using Cross-Correlation Search. Gen-
erally speaking, cross-correlation search is though as a simple
template match algorithm and it is not as robust as SIFT.
However, ID is still detected correctly in the search area
by using cross-correlation search because the small area is
estimated by an iterated EKF and it includes the actual
pixel location of the target with high probability. As shown
in Figure 3, the predicted pixel locations of the targets are
estimated by using the sensor model and denoted by the
green crosses. The pixel locations of the red crosses are
the corresponding target pixel locations and detected by
applying cross-correlation search. Based on the testing result
that the red crosses are closer to the actual target pixel
locations, it has proved that it is feasible for the proposed
algorithm to apply cross-correlation search as its template
match algorithm.
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(a)  (b) (c)

Figure 4: The encoder shown in (a) is used to measure the linear
velocity and simulate the acceleration for the robot. The electrical
compass shown in (b) is applied to measure the angular velocity of
the robot. As shown in (c), the camera with wide angle lens is the
additional measurement sensor. The three sensors are combined to
estimate the localization of targets.

4. Experimental Results

In order to validate the proposed algorithm for localizing
targets when the ground truth is available we have performed
a number of experiments. The algorithm is implemented by
C++ and performed by PC with 2.0 GHz microprocessor.
The monocular sensor is a single camera with wide angle
lens because we hope that more targets can be observed in
one image and tracking rate can be higher. The camera’s
field of view is 170◦ with a focal length of 1.7 mm. The
image measurements received at a rate of 15 Hz are distorted
with noise σ = 20 pixel. The addressed experimental results
are tested under the high speed robot motion because the
average velocity of each case is higher than 20 cm/sec and
the maximum velocity of all cases is 69.11 cm/sec. For the
duration of experiments, the initial distance between the
camera and the targets ranges from 1.68 m to 5.76 m. The
unknown depth of the target is estimated by sequential
images with EKF and six cases (3.0 m, 3.5 m, 4.0 m, 4.5 m,
5.0 m, and 5.5 m) are assumed to be default depths for each
experiment case. All of the sensors mounted on our system
are shown in Figure 4.

There are some measurement errors caused by the cam-
era distortion when using the camera with wide angle lens.
Before validating the proposed algorithm, we performed an
experiment to estimate the distorted noise by making use of
the artificial landmarks. We chose the corners of the artificial
landmarks as targets. The undistorted pixel locations of the
corners are estimated by the pinhole model and then the
image correction is applied to compute their predicted pixel
locations with distortion. Owing to using a camera with
wide angle lens, there is an error between the predicted
pixel location with distortion and its actual pixel location
which is detected by the cross-correlation search. In the
proposed algorithm, the predicted pixel location without
distortion is estimated in terms of the prior process state
vector. The distorted error is produced if transforming the
undistorted pixel locations of targets to the distorted pixel
locations. Therefore, the distorted error should be taken
into consideration very carefully. Based on the experimental
result, the distorted noise is assumed to be 20 pixels.

Wall
Door

A single camera

Robot
Moving paths

Figure 5: The experiments are designed to localize the natural
landmarks as targets with varied linear and angular velocity patterns
in different moving paths including the straight and curved paths.

Figure 6: The predicted pixel locations of the targets are denoted
by the green crosses and estimated by using the sensor model. The
pixel locations of the red crosses are the corresponding target pixel
locations and detected by applying cross-correlation search.

4.1. Results of Target Localization. For demonstrating the
performance and practical applications to the proposed
MVLT, the experiments for a mobile robot go through the
doors by tracking the feature targets located upon the door
and localize robot location simultaneously.

4.1.1. Target Localization Experiments. Once a robot has to
pass through doors, one should recognize the accurate doors
position. The experiment shown in Figure 5 is designed to
verify accuracy of MVLT for the door as tracked targets.
Figure 6 shows the real environmental features as targets
whose positions require to be estimated for a task that the
robot passing through the door. Since the developed system
does not require an initial setting at the first iteration, it
provides a practical usage under a dynamical motion if target
is detected instead of training processes of the environment
features for robot localization. The two different moving
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Table 1: Error comparison of target tracking.

Algorithm Item
Estimated target position (m)

Track OK Target distance error (m)
X Y Z

MVTL

Target 1 in Path A 0.7600 0.1423 0.6528 OK 0.1369

Target 2 in Path A 0.7800 −0.0374 0.6909 OK 0.1303

Target 1 in Path B 0.8100 0.0975 0.6853 OK 0.0839

Target 2 in Path B 0.7600 −0.1135 0.5819 OK 0.1523

MVTL Average Error 0.1049

Target 1 in Path A 0.7800 0.0460 0.8234 OK 0.2042

Target 2 in Path A 0.8370 −0.0218 1.0201 OK 0.3723

MonoSLAM [18]
Target 1 in Path B 1.1158 0.0896 1.2330 Failed 0.6160

Target 2 in Path B 1.2281 −0.1161 1.4326 Failed 0.8435

MonoSLAM [18] Average Error 0.5090
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Figure 7: Ground truth of experiments.
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Figure 8: The comparison of the target 1 depth errors (meter)
between MVTL and MonoSLAM [18] in Path B.

paths with varied linear velocities and orientations are
examined as shown in Figure 7. The initial true depth for
paths A and B between robot and the doors is about 3.5
meter, path A is a straight forward path, and path B is a left
way of robot to move forward to the doors. The experimental
result is summarized in Table 1, and the averaged error of
proposed approach is about 10 cm.

According to the experimental result shown in Figures
8 and 9, it infers that the camera is not able to provide the
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Figure 9: The comparison of the target 2 depth errors (meter)
between MVTL and MonoSLAM [18] in Path B.

precise measurement information to make MonoSLAM [18]
correcting the prior process state variables under a high-
speed movement when the control input is not provided. It
also shows that the image-distorted noise σ = 20 pixel is
too large for MonoSLAM [18] model. Owing to combining
hybrid sensor information, the proposed MVTL algorithm
is capable of localizing targets with image distorted noise
σ = 20 pixel and its average error is lower than 0.11 m. It has
proved that MVTL algorithm is robust to track targets under
a higher-speed movement with larger measurement noise.

4.1.2. Acceleration Approximation-Based Error Comparison.
We also performed an experiment about the comparison
between encoders and IMU. We choose an encoder as
our sensor instead of IMU in indoor environment. The
acceleration aw(k) is approximated as (vw

(k) − vw
(k−1))/∆t by

encoders in order to have similar on-line simulation data.
It will increase additional acceleration noise if we use
prevelocity vw

(k) rather than vw
(k+1) to simulate the acceleration

of the robot at state k. However, an iterated EKF is robust
enough to compensate for errors from this low-cost sensor
and the definition of acceleration. The error of acceleration
from a simulated IMU is lower than 0.001 m/s2. Based
on the result shown in Table 2, the errors of localization
by using encoders are still accepted even though we use
prevelocity vw

(k) to simulate acceleration at iterated state k. It
has proved that errors are able to be reduced gradually with
EKF recursive loop.
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Table 2: Comparison of localization errors between the encoder
and IMU.

Robot motion
Maximum

Velocity
(m/sec)

Average
Velocity
(m/sec)

IMU
Error
(m)

Encoder
Error
(m)

Low Velocity 0.363 0.254 0.052 0.089

High Velocity 0.582 0.446 0.142 0.144
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Figure 10: The unknown depth of the target is estimated by
sequential images with EKF and six cases (3.0 m, 3.5 m, 4.0 m,
4.5 m, 5.0 m, and 5.5 m) are assumed to be default depths for each
experiment case.

4.1.3. Performance of Depth Initial Conditions. In terms of
the experimental result shown in Figure 10, we could
conclude that the ability of localizing targets depends on
the parallax from different views rather than the distance
between the robot and the target. It is a very crucial
viewpoint to analyze the stability of the system in terms
of means and deviations. Not only do we analyze one the
target localization but also we understand the details about
multiple target localization. Refering to the above experi-
ments, MVTL algorithm localizes targets with a higher-speed
motion and six kinds of default depth values converge to the
similar value with little errors.

4.2. Experiments of Fast Inverse Matrix Transformation. Fi-
nally, we performed an experiment to verify Cholesky
decomposition and forward-and-back substitution. In this
experiment, the totally testing time is 4.2 sec with 15 Hz
image rate. At first, the transpose of the matrix of cofactors is
used to invert the measurement covariance matrix whose size
ranges from 2 × 2 to 8 × 8. The experimental results shown
in Table 3 present that the running time is long if the system
inverts a 6 × 6 or a more dimension matrix. However, the
running time is reduced dramatically if the system inverts an
8× 8 matrix by using Cholesky decomposition and forward-
and-back substitution. The test result shows that the system
is capable of being real-time even though localizing four
targets concurrently.

5. Conclusion and Future Work

5.1. Conclusion. Based on the different experiments we
performed, it has proved that the proposed algorithm is

Table 3: Comparison of execution time.

Target number 1 2 3 4

Cholesky decomposition (sec) 0.877 1.182 1.548 1.92

Matrix of cofactors (sec) 0.871 1.216 7.07 516.742

able to localize targets with “cm” level accuracy under a
higher-speed movement. Besides, we have validated that
it is practical to use odometry sensors to track targets as
well. Not only does the system start the recursive procedure
without the initial setting but also the robot can move
rapidly to localize targets. The EKF-based algorithm is really
practical and robust to reduce errors from sensors even
though the low-cost sensors are used in our system. The
efficiency of the proposed algorithm is impressive by using
Cholesky decomposition and some computational tricks.
In terms of the experimental result shown in Figure 10,
we could conclude that the ability of localizing targets
depends on the parallax from different views rather than
the distance between the robot and the target. Consequently,
the proposed algorithm has a high potential extension to
surveillance and monitoring for UAVs with aerial odometry
sensors. In the same way, it is able to be used widely for robot
tasks as well.

5.2. Future Work. The targets are assumed to be stationary
landmarks in the proposed algorithm. It will be an interesting
and challenging research if the algorithm is modified to track
a moving target. This type of the technique is necessary and
going to be widely used in many applications. For instance,
UGV has to know the intended motions of other moving
objects in order to plan its navigating path for the next
state. Therefore, it will be a good future work to add a
new approach into the proposed algorithm to track moving
targets. Besides, there is another important future work
for our system. This future work is to find some ways or
algorithms to improve accuracy of the measurement data by
the low-cost sensor because it will improve the localization
errors in terms of more accurate measurement data.

Appendices

The proof of the system covariance is presented in appendix.
It derives the modified covariance in motion model at each
iteration step and the new covariance after adding new
targets.

A. The Modified System Covariance in
Motion Model

The process state vector is predicted by the system process
model. It is determined by the old state and the control
inputs applied in the process. Yk is a control vector and
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u is corrupted by mean-zero process. Both of equations are
described as

Y = u + w,

Cov(Y) = Cov(w).
(A.1)

The prior estimate error covariance Cov(X−

k ) is derived as a

function of the prior state estimate X̂−

k and represented as

Cov
(

X−

k

)
≈ F(x,y)CF(x,y)

T , (A.2)

where

C =

⎡
⎣ Cov(Xk−1) Cov(Xk−1, Yk−1)

Cov(Yk−1, Xk−1) Cov(Yk−1)

⎤
⎦,

F(X ,Y) =
[

FX FY

]
�

∂f(X, Y)

∂(X, Y)

(
X̂k−1, Ŷk−1

)
.

(A.3)

If the control vector is not correlated with the state Xk−1,
Cov(Xk−1, Yk−1) and Cov(Yk−1, Xk−1) are equal to zero
matrices. The prior estimate error covariance Cov(X−

k )
simplifies to

Cov
(

X−

k

)
≈ FXCov(Xk−1)FT

X + FYCov(Yk−1)FT
Y . (A.4)

B. The New Covariance after Adding
New Targets

When the robot tracks a target, the location information of
new target is added into the process state vector. The form of
the new information is determined by sensor measurement
model. x̂y1 is composed of the random variables of the new
target information. The new covariance is addressed as

Cov(Xnew) =

⎡
⎣Cov(Xold) BT

B A

⎤
⎦. (B.1)

The size of the posterior estimate error covari-
ance Cov(Xk) increases with the number of the targets
(Figure 11). The EFK is a multihypothesis and a proper way
to include all the measurement information. There are two
cases regarding the relationship between the new target and
other variables. One case is that the estimate of the new
target’s location is independent of the estimates of other
targets and the variables of the robot. In this case, the
covariance matrix of the new target is given by

A = Cov
(

xy1

)
,

Bi = Cov
(

xy1 , xi
)
= 0.

(B.2)

A is a covariance matrix and B is a cross-covariance matrix.
B is a zero matrix because the new target is independent of
other targets and the robot by definition. The other case is
that the new target is determined as a function g of its spatial
relation z to other target locations. The new target’s location
is correlated with the estimates of other targets and the robot.

Xnew Xnew

Xold

Cov(Xnew)

Cov(Xold)

Cov(Xnew)

xy1 GxCov(x) Cov(xy1 )

Figure 11: The size of the posterior estimate error covariance
Cov(Xk) increases with the number of the targets. The size of the
system covariance is modified from a 13 × 13 matrix to a 19 × 19
matrix while the robot senses one target in the process state vector.

The function g and the covariance matrix of the new target
are shown as

xy1 = g(x, z), (B.3)

A = GxCov(x)GT
x + GzCov(z)GT

z , (B.4)

Bi = GxCov(x). (B.5)
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