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Combined antiretroviral therapy (cART) extends the lifespan and the quality of life for HIV-infected persons but does not
completely eliminate chronic immune activation and inflammation. The low level of chronic immune activation persisting during
cART-treated HIV infection is associated with the development of diseases which usually occur in the elderly. Although T-cell
activation has been extensively examined in the context of cART-treated HIV infection, monocyte activation is only beginning
to be recognized as an important source of inflammation in this context. Here we examine markers and sources of monocyte
activation during cART-treated HIV infection and discuss the role of monocytes during cardiovascular disease, HIV-associated
neurocognitive disorder, and innate immune aging.

1. Introduction

The introduction of combination antiretroviral therapy
(cART) has dramatically increased survival of HIV-infected
persons [1, 2]. Once only widely available in high-income
countries, access to cART has steadily increased over the
last decade in low- and middle-income countries where the
majority of HIV-infected persons live. In 2011, for the first
time cART became available to the majority (54%) of HIV-
infected persons eligible for treatment in low- and middle-
income countries, with the percentage of cover expected to
continue to increase in the coming years [3].

Due to improved access and adherence to cART, it is
predicted that most HIV-infected persons worldwide will
live longer, healthier lives. However, recent observations have
identified that effectively treated HIV-infected persons do

not live as long as age-matched HIV-uninfected persons
[4]. The cause of death for most HIV-infected persons
has changed from AIDS-related opportunistic infections to
chronic diseases with an inflammatory pathogenesis usually
associated with the elderly [5]. The premature onset and
increased risk of these inflammatory age-related diseases are
associated with low levels of chronic immune activation that
persist during cART treatment, a process that is believed to
contribute to serious non-AIDS events (SNAEs). While most
research examining chronic immune activation has focused
on activation of T cells, the role of activated monocytes in
promoting chronic inflammation during cART-treated HIV
infection has been less thoroughly investigated.

Recent studies indicate that inflammatory mediators
produced by monocytes, but not T-cell activation, predict
SNAEs in virologically suppressed HIV-infected persons
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treated with cART [6, 7], demonstrating the important role
of monocyte activation during cART-treated HIV infection.
In these studies, the level of IL-6, a cytokine produced
at high levels by monocytes that can also be produced at
lower levels by other cell types in certain circumstances
[8], was associated with increased odds of SNAE and death
but not the percentage of activated CD4 and CD8 T cells
(those expressing CD38 or CD38 and HLA-DR). These
recent studies suggest that monocytes are a major source
of inflammation in virologically suppressed persons treated
with cART.

2. HIV Associated Comorbidities
in the cART Era

Many of the diseases observed in cART-treated HIV-infected
persons show similarities with chronic inflammatory disor-
ders and diseases that predominantly occur in the elderly,
such as cardiovascular disease (CVD), neurocognitive dis-
orders, non-AIDS cancers, osteoporosis, and frailty. While
the mechanisms defining these similarities have not been
elucidated, it is believed that chronic inflammation, which
remains a constant between these diseases, contributes to
SNAEs caused by these diseases. Monocytes are chronically
activated during HIV infection, and a large body of evidence
now suggests that activated monocytes in the context of HIV
infection are major mediators for the development of CVD,
neurocognitive disorder, and aging of the innate immune
system.

2.1. Cardiovascular Disease. CVD has emerged as one of the
leading causes of death among HIV-infected persons in the
cART era [5, 9]. HIV-infected persons are at an increased risk
for developing CVD compared to HIV-uninfected controls,
withHIV-infected cART-treated persons having a greater risk
of developing CVD than treatment-naı̈ve HIV-infected per-
sons [10, 11]. The monocyte markers CD11b and CX3CR1 are
associated with subclinical atherosclerosis in HIV-infected
persons treated with cART [12], indicating an important role
for monocytes in promoting CVD for these persons.

CVD-related deaths in the general population aswell as in
HIV-infected persons are attributed to underlying atheroscle-
rosis, a disease in which monocytes play a central role. One
of the earliest events in the development of atherosclerosis is
mediated by activation of endothelial cells lining the wall of
blood vessels [13], a process that is promoted byHIV infection
[14]. Endothelial cell dysfunction leads to the recruitment and
accumulation of circulating monocytes in the subendothelial
lining. Once in the vessel wall, monocytes differentiate into
macrophages that produce a number of proinflammatory
mediators, some of which recruit additional monocytes to
the lesion [15–19]. Macrophages in the vessel wall take
up high levels of the cholesterol-rich particle low-density
lipoprotein (LDL), causing cholesterol to accumulate under
conditions of elevated LDL [20].The accumulation of choles-
terol in macrophages reduces their ability to emigrate out
of atherosclerotic plaques [21] and can induce macrophage
necrosis, resulting in a cholesterol-rich necrotic core that is

prone to rupture and causes a deleterious clinical event [22,
23]. Elevated plasma LDL strongly predicts coronary artery
disease and is the primary target for cholesterol-lowering
therapies [24]. Treatment of HIV infection with cART
may cause elevations in LDL-cholesterol [25–27] and can
be associated with increased risk of cardiovascular disease
compared to treatment-näıve and HIV-uninfected persons
[10]. Certain protease inhibitors and nonnucleoside reverse
transcription inhibitors are associated with elevated LDL-
cholesterol, with some protease inhibitors associated with
greater LDL-cholesterol elevations and risk of cardiovascular
disease [10, 28, 29].

High-density lipoprotein (HDL) can remove cholesterol
frommacrophages using cell surface cholesterol transporters.
However, during conditions of elevated LDL, as observed
during cART-treated HIV infection [25–27], the rate of
LDL-derived cholesterol accumulation in macrophages can
be greater than cholesterol removal by HDL, resulting in
net cholesterol accumulation in the vessel wall. Further
favoring macrophage cholesterol accumulation, removal of
macrophage cholesterol by HDL may be hampered during
HIV infection, as cholesterol removal from HIV-infected
human macrophages by HDL is impaired due to decreased
levels and functionality of the cholesterol transporter ABCA1
[30]. AlthoughHIV-infectedmacrophages within atheroscle-
rotic plaque have been identified in HIV-infected individuals
treated with cART [30], it is unclear if ABCA1-mediated
cholesterol efflux from macrophages is also impaired in vivo.
SIV-infected macaques fed an atherogenic diet have dysfunc-
tional HDL that is likely mediated by nef downregulation of
macrophage and liver ABCA1 [31], suggesting that inhibition
ofABCA1-mediated cholesterol efflux frommacrophages also
occurs in vivo.

Most deaths attributable to atherosclerosis are due to
thrombus formation. During cART-treated HIV infection,
monocytes are chronically activated and can produce factors
that stimulate thrombosis. When monocytes are activated in
vitro with lipopolysaccharide (LPS), they produce micropar-
ticles that stimulate formation of the clotting factor fibrin
[32]. Tissue factor is a clotting factor expressed on leukocytes
that can also initiate thrombus formation. HIV-infected
persons show an association between monocyte expression
of tissue factor and the coagulopathy marker D-dimer [33,
34], providing evidence that monocytes may facilitate a pro-
thrombotic environment. When peripheral blood monocyte
subsets of HIV-uninfected and cART-treated HIV-infected
patients with viral loads <400 copies/mL are compared, an
increased percentage of nonclassical and intermediatemono-
cytes expressing tissue factor are observed in HIV-infected
patients [35]. In HIV-uninfected individuals with coronary
heart disease, both nonclassical and intermediate monocyte
subsets show increased platelet aggregation compared with
healthy controls [36], demonstrating the prothrombotic role
of these monocyte subsets.

Macrophages take up high levels of glucose in atheroscle-
rotic plaques to facilitate the production of proinflammatory
mediators [37]. In vivo plaque-resident macrophages take up
the glucose imaging agent 18fluorodeoxyglucose, a process
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used to identify atherosclerotic plaques with an inflamma-
tory phenotype [37]. In HIV-infected patients treated with
cART, 18fluorodeoxyglucose accumulates at higher levels
in the ascending aorta and carotid arteries compared to
HIV-uninfected controls [38, 39], with aortic uptake of
18fluorodeoxyglucose associated with the macrophage spe-
cific marker soluble CD163 [39]. These studies suggest
that glucose uptake by macrophages may contribute to the
increased cardiovascular disease risk associated with HIV-
infected patients treated with cART. We recently identified
intermediate (CD14++CD16+) monocytes expressing glu-
cose transporter 1 (Glut1) as being significantly elevated in
blood from HIV-infected individuals compared with HIV-
uninfected individuals, regardless of cART treatment status
[40]. These Glut1+ intermediate monocytes are activated
[40], take up high levels of glucose [40], and retain Glut1
expression when differentiated intomacrophages (Palmer CS
and Crowe SM, unpublished observation). As Glut1 mRNA
levels in atherosclerotic plaques predict accumulation of
18fluorodeoxyglucose [41], our results suggest that Glut1+
intermediate monocytes may be important mediators of
cardiovascular disease.

2.2. HIV-AssociatedNeurocognitive Disorder. HIV-associated
neurocognitive disorder (HAND) is a term that encompasses
varying degrees of neurological impairment, from asymp-
tomatic neurocognitive impairment to mild neurocognitive
impairment and the most severe, HIV-associated dementia
(HAD). Although cART has substantially reduced severe
neurological impairment [42], milder forms of HAND con-
tinue to occur in up to fiftypercent ofHIV-infected persons in
the cART era [42–46].This neurological impairment persists
despite virologically suppressive cART treatment and can
lead to non-AIDS neuropsychiatric events even with CD4
counts >500 cells/mm3 [47].

The main HIV-infected cell type in the brain is macro-
phages [48, 49]. As the blood brain barrier is a highly selective
barrier for solutes to traverse [50], it was initially proposed
[51] and is now widely believed that HIV-infected monocytes
traversing the blood brain barrier are a major source of HIV
found in the brain [52].Macrophages are in close proximity to
the vasculature, and fluorescently labeledmonocytes injected
into acutely SIV-infected rhesus macaques accumulate in the
brain and coincide with SIV detection in the brain [53].

Monocytes can remain productively infected with HIV
during cART treatment [54–56] and are likely to represent
a source of HIV found within the brain of HIV-infected per-
sons treated with cART. HIV-infected monocytes that enter
the brain are thought to give rise to perivascularmacrophages
which are commonly infected with HIV. Microglia are less
commonly infected than perivascular macrophages and arise
from different cell precursors [49, 57–59]. The level of HIV
DNA in monocytes, but not plasma viral load or CD4 count,
is associated with HAND for HIV-infected persons before
and after cART treatment [60], with the association persisting
at 3.5 years after cART initiation [61]. It is likely that some
of these HIV-infected monocytes harboring HIVDNA could
cross the blood brain barrier, contributing to the persistent

presence of HIV-infected cells in the brain. As HIV-infected
persons treated with cART show preferential HIV infection
in CD16+ proinflammatory monocytes compared to CD16−
monocytes [62], CD16+monocytes could be a source of HIV-
infectedmonocytes in the brain. In these experiments, T cells
fromPBMCwere removed bymagnetic beads prior tomono-
cyte isolation, making it unlikely that T-cell contamination
could explain the presence of HIV in monocytes. Although
several studies suggest that HIV-infected monocytes can
introduce HIV into the brain, this has not been conclusively
demonstrated.

After HIV-infected persons are treated with cART,
immune activation is decreased considerably but remains ele-
vated comparedwithHIV-uninfected persons [63]. Activated
macrophages produce themonocyte-derived immune activa-
tion marker neopterin, a molecule thought to participate in
maintaining reactive oxygen and nitrogen products produced
bymacrophages [64, 65]. cART-treatedHIV-infected persons
with complete viral suppression for ≥3.5 years have elevated
levels of cerebral spinal fluid neopterin compared with HIV-
uninfected controls [66], indicating persistent low levels of
macrophage activation in the central nervous system. Infec-
tion of monocytes with HIV or stimulation by gp120 causes
monocytes to produce neurotoxic factors that interact with
neuronal N-methyl-D-aspartate receptors [67, 68]. Neuronal
stimulation of N-methyl-D-aspartate receptors can result in
neuron death by apoptosis or necrosis [69]. In addition,
HIV production by macrophages in the brain also results in
neuronal toxicity, as several HIV components can interact
with neurons and cause toxicity [70–72].

2.3. Innate Immune Aging. Chronic immune activation
causes monocytes to become dysfunctional and share char-
acteristics of monocytes from the elderly. In a recent study by
Martin and colleagues, proinflammatory cytokines produced
by monocytes and markers of immune aging were shown
to be elevated in age-matched HIV-infected women (87% of
whom were receiving cART treatment) compared to HIV-
uninfected women [73]. The levels of these cytokines and
markers of immune aging were comparable to the levels seen
in HIV-uninfected women 10.6–14.5 years older, demonstrat-
ing that HIV-infected persons display an aged phenotype
[73].

In young HIV-infected women there are an increased
proportion of CD16+ proinflammatory monocytes, similar
to that observed in HIV-uninfected women 10.6 years older
[73]. Young HIV-infected males, both treated and untreated,
have increased plasma levels of the inflammatory biomarkers
neopterin, sCD163, and CXCL10 when compared to age-
matched HIV-uninfected males [74]. The levels of these
inflammatorymolecules in young treated anduntreatedHIV-
infectedmales are comparable to the levels seen in olderHIV-
uninfected men, indicating that accelerated innate immune
aging induced by HIV infection is not restored by cART
[74]. Similar to what is seen in the elderly, monocytes in
blood from young HIV-infected men have impaired phago-
cytosis and shortened telomeres implicating accelerated
innate immune aging that might underlie the dysfunction of
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monocytes in the setting of HIV infection [74].The “aging” of
monocytes during HIV infection, even during virologically
suppressive cART treatment, is likely to contribute to the
development of premature age-related diseases.

3. Monocyte Parameters of
Systemic Inflammation

The detection of biological markers that identify cART-
treated HIV-infected individuals with increased risk of
comorbid disorders is useful for the management of these
disorders. Recent work has identified biological markers
associated with monocytes and/or macrophages that predict
non-AIDS mortality.

3.1. Interleukin-6. Interleukin-6 (IL-6) is a proinflammatory
cytokine produced by monocytes and macrophages dur-
ing trauma, infection, and stress that instigate acute-phase
protein production and inflammation [8]. Both untreated
and cART-treated HIV-infected persons have elevated levels
of IL-6 [63, 75], with elevated IL-6 levels associated with
increased risk of all-cause mortality and death due to CVD
in HIV-infected persons [34]. Monocytes from HIV-infected
persons at risk for CVD produce higher levels of IL-6
compared with HIV-uninfected persons at risk for CVD
[76], providing a potential explanation for the inflammatory
pathogenesis and related increased CVD risk associated with
HIV infection. The association of IL-6 with increased risk of
CVD for HIV-infected persons is independent of other risk
factors and higher levels of IL-6 are associated with a hazard
ratio higher than for levels of other inflammatory markers
such as hsCRP and D-dimer [77]. In addition to CVD,
persons with HAND have elevated IL-6 levels in cerebral
spinal fluid that remains elevated 12 weeks after initiation of
cART [78]. The elevated levels of IL-6 observed during HIV
infection are also observed in the elderly [79], suggesting that
low levels of chronic inflammation and chronic production
of IL-6 could lead to immunosenescence observed during
normal aging as well as in chronic HIV infection. As lym-
phocytes are activated by IL-6 [80], it is possible that chronic
stimulationwith IL-6 could lead to immunosenescence. Con-
sistent with this idea, elderly persons with elevated IL-6 levels
have decreased responsiveness to vaccination compared to
elderly persons with lower levels of IL-6 [81]. However, it is
currently unresolved whether IL-6 is a cause or consequence
of immunosenescence.

3.2. Soluble CD14. CD14 is a coreceptor expressed predom-
inantly on monocytes and macrophages that together with
TLR4 recognize LPS and other pathogen-associated molec-
ular pattern molecules. After activation, monocytes produce
soluble CD14 (sCD14) by enzymatic shedding of CD14 from
the plasma membrane [82]. Plasma levels of sCD14 are
significantly elevated in HIV-infected persons, regardless
of cART treatment status, compared with healthy controls
[83, 84]. The plasma level of sCD14 in HIV-infected per-
sons is an independent predictor of mortality and corre-
lates with levels of the inflammatory molecules IL-6, CRP,

serum amyloid A, and D-dimer [85]. Plasma sCD14 levels
in HIV-infected persons also correlate with carotid artery
intima-media thickness (a measurement of atherosclerosis)
independent of HIV infection and type of antiretroviral
therapy [86]. In addition to cardiovascular disease, increased
plasma levels of sCD14 have been shown to be associated
with neurological impairment in HIV-infected individuals
as assessed by formal neurological testing and evaluations
[75]. Although sCD14 is produced by activated monocytes,
hepatocytes also secrete sCD14 as an acute-phase protein
[87].Therefore, measurement of plasma sCD14may not be an
exclusive representation of the levels of monocyte activation,
a factor that should be considered when utilizing this plasma
marker.

3.3. Soluble CD163. CD163 is a hemoglobin scavenger recep-
tor expressed exclusively on monocytes and macrophages.
Activation of monocytes and macrophages with LPS and
other stimuli causes CD163 to be shed from the cell surface
in a soluble form, referred to as soluble CD163 (sCD163) [88].
As sCD163 is shed only frommononuclear phagocytes, it is a
specific activation marker for these cells. Although sCD163
is associated with monocyte activation and inflammatory
diseases, it has anti-inflammatory effects and is believed
to be involved in resolving inflammation [88]. Compared
withHIV-seronegative controls, plasma sCD163 is elevated in
chronically HIV-infected persons before ART and is reduced
3 months after ART, but at levels that are elevated compared
to controls [89]. Plasma sCD163 is also increased during
acute HIV infection compared to HIV-seronegative controls
though at lower levels than chronic infection [89]. In acutely
infected patients treatedwith cART for threemonths, sCD163
levels are similar to those in HIV-seronegative controls [89],
suggesting that early cART initiation can limit mononuclear
phagocyte activation.

Elevated levels of sCD163 are observed in several comor-
bidities associated with cART-treated HIV infection. Plasma
sCD163 is associated with an increased prevalence of
atherosclerotic plaques in cART-treated HIV-infected per-
sons with undetectable HIV RNA, a relationship that is not
observed in HIV-negative controls matched for cardiovascu-
lar risk factors [90]. The authors suggest that activation of
mononuclear phagocytes during HIV infection could cause
a unique atherosclerotic plaque phenotype not observed in
HIV-uninfected persons. In support of this, young (23–32
years old) HIV-infected persons show a unique atheroscle-
rotic plaque phenotype that resembles a phenotype observed
in patients that rejected cardiac transplant [91]. cART-treated
HIV-infected patients with HAND have elevated levels of
plasma sCD163 compared with HIV-infected controls with-
out HAND [92], indicating an important role of activated
mononuclear phagocytes during HAND. Finally, elevated
levels of sCD163 occur at an earlier age in HIV-infected
women than in uninfected women [73], suggesting that
chronic mononuclear phagocyte activation is a mediator of
immunosenescence.
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4. Sources of Monocyte Activation

The source of chronic inflammation observed during cART-
treated HIV infection has been an area of intense research
in recent years, as it is believed to be the underlying cause
for the increased risk of SNAEs that are progressively seen
in clinics caring for HIV-infected persons treated with cART.
Three major mechanisms have been proposed to explain the
persistently high levels of inflammation inHIV-infected indi-
vidual on antiretroviral treatment: (1) increased microbial
translocation through the compromised intestinal mucosa,
(2) residual HIV viremia, and (3) coinfection with human
cytomegalovirus (HCMV) and other pathogens. Each of
these mechanisms is associated with monocyte activation
that is likely to contribute directly to SNAEs or indirectly
by induction of innate immune aging (Figure 1). Microbial
translocation, residual HIV viremia, and coinfection with
pathogensmay be codependent processes. For example, coin-
fecting pathogens and products frommicrobial translocation
could activate HIV-infected cells to produce low levels of
HIV that contribute to residual viremia present in HIV-
infected persons treated with cART, and residual viremia
and coinfecting pathogens could contribute to damage of the
intestinal mucosa, enhancing microbial translocation.

4.1. Microbial Translocation. During acute HIV infection
there is a dramatic depletion of gut CD4 T cells, resulting in
increased permeability of the gutmucosal barrier that persists
during chronic untreated HIV infection and also during
cART treatment [93, 94]. This increased gut permeability
allows bacterial components such as the Gram-negative
bacterial cell wall component LPS to become elevated in the
plasma of both untreated and cART-treated HIV-infected
persons compared to HIV-uninfected controls [93]. Elevated
plasma levels of LPS duringHIV infection results in increased
plasma sCD14, signifying that circulating monocytes are
chronically activated by LPS [93]. This increase in sCD14
is positively correlated with LPS levels, suggesting that
monocyte activation by LPS is likely responsible for sCD14
production [93]. Activation of monocytes by LPS also causes
increased levels of sCD163 [88], a mononuclear phagocyte
activation marker that is elevated in untreated and cART-
treated HIV-infected persons compared to HIV-uninfected
controls [89]. These observations indicate that microbial
translocation is likely to be a key inducer of monocyte acti-
vation and chronic low level systemic inflammation observed
in individuals infected with HIV.

Activation of monocytes by LPS may be exacerbated
due to alterations in HDL levels that are associated with
HIV infection. Plasma lipoproteins bind LPS, the majority of
which is bound to HDL [95]. HDL binding of LPS neutralizes
the stimulatory activity of LPS towards monocytes in vitro
[96], and LPS treatment of persons with low HDL levels
is associated with higher levels of inflammatory mediators
compared to personswith higherHDL levels treatedwith LPS
[97]. These data indicate that HDL can limit inflammation
induced by LPS. As cART-treated HIV-infected men and
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Figure 1: Microbial translocation, residual HIV replication, and
coinfections such as HCMV cause persistent monocyte activation
and contribute to chronic inflammation inHIV+ individuals receiv-
ing antiretroviral therapy. This results in innate immune aging
and may influence the development of age-related diseases. Image
created by http://nice-consultants.com/.

certain cART-treated HIV-infected women have decreased
HDL-cholesterol levels [26, 98], the level of neutralized
plasma LPS may be limited in these persons.

In addition to the activation of circulating monocytes,
microbial translocation induces the accumulation of proin-
flammatory, functionally impaired macrophages within the
subepithelium of the gut in untreated HIV-infected individ-
uals [99]. These macrophages show increased expression of
proinflammatory cytokines and chemokines and are unable
to phagocytose microbes or microbial products [99]. The
inflammatory characteristics of thesemacrophagesmay exac-
erbate microbial translocation since the proinflammatory
cytokines they produce can increase gut epithelial perme-
ability and thereby allowmicrobes and microbial products to
cross the mucosal barrier [99].
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4.2. Residual HIV Viremia. The introduction of cART has
resulted in frequent reduction ofHIV viremia to undetectable
levels as assessed by conventional techniques. The SMART
study highlighted that intermittent cART resulted in elevated
inflammation and higher mortality and morbidity among
HIV-infected persons who ceased therapy when compared to
those receiving continuous cART [34, 100]. This underscores
the significance of suppressed viral replication and repression
of inflammation in the management of persons infected with
HIV [100].

Ultrasensitive assays capable of detecting HIV in plasma
at 1 copy/mL have demonstrated that low levels of HIV
viremia continue to occur in individuals with virologic
suppression (i.e., <50 copies/mL) during cART [101–103].
Raltegravir intensification, introduced in patients to suppress
residual viremia, resulted in lower plasma levels of the inflam-
matory procoagulant marker D-dimer in some treated HIV-
infected individuals compared to patients receiving placebo,
illustrating a potential link between low level viral replication
and inflammation [104]. However, residual viremia is unaf-
fected by raltegravir intensification [105]. It therefore remains
unclear if the residual viremia that occurs in virologically
suppressed HIV-infected persons treated with cART is due
to HIV replication or production (i.e., generation of new
viruses without completion of the replication cycle) [106].
Regardless of the mechanism of residual HIV viremia, it is
likely to be a chronic source of monocyte activation because
many components of HIV induce monocytes to produce
proinflammatory molecules [107–109].

4.3. Coinfections. Most HIV-infected persons are latently
infected with HCMV and are able to effectively control
this virus [2, 110, 111]. However, it is now clear that HIV-
infected persons invest a considerable immune response to
limit pathogenesis of HCMV even when HIV replication is
controlled by cART. For example, the percentage of HCMV-
specific CD8 T-cell clones in HIV-infected persons treated
with cART is twice that of HIV-uninfected persons [112],
indicating an important role of the cellular immune response
in controlling HCMV replication. Although HCMV has a
broad cell tropism, monocytes are believed to be important
at disseminating HCMV to tissue as they migrate with latent
virus and produce virus during differentiation [113, 114].
When infected with HCMV, monocytes become activated
and proinflammatory genes are upregulated [115, 116].

HIV-infected persons treated with cART are also com-
monly infected with herpesviruses other than HCMV that
can also establish latency. Epstein-Barr virus (EBV), human
herpesvirus 8 (HHV-8), and herpes simplex virus type 1 are
more commonly detected in the saliva of cART-treated HIV-
infected persons compared to HIV-uninfected controls [117].
Monocytes can be infected with EBV which causes reduced
phagocytic functionality [118, 119], and stimulation of mono-
cyte TLR2 by EBV promotes induction of cytokine secretion
[119]. HHV-8 can infect monocytes and macrophages and
establish productive infection when stimulated with inflam-
matory cytokines [120–122], and HHV-8 infection induces

upregulation of monocyte TLR3 and production of inflam-
matory cytokines [123]. HSV-1 can also infect monocytes and
macrophages, which produce inflammatory cytokines when
exposed to HSV-1 [124, 125]. Though not directly examined,
herpesvirus coinfection is therefore likely to be a source of
chronic monocyte activation in the context of cART-treated
HIV infection.

5. Conclusion

With the majority of cART-eligible HIV-infected persons
now receiving treatment, SNAEs have increased and are one
of the greatest health concerns for HIV-infected persons. In
HIV-infected persons treated with cART, monocytes are an
important source of proinflammatory mediators associated
with cardiovascular disease, HIV-associated neurocognitive
development, and innate immune aging. It remains to be
determined if monocytes are also mediators of other pre-
mature age-related diseases such as non-AIDS cancer and
liver diseases that cART-treated HIV-infected persons are
at an increased risk for developing. With sources of mono-
cyte activation and identification of monocyte activation
pathways emerging in recent years, therapeutically targeting
sources and pathways of monocyte activation could be a
useful strategy to limit immune activation associated with
the premature development of age-related diseases for HIV-
infected persons treated with cART.
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