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Koray Çelik, Soon-Jo Chung, Matthew Clausman, and Arun K. Somani

Abstract— This paper presents a novel indoor navigation and
ranging strategy by using a monocular camera. The proposed
algorithms are integrated with simultaneous localization and
mapping (SLAM) with a focus on indoor aerial vehicle appli-
cations. We experimentally validate the proposed algorithms
by using a fully self-contained micro aerial vehicle (MAV)
with on-board image processing and SLAM capabilities. The
range measurement strategy is inspired by the key adaptive
mechanisms for depth perception and pattern recognition found
in humans and intelligent animals. The navigation strategy
assumes an unknown, GPS-denied environment, which is repre-
sentable via corner-like feature points and straight architectural
lines. Experimental results show that the system is only limited
by the capabilities of the camera and the availability of good
corners.

I. INTRODUCTION

The foreseeable future of intelligence, surveillance and

reconnaissance missions will involve GPS-denied environ-

ments. An MAV with vision based on-line simultaneous

localization and mapping (SLAM) capabilities can pave the

way for an ultimate GPS-free navigation tool for both urban

outdoors and architectural indoors. While the severe payload

constraints of MAVs prevent the use of conventional sensors

such as laser range-finders, the astounding information-to-

weight ratio of vision makes it worthwhile to investigate.

However, vision captures the geometry of its surrounding

environment indirectly through photometric effects. In order

to solve the depth problem, the literature resorted to various

methods such as the Scheimpflug principle, structure from

motion, optical flow, and stereo vision. None of these have

a potential for on-line SLAM applications with reasonable

computation as well as robustness, with respect to a wide

range of depths, and with reasonable computation on a small

flying MAV. For example, the ocular separation of stereo

vision significantly limits its practical application and useful

range. Parabolic and panoramic cameras [1] are heavy, and

thus, better suited for ground vehicles [2]. The use of moving

lenses for monocular depth extraction [3] is not applicable to

SLAM since this method cannot focus at multiple depths at

once. Optical flow sensors [4], [5] require incessant motion

and hence becomes less useful in a hovering MAV, while

image patches obtained are too ambiguous for the landmark

association procedure for SLAM.

This paper presents one of the smallest fully self-contained

autonomous helicopters equipped with sophisticated on-

board image processing (see Fig. 9 and Section V for

details). Our approach accounts for how a human perceives

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the authors which show the exper-
imental results of the paper. This material is 6.9 MB in size.

Fig. 1. A three dimensional representation of the corridor showing line
perspectives and corner-like features.

depth via monocular visual cues such as line perspectives,

relative height, texture gradient, and motion parallax. We

then integrate this ranging technique with SLAM to achieve

autonomous indoor navigation of an MAV. Although we

emphasize that our real-time algorithms are validated by a

small fully self-contained aerial vehicle, they can be applied

to any mobile platform with known height.

A. Related Work on Vision-based SLAM

We emphasize that prior works, which are otherwise excel-

lent, are not directly applicable to our particular application.

Vision research has particularly concentrated on Structure

from Motion (SFM) to produce a reconstruction of the cam-

era trajectory and scene structure [6], [7], [8]. This approach

may be suitable for solving the offline-SLAM problem in

small image sets. However, an automatic analysis of the

recorded footage from a completed mission cannot scale to

a consistent localization over arbitrarily long sequences in

real-time.

Extended Kalman Filter (EKF) based approaches to prob-

abilistic vision based SLAM, such as the elegant method

of MonoSLAM [9], are excellent for applications requiring

precise and repeatable localization within the immediate

vicinity of a known, calibrated starting point. However,

an MAV covers a very large unknown area in which the

mission can start at any arbitrary location. A more recent

work [10] presented a different approach to mitigate the

issues involving long distances by means of map matching.

However, the depth measurement is relative which would

not provide reliable object avoidance for an agile flying

MAV in a relatively narrow indoor environment, and the

computational requirements are beyond reasonable limits for

an MAV.

Global localization techniques such as Condensation-

SLAM [11] show very successful localization performance.

However, they require a full map to be provided to the

robot a-priori. Azimuth learning based techniques such as
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Fig. 2. Block diagram illustrating the operational steps of the monocular
vision navigation and ranging at high level.

CognitiveSLAM [12] are parametric, and locations are cen-

tered on the robot which naturally becomes incompatible

with ambiguous landmarks. Image registration based meth-

ods, such as [13], propose a different formulation of the

vision-based SLAM problem based on motion, structure,

and illumination parameters without first having to find

feature correspondences. For a real-time implementation,

however, a local optimization procedure is required, and

there is a possibility of getting trapped in a local minimum.

Further, without merging regions with a similar structure, the

method becomes computationally intensive considering the

limitations of MAVs. The structure extraction method [14]

has its own limitations since an incorrect incorporation of

points into higher level features will have an adverse effect

on consistency. Higher level structures are purely constructed

from the information contained in the map while there is an

opportunity to combine the map with the camera readings.

Further, these systems depend on a successful selection of

thresholds which have a considerable impact on the system

performance, thus limited to small scale maps.

B. Organization

This paper addresses the above shortcomings using a

monocular camera of 1 × 2 inches in size and less than 2

ounces in mass. By exploiting the architectural orthogonality

of the indoor environments, we introduce a novel method

for monocular vision based SLAM by computing absolute

range and bearing information without using active ranging

sensors. More thorough algorithm formulations and newer

experimental results with an MAV are discussed in this paper

than in our prior conference articles [15], [16]. Section II

explains the procedures for perception of world geometry as

pre-requisites for SLAM. While a visual turn-sensing algo-

rithm is introduced in Section III, SLAM formulations are

provided in Section IV. Results of experimental validation

as well as a description of the MAV hardware platform are

presented in Section V. Figure 2 can be used as a guide

to sections as well as to the process flow of our proposed

method.

II. PROBLEM AND ALGORITHM FORMULATION

We propose a novel method to estimate the absolute depth

of features using a monocular camera as a sole means of

navigation. The only a-priori information required is the

altitude above ground, and the only assumption made is that

the landmarks are stationary. Altitude is measured in real-

time via the on-board altimeter. We validate our results with

time-varying altitude. It is also possible to operate this system

on a fixed height device.

A. Landmark Extraction

No SLAM approach is a dependable solution without

reliable landmarks. A landmark in the SLAM context is

a conspicuous, distinguishing landscape feature marking a

location. This definition is sufficient for SLAM, but not

necessary. A minimal landmark can consist of range and

bearing. To automate landmark extraction, we begin extract-

ing prominent parts of the image that are more attractive

than other parts in terms of energy. A corner makes a nice

feature. But the wall itself is uniform and thus unlikely to

attract a feature scanner. Landmarks in the real 3D world

are distinctive whereas features exist on the 2D image plane

and they are ambiguous. We select and convert qualifying

features into landmarks as appropriate.

In our preliminary results [15], we have tried the Harris

corner detection algorithm. However, due to its Markovian

nature, the algorithm was not well suited for tracking agile

motion; a feature detector, not an efficient feature tracker, as

every frame is considered independently. Although in slow

image sequences, this may provide a sparse and consistent

set of corners due to its immunity to affine transformations

and noise, we have obtained the best feature detection, and

tracking performance from the algorithm proposed by Shi

and Tomasi [18], which works by minimizing the dissimilar-

ity between past images and the present image in a sequence.

Features are chosen based on their monocular properties

such as texture, dissimilarity, and convergence; sections of

an image with large eigenvalues are considered “good”

features; conceptually similar to the surface integration of

the human vision system. However, this method cannot make

an educated distinction between an useless feature and a

potential landmark. That distinction is later performed by

our proposed method, extracting a sparse set of reliable

landmarks from a populated set of questionable features as

described in Sections II-B and IV-A.

B. Line and Slope Extraction

For our range measurement approach to work, the ar-

chitectural ground lines should be extracted. On an ideal,

well-lit and well-contrasting hallway, ground lines are often

obvious. However, on a monocular camera, the far end of a

hallway appears too small on the image plane, and therefore

is aliased. On a video feed, the corresponding ends of the

hallway lines would translate randomly. Stochastic presence

and absence of these perturbations result in lines that are

inconsistent about their position. This in turn leads to noisy
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Fig. 3. Initial stages after filtering for line extraction, in which the line
segments are being formed. The horizontal line across the image denotes
the artificial horizon for the MAV.

slope measurements and eventually noisy landmarks. The

construction should be an adaptive approach.

We begin the adaptive procedure by passing the image, I ,

through a discrete differentiation operator with more weight

on the horizontal convolution, such as

I ′x = Fh ∗ I , and I ′y = Fv ∗ I (1)

where ∗ denotes the convolution operator, and F is a 3 × 3
kernel for horizontal and vertical derivative approximations.

I ′x and I ′y are combined with weights whose ratio determine

the range of angles through which edges will be filtered.

This in effect returns a binary image plane, I ′, with potential

edges that are more horizontal than vertical. It is possible

to reverse this effect to detect other edges of interest, such

as ceiling lines, or door frames. At this point, edges will

disintegrate the more vertical they get (see Fig. 3 for an

illustration). Application of the Hough Transform to I ′ will

return all possible lines, automatically excluding discrete

point sets, out of which it is possible to sort out lines with

a finite slope φ 6= 0 and curvature κ = 0. Nevertheless, this

is an expensive operation to perform on a real-time video

feed since the transform has to run over the entire frame.

To improve the overall performance in terms of efficiency,

we have investigated replacing Hough Transform with an

algorithm that only runs on parts of I ′ which contain data.

This approach begins by dividing I ′ into square blocks, Bx,y .

Optimal block size is the smallest block that can still capture

the texture elements in I ′. Camera resolution and filtering

methods used to obtain I ′ have a large effect on the resulting

texture element structure. The blocks are sorted to bring

the highest number of data points with the lowest entropy

first, as this is a block most likely to contain lines. Blocks

that are empty, or have a few scattered points in them, are

excluded from further analysis. Entropy is the characteristic

of an image patch that makes it more ambiguous, by means

of disorder in a closed system. This assumes that disorder

is more probable than order, and thereby, lower disorder has

higher likelihood of containing an architectural feature.

The set of candidate blocks resulting at this point are to be

searched for lines. Although a block Bn is a binary matrix,

it can be thought as a coordinate system which contains a

set of points (i.e., pixels) with (x, y) coordinates such that

positive x is right, and positive y is down. Since we are more

interested in lines that are more horizontal than vertical, it

is safe to assume that the errors in the y values outweigh

that of in the x values. Equation for a ground line is in the

form y = mx + b, and the deviations of data points in the

block from this line are, di = yi − (mxi + b). Therefore, the

most likely line is the one that is composed of data points

that minimize the deviation such that d2
i = (yi −mxi − b)2.

Using determinants, the deviation can be obtained as in (2).
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Since our range measurement methods depend on these lines,

measurement noise in slopes has adverse effects on SLAM

and should be minimized to prevent inflating the uncertainty.

To reduce this noise, lines are cross-validated for the longest

collinearity via pixel neighborhood based line extraction, in

which the results obtained rely only on a local analysis.

Their coherence is further improved using a post-processing

step via exploiting the texture gradient. Note that this is

also applicable to ceiling lines. Although ground lines (and

ceiling lines, if applicable) are virtually parallel in the real

world, on the image plane they intersect, and the horizontal

coordinate of this intersection point is later used as a heading

guide for the MAV. Features that happen to coincide with

these lines are potential landmark candidates.

C. Range Measurements by the Infinity-Point Method

Inspired by [20], our monocular ranging algorithm at-

tempts to learn from the human perception system, and

accurately measures the absolute distance by integrating local

patches of the ground information into a global surface

reference frame. This new method, efficiently combined

with the feature extraction method and SLAM algorithms,

significantly differs from optical flows in that the depth

measurement does not require a successive history of images.

Once features and both ground lines are detected, our

range and bearing measurement strategy assumes that the

height of the camera from the ground, H , is known a priori

(see Fig. 1). This can be the altimeter reading of the MAV.

The camera is pointed at the far end of the corridor, tilted

down with an angle β. The incorporation of the downward

tilt angle of the camera was inspired by the human perception

system that perceives distances by a directional process of

integrating ground information up to 20 meters [20]. Indeed,

humans cannot judge the absolute distance beyond 2 to 3

meters without these visual cues on ground. Note the two

ground lines that define the ground plane of the corridor in

Fig. 1.

The concept of the infinity point, (Px, Py) was added to

obtain vehicle yaw angle and camera pitch angle. The infinity

point is an imaginary concept where the projections of the

two hallway lines happen to intersect on the image plane.

Since this imaginary intersection point is infinitely far from

the camera, it presents no parallax from the translation of

1568



the camera. It does, however, effectively represent the yaw

and the pitch of the camera. Assume that the end points

of the hallway ground lines are EH1 = (l, d,−H)
T

and

EH2 = (l, d− w,−H)
T

where l is length and w is the

width of the hallway, d is the horizontal displacement of the

camera from the left wall, and H is the MAV altitude (see

Fig. 4 for a visual description). The Euler rotation matrix to

convert from the camera frame to the hallway frame is given

in (3),

A =





cψcβ cβsψ −sβ
cψsφsβ − cφsψ cφcψ + sφsψsβ cβsφ
sφsψ + cφcψsβ cφsψsβ − cψsφ cφcβ



 (3)

where c and s are abbreviations for cos and sin functions

respectively. The vehicle yaw angle is denoted by ψ, the pitch

by β, and the roll by φ. Since the roll angle is controlled by

the onboard autopilot system, it can be set to be zero.

The points EH1 and EH2 are transformed into the camera

frame via multiplication with the transpose of A in (3)

EC1 = AT . (l, d,−H)
T
, EC2 = AT . (l, d− w,−H)

T

(4)

This 3D system is then transformed into the 2D image plane

via

u = yf/x, and v = zf/x (5)

where u is the pixel horizontal position from center (right

is positive), v is the pixel vertical position from center (up

is positive), and f is the focal length. The end points of

the hallway lines have now transformed from E1Hall and

E2Hall to (Px1, Py1)
T

and (Px2, Py2)
T

, respectively. An

infinitely long hallway can be represented by

lim
l→∞

Px1 = lim
l→∞

Px2 = f tanψ

lim
l→∞

Py1 = lim
l→∞

Py2 = −f tanβ/ cosψ
(6)

which is conceptually same as extending the hallway lines to

infinity. The fact that Px1 = Px2 and Py1 = Py2 indicates

that the intersection of the lines in the image plane is the

end of such an infinitely long hallway. Solving the resulting

equations for ψ and β yields the camera yaw and pitch

respectively,

ψ = tan−1(Px/f), β = − tan−1(Py cosψ/f) (7)

A generic form of the transformation from the pixel position,

(u, v) to (x, y, z), can be derived in a similar fashion. The

equations for u and v also provide general coordinates in

the camera frame as (zcf/v, uzc/v, zc) where zc is the z

position of the object in the camera frame. Multiplying with

(3) transforms the hallway frame coordinates (x, y, z) into

functions of u, v, and zc. Solving the new z equation for zc

and substituting into the equations for x and y yields,

x̃ = ((a12u+ a13v + a11f)/(a32u+ a33v + a31f))z

ỹ = ((a22u+ a23v + a21f)/(a32u+ a33v + a31f))z
(8)

where aij denotes the elements of the matrix in (3). See

Fig. 1 for the descriptions of x̃ and ỹ.

Fig. 4. A visual description the world as perceived by the Infinity-Point
Method.

For objects likely to be on the floor, the height of the

camera above the ground is the z position of the object.

Also, if the platform roll can be measured, or assumed

negligible, then the combination of the infinity point with

the height can be used to give the range to any object

on the floor of the hallway. This same concept applies to

objects which are likely to be on the same wall or the

ceiling. By exploiting the geometry of the corners present

in the corridor, our method computes the absolute range

and bearing of the features, effectively turning them into

landmarks needed for the SLAM formulation. Our earlier

works [15] employed an older method of range measurement,

called Line-Perspectives method, which the Infinity-Point

method improves in terms of accuracy. However, in the rare

event when only one hallway line is detectable, and thus the

infinity point is lost, the system switches from the Infinity-

Point method to the Line-Perspectives method until both

lines are detected again.

III. HELIX BEARING ALGORITHM

In this section, we propose a turn-sensing algorithm to

estimate ψ in the absence of orthogonality cues, such as when

approaching a turn. This situation automatically triggers the

turn-exploration mode in the MAV, in which a yaw rotation

of the body frame is initiated until another passage is found.

The challenge is to estimate ψ accurately enough to update

the SLAM map correctly. This way, the MAV can also

determine where turns are located the next time they are

visited.

The new measurement problem at turns is to compute the

instantaneous velocity, (u, v) of every helix (moving feature)

that the MAV is able to detect. In other words, an attempt

is made to recover V (x, y, t) = (u(x, y, t), (v(x, y, t)) =
(dx/dt, dy/dt) using a variation of the pyramidal Lucas-

Kanade method. This recovery leads to a motion field; a 2D

vector field obtained via perspective projection of the 3D

velocity field of a moving scene onto the image plane. At

discrete time steps, the next frame is defined as a function of

a previous frame as It+1(x, y, z, t) = It(x+ dx, y+ dy, z+
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dz, t+ dt). By applying the Taylor series expansion,

I(x, y, z, t) +
∂I

∂x
δx+

∂I

∂y
δy +

∂I

∂z
δz +

∂I

∂t
δt (9)

then by differentiating with respect to time yields, the helix

velocity is obtained in terms of pixel distance per time step

k.

At this point, each helix is assumed to be identically

distributed and independently positioned on the image plane,

associated with a velocity vector Vi = (v, ϕ)T where ϕ
is the angular displacement of velocity direction from the

north of the image plane where π/2 is east, π is south

and 3π/2 is west. Although the associated depths of the

helix set appearing at stochastic points on the image plane

are unknown, assuming a constant ψ̇, there is a relation-

ship between distance of a helix from the camera and its

instantaneous velocity on the image plane. This suggests

that a helix cluster with respect to closeness of individual

instantaneous velocities is likely to belong on the surface

of one planar object, such as a door frame. Let a helix

with a directional velocity be the triple hi = (Vi, ui, vi)
T

where (ui, vi) represents the position of this particle on

the image plane. At any given time (k), let Ψ be a set

containing all these features on the image plane such that

Ψ(k) = {h1, h2, · · · , hn}. The z component of velocity as

obtained in (9) is the determining factor for ϕ. Since we are

most interested in the set of helix in which this component

is minimized, Ψ(k) is re-sampled such that,

Ψ′(k) = {∀hi, {ϕ ≈ π/2} ∪ {ϕ ≈ 3π/2}} (10)

sorted in increasing velocity order. Ψ′(k) is then processed

through histogram sorting to reveal the modal helix set such

that,

Ψ′′(k) = max







if (hi = hi+1),
n
∑

i=0

i

else, 0
(11)

Ψ′′(k) is likely to contain clusters that tend to have a

distribution which can be explained by spatial locality with

respect to objects in the scene, whereas the rest of the initial

helix set from Ψ(k) may not fit this model. The RANSAC

algorithm [19] is a useful method to estimate parameters

of such models, however for efficiency, an agglomerative

hierarchical tree T is used to identify the clusters. To

construct the tree, Ψ′′(k) is heat mapped, represented as a

symmetric matrix M , with respect to Manhattan distance

between each individual helix,

M =







h0 − h0 · · · h0 − hn

...
. . .

...

hn − h0 · · · hn − hn






(12)

It is desirable to stop the algorithm before it completes

since this would eventually result in Ψ′′′(k) = Ψ′′(k). In

other words, the tree should be cut at the sequence m such

that m + 1 does not provide significant benefit in terms of

modeling the clusters. After this step, the set of velocities

in Ψ′′′(k) represent the largest planar object in the field of

Fig. 5. The Helix bearing algorithm exploits the optical flow field resulting
from the features not associated with architectural lines. Helix velocities that
form statistically identifiable clusters indicate the presence of planar objects
which can help with turn estimation.

view with the most consistent rate of pixel displacement in

time. Due to the lack of absolute depth information, if no

identifiable objects exist in the field of view, the system

is updated such that Ψ(k + 1) = Ψ(k) + µ(Ψ′′′(k)) as

the best effort estimate. However, if the MAV is able to

identify a world object of known dimensions, dim = (x, y)T

from its internal object database, such as a door, and the

cluster Ψ′′′(k) sufficiently coincides with this object, Helix

bearing algorithm can estimate depth to this cluster using

dim(f/dim′) where dim is the actual object dimensions, f
is the focal length and dim′ represents object dimensions

on image plane. Note that the existence of known objects is

not required for this method to work, however they would

increase its accuracy.

IV. SLAM FORMULATION WITH FASTSLAM

Our previous experiments [15] showed that, due to the

highly nonlinear nature of the observation equations, tra-

ditional nonlinear observers such as EKF do not scale to

SLAM in larger environments with vast numbers of potential

landmarks. Measurement updates in EKF require quadratic

time complexity, rendering the data association increasingly

difficult as the map grows. An MAV with limited computa-

tional resources is particularly impacted from this complexity

behavior. FastSLAM [21] is a dynamic Bayesian approach to

SLAM, exploiting the conditional independence of measure-

ments. A random set of particles is generated using the noise

model and dynamics of the vehicle in which each particle

is considered a potential location for the vehicle. A reduced

Kalman filter per particle is then associated with each of

the current measurements. Considering the limited computa-

tional resources of an MAV, maintaining a set of landmarks

large enough to allow for accurate motion estimations, yet

sparse enough so as not to produce a negative impact on

the system performance is imperative. The noise model of

the measurements along with the new measurement and old

position of the feature are used to generate a statistical

weight. This weight in essence is a measure of how well

the landmarks in the previous sensor position correlate with

the measured position, taking noise into account. Since each
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of the particles has a different estimate of the vehicle position

resulting in a different perspective for the measurement,

each particle is assigned different weights. Particles are re-

sampled every iteration such that the lower weight particles

are removed, and higher weight particles are replicated. This

results in a cloud of random particles of track towards the

best estimation results, which are the positions that yield the

best correlation between the previous position of the features,

and the new measurement data. The positions of landmarks

are stored by the particles such as Parn = (XT
L , P ) where

XL = (xci, yci) and P is the 2 × 2 covariance matrix for

the particular Kalman Filter contained by Parn. The 6DOF

vehicle state vector, xv , can be updated in discrete time

steps of (k) as shown in (13) where R = (xr, yr, H)T

is the position in inertial frame, from which the velocity

in inertial frame can be derived as Ṙ = vE . The vector

vB = (vx, vy, vz)
T represents linear velocity of the body

frame, and ω = (p, q, r)T represents the body angular rate.

Γ = (φ, θ, ψ)T is the Euler angle vector, and LEB is the

Euler angle transformation matrix for (φ, θ, ψ). The 3 × 3
matrix T converts (p, q, r)T to (φ̇, θ̇, ψ̇). At every step, the

MAV is assumed to experience unknown linear and angular

accelerations, VB = aB∆t and Ω = αB∆t respectively.

xv(k + 1) =









R(k) + LEB(φ, θ, ψ)(vB + VB)∆t
Γ(k) + T (φ, θ, ψ)(ω + Ω)∆t

vB(k) + VB

ω(k) + Ω









(13)

There is only a limited set of orientations a helicopter is

capable of sustaining in the air at any given time without

partial or complete loss of control. Moreover, the on-board

autopilot incorporates IMU and compass measurements in a

best-effort scheme to keep the MAV at hover in the absence

of external control inputs. Thus, the 6DOF system dynamics

in 13 can be simplified into 2D system dynamics with an

autopilot, and the MAV can be directed as in 2D car-like

mechanics with 180 degree swivel steering.

A. Data Association

As a prerequisite for SLAM to function properly, recently

detected landmarks need to be associated with the existing

landmarks in the map such that each measurement corre-

spond to the correct landmark. In essence, the association

metric depends only on the measurement innovation vector,

often leading to data ambiguity in a three dimensional envi-

ronment. The typical data association method is to compare

every measurement with every feature on the map and a

measurements becomes associated with a feature if it is

sufficiently close to it, a process that would exponentially

slow down over time. Moreover, since the measurement is

relative, the error of the vehicle position is additive with

the absolute location of the measurement. We present a

new approach to this issue as a faster and more accurate

solution, which takes advantage of landmark locations on

the image plane. Landmarks appear to move along the

ground lines as the MAV moves, and data association is

a problem born from their natural ambiguity. Assume that

pk
(x,y), k = 0, 1, 2, 3, . . . , n represents a pixel in time which

happens to be contained by a landmark, and this pixel moves

along a ground line at the velocity vp. Although landmarks

often contain a cluster of pixels size of which is inversely

proportional with landmark distance, here the center pixel of

a landmark is referred. Given that the expected maximum

velocity, VBmax, is known, a pixel is expected to appear at

pk+1
(x,y) = f((pk

(x,y) + (vB + VB)∆t)) (14)

where
√

(pk+1
(x) − pk

(x))
2 + (pk+1

(y) − pk
(y))

2 (15)

cannot be larger than VBmax

∆t
and f(·) is a function that

converts landmark range to position on the image plane.

A landmark appearing at time k + 1 is to be associated

with a landmark that has appeared at time k if and only

if their pixel locations are within the association threshold.

In other words, the association information from k is used.

Otherwise, if the maximum expected change in pixel location

is exceeded, the landmark is considered new. using the

association data from k when a match is found instead

of searching the large global map saves computational re-

sources. In addition, since the pixel location of a landmark is

independent of the noise in the MAV position, the association

has an improved accuracy. To further improve accuracy,

there is also a maximum range beyond which the MAV will

not consider landmarks for data association. This range is

determined taking camera resolution into consideration. The

farther a landmark is, the fewer pixels it has in its cluster,

thus the more ambiguous it becomes and the more noise it

may contain. Currently, the MAV is set to ignore landmarks

farther than 8 meters.

V. EXPERIMENTAL RESULTS

As illustrated in Fig. 6, our monocular vision SLAM

correctly locates and associates landmarks. A 3D map is

built by the addition of time-varying altitude and wall-

positions, as shown in Fig. 7. In the top-down maps such

as Fig. 6, the small circle with a protruding line represents

the MAV and its current heading, respectively. Large circles

represent landmarks in the process of data association. Circle

diameter represents the uncertainty for that landmark posi-

tion, with larger diameter representing higher uncertainty.

At highest level of certainty, the circle becomes invisible.

The uncertainty is known in both x and y directions in the

inertial frame, therefore these circles are indeed elliptical.

However, since the MAV is highly certain about the range

of landmarks with respect to distance of walls from each

other, the worst of the two uncertainties is used. Also,

the diameter of uncertainty is inflated in the figure for

visibility. A large uncertainty often represents an inconsistent

feature which might have been introduced when external

disturbances are present. The proposed methods turn out

to be robust to transient disturbances since the corner-like

features that might have been introduced by the walking

person would have a very high uncertainty, and would not

be considered for the map in the long term.
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Fig. 6. Experimental results of the proposed ranging and SLAM algorithm.
Building floor plan was later superimposed with scale accuracy to provide
reference data for the ground truth to demonstrate the performance and
accuracy of our method. It is not provided to the MAV a-priori.

Fig. 7. Cartesian (x, y, z) position of the MAV in a hallway as reported by
proposed ranging and SLAM algorithm with time-varying altitude. Altitude
was intentionally varied by large amounts to demonstrate the robustness of
our method to the climb and descent of the aircraft, whereas in a typical
mission natural altitude changes are in the range of a few centimeters.

The MAV assumes that it is positioned at (0, 0, 0) Carte-

sian coordinates at the start of a mission, with the camera

pointed at the positive x axis, therefore, the width of the

corridor is represented by the y axis. At anytime during the

mission, a partial map can be requested from the MAV. As

the MAV features an IEEE 802.11 interface, the map can be

requested over an Internet connection as long as the building

provides a wireless Internet service or downloaded ad-hoc

if a laptop computer is in range. In any case the map is

stored in the MAV for later retrieval. The MAV also stores

video frames at certain intervals or important events, which

are time-linked to the map. It is therefore possible to obtain

a still image of the surroundings of any landmark for the

surveillance and identification purposes.

In Fig. 6, the loop is over 100 meters. When the system

closes the loop, the MAV believes to be within less than 2

meters of where the mission started. It should be stressed

that the third leg of this hallway contained no detectable

features, considering the MAV ignores landmarks farther

than 8 meters. The MAV can still center itself between the

walls via the line extraction algorithms. Hence, once the loop

is complete, the system is able to quantify the amount of

error between the actual starting position and the projected

ending position, which can be corrected accordingly in the

next iteration of the loop.

Fig. 8. Cartesian (x, y, z) position of the MAV in a hallway over time,
demonstrating the loop-closing performance of the proposed ranging and
SLAM algorithm.

Fig. 9. Saint Vertigo, the autonomous MAV helicopter consists of four
decks. The A-deck contains collective pitch rotor head mechanics, The B-
deck comprises the fuselage which houses the power-plant, transmission,
main batteries, actuators, gyroscope, and the tail rotor. The C-deck is the
autopilot compartment which contains the inertial measurement unit, all
communication systems, and all sensors. The D-deck carries the navigation
computer which is attached to a digital video camera visible at the front.

A. The Micro Aerial Vehicle Hardware Configuration

Saint Vertigo (Fig. 9) is one of the smallest and fully

self-contained autonomous helicopters in the world capable

of both indoor and outdoor operation. Our unit performs

all image processing and SLAM computations on-board via

a 1GHz CPU, 1GB RAM, and 4GB mass storage. The

MAV can be remotely accessed over a wireless Internet

connection. A 900MHz modem and 2.4GHz manual override

are included for programming and safety purposes. An

additional 2 lbs of payload is available for adaptability

to different mission requirements. In essence, the MAV

features two independent computers. The flight computer

is responsible for flight stabilization, flight automation, and

sensory management, including but not limited to tracking

the time-varying altitude via an ultrasonic altimeter. The

navigation computer is responsible for higher-consciousness

tasks such as image processing, range measurement, SLAM

computations, networking, mass-storage, and possibly, path

planning. The neural pathway linking them is a dedicated

on-board serial communications link, through which the

sensory feedback and supervisory commands are shared;

straightforward directives which are translated into appro-

1572



TABLE I

CPU UTILIZATION OF THE PROPOSED ALGORITHMS

Image Acquisition and Edge Filtering 10%
Line and Slope Extraction 2%
Landmark Extraction 20%†
Helix Bearing 20%†
Ranging Algorithms Below 1%
FastSLAM 50%

priate helicopter responses by the flight computer.

B. Processing Requirements

In order to effectively manage the computational resources

on a lightweight MAV computer, we keep track of the

CPU utilization for the algorithms proposed in this paper.

Table I shows a typical breakdown of the average processor

utilization per one video frame. Each corresponding task,

elucidated in this paper, is visualized in Fig. 2. The numbers

in Table I are gathered after the map has matured. Methods

highlighted with † are mutually exclusive, e.g., the Helix

Bearing algorithm runs only when the MAV is performing

turns, while ranging task is on standby. FastSLAM has a

roughly constant load on the system once the map is popu-

lated. We only consider a limited point cloud with landmarks

in the front detection range of the MAV (see Section IV-

A). The MAV typically operates at 80% utilization range,

with SLAM updates in 15Hz range. It should be stressed

that these numerical figures include generic operating system

kernel processes, some of which are neither associated with,

nor required for the MAV operation. Development of an

application-specific operating system for Saint Vertigo is a

suggested future goal.

VI. CONCLUSION AND FUTURE WORK

While widely recognized SLAM methods such as Fast-

SLAM have been mainly developed for use with laser range

finders, this paper presented new algorithms for monocular

vision based depth perception and bearing sensing integrated

with 3D SLAM. Our algorithms are shown to be capable of

adapting to various situations (e.g., turns, external objects,

and time-varying altitude). Further, the proposed monocular

vision SLAM method does not need initialization procedures.

The system is only limited by the capabilities of the camera

all of which can be overcome with the proper use of

lenses and higher fidelity imaging sensors. In this study, we

have used a consumer-grade USB camera. A purpose-built

camera is suggested for future work to allow development of

efficient vision SLAM and data association algorithms that

take advantage of the intermediate image processing data.

Our future vision-based SLAM and navigation strategy for

an indoor MAV helicopter through a building also includes

the ability to recognize staircases, and thus traverse multiple

floors to generate a comprehensive volumetric map of the

building. Considering our MAV helicopter is capable of

outdoor flight, we can extend our method to the outdoor

perimeter of buildings and similar outdoor urban environ-

ments by exploiting the similarities between hallways and

downtown city maps.
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