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Until recently, First-Order Temporal Logic (FOTL) has been only partially understood. While it is
well known that the full logic has no finite axiomatisation, a more detailed analysis of fragments of
the logic was not previously available. However, a breakthrough by Hodkinson et.al., identifying a
finitely axiomatisable fragment, termed the monodic fragment, has led to improved understanding
of FOTL. Yet, in order to utilise these theoretical advances, it is important to have appropriate
proof techniques for this monodic fragment.

In this paper, we modify and extend the clausal temporal resolution technique, originally devel-
oped for propositional temporal logics, to enable its use in such monodic fragments. We develop
a specific normal form for monodic formulae in FOTL, and provide a complete resolution calculus
for formulae in this form. Not only is this clausal resolution technique useful as a practical proof
technique for certain monodic classes, but the use of this approach provides us with increased
understanding of the monodic fragment. In particular, we here show how several features of
monodic FOTL can be established as corollaries of the completeness result for the clausal tempo-
ral resolution method. These include definitions of new decidable monodic classes, simplification
of existing monodic classes by reductions, and completeness of clausal temporal resolution in the
case of monodic logics with expanding domains, a case with much significance in both theory and
practice.

Categories and Subject Descriptors: FAMATHEMATICAL LOGIC AND FORMAL LANGUAGES]:
Mathematical Logic—Femporal logi¢c F.4.1 MATHEMATICAL LOGIC AND FORMAL LANGUAGES:
Mathematical Logic—Mechanical theorem provindg.2.3 [ARTIFICIAL INTELLIGENCE]: Deduction and
Theorem Proving-Resolution

General Terms: Theory, Algorithms, Verification

Additional Key Words and Phrases: Temporal Logic, Automated Theorem Proving, Resolution

1. INTRODUCTION

Temporal Logic has achieved a significant role in Computésr®e, in particular, within
the formal specification and verification of concurrent amstributed systems [Pnueli
1977; Manna and Pnueli 1992; Holzmann 1997]. While FirdigdrTemporal Logic
(FOTL) is a very powerful and expressive formalism in which thec#fjpmtion of many
algorithms, protocols and computational systems can kengat the natural level of ab-
straction, most of the temporal logics used remain esdbmi@positional. The reason for
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this is that it is easy to show thROTL is, in general, incomplete (that is, not recursively-
enumerable [Szalas and Holenderski 1988]). In fact, uatiently, it has been difficult
to find any non-trivial fragment ofF OTL that has reasonable properties. A breakthrough
by Hodkinsonet. al.[Hodkinson et al. 2000] showed thatonodicfragments ofFOTL
could be complete, even decidable. (In spite of this, thetaddof equality or function
symbols can again lead to the loss of recursively enumésafibm these monodic frag-
ments [Wolter and Zakharyaschev 2002a; Degtyarev et aR]200

Following the definition of the monodic fragment, work arghg and extending this
fragment has continued rapidly, and holds great promiserfforeasing the power of
logic-based formal methods. However, until recently, ¢hetere no proof techniques
for monodic fragments oFOTLs. Although a tableaux based approach was proposed
in [Kontchakov et al. 2004], we here provide a complete ngsmh calculus for monodic
FOTL, based on our work on clausal temporal resolution over a mumbyears [Fisher
1991; Fisher et al. 2001; Degtyarev and Fisher 2001; Degtyetral. 2002; 2003b]. The
clausal resolution technique has been shown to be one of dis¢ effective proof tech-
niques for propositional temporal logics [Hustadt and Ko@26803], and we have every
reason to believe that it will be as least as successful ircttse ofFOTL; this paper
provides the key formal background for this approach.

The structure of the paper is as follows. After a brief introtion toFOTL (Section 2),
we define a normal form that will be used as the basis of théutsn technique and show
that any monodic temporal problem can be transformed irgmtrmal form (Section 3).
In Section 4 we present the temporal resolution calculus en8ection 5, we provide
detailed completeness results.

In Sections 6 and 7, we adapt the resolution technique to éauwf variations of
monodicFOTL, whose completeness follows from the corresponding atlaptaf the
completeness results given in Section 5. Thus, in SectiaveGyrovide an extension of
the monodic fragment (as defined in [Hodkinson et al. 2000 &an Section 7, we restrict
first-order quantification in a number of ways to provide sldsses which admit simplified
clausal resolution techniques.

In the penultimate part of the paper, we examine resulttimgléo the practical use of the
clausal resolution calculus. The first such aspect conakrcigiability, which we consider
in Section 8. An appropriateop searchalgorithm is required for implementation of the
clausal resolution technique, and the definition and cotapéss of such an algorithm is
examined in Section 9. In order to develop a practical clagsolution system, as well
as examining a fragment with important applications andmpbfied normal form, we
present results relating to resolution over the monodigrrant withexpanding domains
in Section 10. This provides the basis for the system cugréeing implemented [Konev
et al. 2003b].

Finally, in Section 12, we present conclusions and outlimefature work.

2. FIRST-ORDER TEMPORAL LOGIC

First-Order (linear time) Temporal Logi€OTL, is an extension of classical first-order
logic with operators that deal with a linear and discrete et@d time (isomorphic taN,
and the most commonly used model of time).
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2.1 Syntax of FOTL

The first-order temporal language is constructed in a standay [Fisher 1997; Hodkin-
son et al. 2000] from:

e predicate symbol#;, P, ... each of which is of some fixed arity
(N.B., null-ary predicate symbols are callpposition$;

e individual variablesry, z1, .. .;

e individual constantgg, ¢, . ..
(N.B., there is no equality operator defined and, while camistare present, no other
function symbols are allowed in thiEDTL language);

e boolean operators\, —, Vv, =, = true (‘true’), false (‘false’); quantifiersvV and 3;
together with

e temporal operatorg | (‘always in the future’){ (‘sometime in the future’)Q (‘atthe
next moment’)U (until), andW (weak until).

Definition 2.1 Atomic Formulae and LiteralsAn atomic formulaof FOTL is defined
as P(ty,...,t,), whereP is a predicate symbol with arity, and each; is either an
individual constant or an individual variable. l&eral is either an atomic formula or the
negation of an atomic formula.

Definition 2.2 Well-Formed Formulae The set ofwell-formed formulaeof FOTL,
WFFroTL is defined as follows:

e false, trueand any atomic formula is iWFFroTL ;

e if Aisin WFFroTL thenso aren4, 0 A, [ 1A, andO A;

e if Ais in WFFroTL and z is an individual variable, thelvzA and 3z A are also in
WFFFOTL;

e if AandB are inWFFroT. thenso aredV B, AANB, A = B, A = B, AUB, and
AWB.

For a given formulag, const(¢) denotes the set of constants occurring.iWe write¢(z)
to indicate thaty(z) hasat most ondree variabler (if not explicitly stated otherwise). As
usual, eclosed formulaés one with no free variables.

From now on, we deal exclusively with well-formed formuldeF® TL.

2.2 Semantics of FOTL

Formulae inFOTL are interpreted idfirst-order temporal structuresf the form9t =
(D, I), whereD is a non-empty set, thdomainof 91, and! is a function associating with
every moment of timep € IN, an interpretation of predicate and constant symbols bver
We require that the interpretation of constantsggd. Thus, for every constamtand all
moments of time, j > 0, we havel;(c) = I;(c). The interpretation of predicate symbols
is flexible.

A (variable) assignment over D is a function from the set of individual variablesin
For every moment of timey, there is a correspondiriigst-order structuredt,, = (D, I,,),
wherel,, = I(n). Intuitively, FOTL formulae are interpreted in sequencesnafrlds
Moy, My, ... with truth values in different worlds being connected by meaf temporal
operators.

3



Thetruthrelationdt,, = ¢ in a structureédt, for an assignmernt, is defined inductively
in the usual way under the following understanding of terapoperators:

M, =° true, M,, £° false

M, =* P(t1,. . tm) ff (I3(t1),...I%(tm)) € I,(P), where
It (t;) = In (t;), if t; is a constant, and
:;(t ) = a(t;), if ¢; is a variable

M, = —¢ iff o, £ ¢

M, E*dAY iff 9, =* ¢ andM,, =* ¢

M, E* VY iff n\— pordM, =*¢

My ¢ =1 iff 9, =7 (- Vi)

M, = =1 iff M, = (6= ) A (¢ = ¢))

M, = O iff oM, =2 0

M, = O iff there existsn > n such thatit,, = ¢;

m, = ¢ iff forall m > n, M,, =* ¢;

M, =* (pU) iff there existsm > n, such thabit,, =* ¢,

and for alli € N, n < i < m impliesd,, =° ¢;
M, =* (¢We)) iff 9, [=* (pUy)) or M, |=°

M is amodelfor a formulag (or ¢ is true in 1) if there exists an assignmemsuch that
My =* ¢. Aformula issatisfiableif it has a model. A formula izalid if it is true in any
temporal structure under any assignment. We say that a farmis alogical consequence
of formula ¢, denotedy |= v, if for every structuredt such thathit = ¢ we also have
M = o

This logic is complex. Itis known that even “small” fragmefFOTL, such as thevo-
variable monadidragment (all predicates are unary), are not recursivelyrerable [Merz
1992; Hodkinson et al. 2000]. However, the set of vatidnodicformulae is known to be
finitely axiomatisable [Wolter and Zakharyaschev 2002a].

Definition 2.3Monodic Formula An FOTL-formula ¢ is calledmonodicif any sub-
formulae of the form7 v, whereT is one of O, [ ], O (or ¢ T, whereT is one ofU,
W), contains at most one free variable.

Example2.4. The formulae
Ve[ J3yP(x,y) and Vz[ ]P(z,c)
are monodic, whereas the formula

Vo, y(P(z,y) = LP(x,y))
is non-monodic.

The addition of either equality or function symbols to thenadic fragment leads to the
loss of recursive enumerability [Wolter and Zakharyasch@02a]. Moreover, it was
proved in [Degtyarev et al. 2002] that tihwo variable monadic monodic fragment with
equalityis not recursively enumerable. However, in [Hodkinson 300&as shown that
theguarded monodic fragment with equalisydecidable.

3. DIVIDED SEPARATED NORMAL FORM (DSNF)

As in the case of classical resolution, our method works opteral formulae transformed
into a normal form. The normal form we use follows the spifiSeparated Normal Form
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(SNF) [Fisher 1991; Fisher et al. 2001] and First-Order &zted Normal Form (SNF
[Fisher 1992; 1997], but is refined even further.

The development of SNF/SNFRwas partially devised in order to separate past, present
and future time temporal formula (inspired by Gabbay’s safien result [Gabbay 1987]).
Thus, formulae in SNF/SNFcomprise implications with present-time formulae on the
left-hand side and (present or) future formulae on the figirid side. The transforma-
tion of temporal formulae into separated form is based upenviell-knownrenaming
technique [Tseitin 1983; Plaisted and Greenbaum 1986 hwieserves satisfiability and
admits the extension to temporal logic in (Renaming Theasrgisher 1997]).

Another aim with SNF/SNF was to reduce the variety of temporal operators used to
a simple core set. To this end, the transformation to SNF/SiNFolves the removal of
temporal operators representedraximalfixpoints, that is,[ ] andW (Maximal Fixpoint
Removal Theorems [Fisher 1997]). Note that theperator can be represented as a com-
bination of operators based upon maximal fixpoints andjtlo@erator (which is retained
within SNF/SNF). This transformation is based upon the simulation of firg®using
QPTL [Wolper 1982; Kesten and Pnueli 1995].

In the first-order context, we now add one further aim, nanelglivide the temporal
part of a formula and its (classical) first-order part in suey that the temporal part is as
simple as possible. The modified normal form is called Didi&eparated Normal Form
or DSNF for short.

Definition 3.1 Temporal Step Clause®A temporal step clauses a formula either of
the forml = Om, wherel andm are propositional literals, di(z) = O M (z)), where
L(z) andM (z) are unary literals. We call a clause of the the first type aigifwal) ground
step clause, and of the second type an (originah-groundstep clause (Note that the
term ‘original’ here is used to distinguish these clausesifother that are introduced later.)

Definition 3.2DSNFE A monodic temporal problem in Divided Separated Normal
Form (DSNF)is a quadruplél/,Z, S, £), where

(1) the universal part{, is a finite set of arbitrary closed first-order formulae;
(2) theinitial part,Z, is, again, a finite set of arbitrary closed first-order folae

(3) the step partS, is a finite set of original (ground and non-ground) tempatap
clauses; and

(4) the eventuality part;, is a finite set of eventuality clauses of the fofi(x) (anon-
groundeventuality clause) angll (aground eventualitglause), wheréis a proposi-
tional literal andL () is a unary non-ground literal.

The intuition here is that the initial part describes thdiahistate of the temporal model,
the universal part describes the propertiealbftates, the step part describes the required
transitions from one state to the next, and the eventuadityqescribes properties of some
future state.

Note that, in a monodic temporal problem, we disallow twdedént temporal step clauses
with the same left-hand sides. This requirement can beyagasiranteed by renaming. For

IWe could also allow arbitrary Boolean combinations of psifional and unary literals in the right hand side of
ground and non-ground step clauses, respectively, andsallts of this paper would hold. We restrict ourselves
with literals for simplicity of the presentation.
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example, if we have two step clauses

P = 0OQ
P = OR

then we can renamé&) A R’ by a new predicateS’, add the formulaS = (Q A R) to U
and replace the above step clauses by just

P = OS

In what follows, we will not distinguish between a finite séfarmulaeX’ and the conjunc-
tion A X of formulae within the set. With each monodic temporal peoi] we associate
the formula

ITALJUN VS N [IVZE.

Now, when we talk about particular properties of a temporabfem (e.g., satisfiability,
validity, logical consequences etc) we mean properties@associated formula.

Arbitrary monodic first-order temporal formula can be tfansed into DSNF. We
present the transformation as a two stage reduction.

Reduction to conditional DSNF. We first give a reduction from monodic FOTL to a
normal form where, in addition to the parts abowenditionaleventuality clauses of the
form

P(x) = OL(x) andp = 0l

are allowed. The reduction is based on using a renamingiggodto substitute non-atomic
subformulae and replacing temporal operators by their fxcdt definitions described e.g.
in [Fisher et al. 2001]. The translation can be describedrasy@er of steps.

(1) Translate a given monodic formula to negation normahfofTo assist understanding
of the translation, we list here some equivalent FOTL foramedL)

Yz (~Oé(z) = O-¢(2));

Va(-[o(x) = 0-d(x));

Va(=0¢() = -¢(=);

Va(=(o(@)U(r) = —b(x)W(=¢(z) A =¢(x))));
Va(~(6(x)Wih(z)) = ~(2)U(-@(x) A —v(x))).

If the transformations above are applied in a straightfodveay, the size of the result
may grow exponentially; we may have to usmaming[Tseitin 1983; Plaisted and
Greenbaum 1986; Nonnengart and Weidenbach 2001] in ordeetoit linear.

(2) Recursively rename innermost temporal subformul@ep(z), O¢(z), o(x),
¢(2)U(z), ¢(x)We(z) by a new unary predicat®(z). Since subformulae have
positive polarity then, as in the classical case [Tseiti@3tPlaisted and Greenbaum
1986; Nonnengart and Weidenbach 2001], renaming intradimeglicationsP (z) of
the following form [Fisher et al. 2001]:

(a) OVa(P(x) = O(a));
(b) OVe(P(x) = 09(x));
(¢) O¥a(P(z) = [lé(@));
(d) (Va(P(a) = ¢(x)Ut());
(e) [I¥2(P(z) = lx)Wap(x))



Assuming that any required (first-order) renaming of the plemexpression(z) can
be carried ol then formulae of the fornz) and(b) are already in the normal form,
while formulae of the forn{c), (d), and(e) require extra reduction by removing the
temporal operators using their fixed point definitions.

(3) Use fixed point definitions
LIVz(P(z) = [¢(x)) is satisfiability equivalent [Kaivola 1995; Fisher et al0AQ
to

[ IVz(P(z) = R(x))
ALVz(R(z) = OR(x))
ADVa(R(x) = 6(x)).

LIVz(P(x) = (¢(x)Uy(z))) is equivalent (w.r.t. satisfiability) to

OVz(P(z) = 0y())
ALIVz(P(z) = ¢(z) V ¢(z))

ALV (P(z) = (T) ()
AOVz(S(x) = O(o(x) V ()
AOVz(S(z) = O(S(x) V i(2))),

and [ Vz(P(z) = (¢(x)We(z))) is equivalent (w.r.t. satisfiability) to

[IVa(P(z) = ¢(z) V ¢ (x))
ALV (P(z) = () ()

ALV (S(2) = O(4(x) V ¢ (x)))
ALV (S(2) = O(S(2) vV ¢(2))),

whereR(z) andS(x) are new unary predicates.

(x

P
P
S
S

—~ o~

Conditional problemsto unconditional problems. In the second stage, we replace any
formula [Vz(P(x) = OL(z)) by

CVz(((P(x) A =L(z)) = waitforL(x))) 1)
LIV ((waitforL(z) A O-L(x)) = O waitforL(x)) 2
[ IV (Q—waitforL(z)) 3)

wherewaitforL(z) is a new unary predicate. Note that formig can easily be trans-
formed into the required form by moving tii¢ —L(z) subformula across the implication.

LeEmma 3.3. & U {JVz(P(z) = OL(x))} is satisfiable if, and only if,® U
{(1),(2),(3)} is satisfiable.

Proof (=) Lett be a model ofd U {[ IVz(P(z) = OL(z))}. Let us extend this
model by a new predicateaitforl, such that, in the extended modgl’, formulae (1),
(2), and (3) would be true.

Letd be an arbitrary element of the domdn We define the truth value afaitforL(d)
in n-th momenty € N, depending on whethéit = (1O P(d) orM = ¢ 1-P(d).

2The new ‘renaming’ formulae are added to the universal ghis; kind of first-order renaming will be used
implicitly later in this section.
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—Assumedt = [JOP(d). Together withdt |= [Vz(P(z) = OL(z)), and the fact
thatQQ P = QP is an axiom, then the above implies that|= [ JOL(d).
For everyn € N let us put

M, E —waitforL(d) & M, = L(d) (& M, E L(d)).

—Assumedt = ¢ [ ]-P(d). There are two possibilities:

—M = [J=P(d). In this case let us p@t!, = —~waitforL(d) foralln € N.

—There existan € N such thatht,,, = P(d) and, for alln > m, 9, = —~P(d).
These conditions imply, in particular, that theré i m such thatt;, = L(d) if the
formula is satisfiable. Now we defineitforL(d) in 9’ as follows:

M, |= —waitforL(d) & M) = L(d) if 0<n<I,
M. |= —waitforL(d) if n>1.

Itis easy to see thaft’ is the required model.

(«) Let us show that[ [Vz(P(z) = ¢L(x)) is a logical consequence d@f U
{(1),(2),(3)}.
LetM' be amodel ot U{(1), (2), (3)}. By contradiction, suppos®’ £ [ Vz(P(z) =
OL(x)), thatis, ' = ¢Jz(P(x) A J-L(x)). Letm € N be an index and € D,, be
a domain element such thait,, = P(e) and for alln > m, M) |= —L(e)). Then from
(1) and (2) we conclude that for all > m, we havedt), |= waitforL(e)). However, this

conclusion contradicts the formulal VxQ—waitforL(x) which is true ind)t'. a
This leads us to the following theorem.

THEOREM 3.4 TRANSFORMATION. Every monodic first-order temporal formula can
be transformed, in a satisfiability equivalence presenvivay, to DSNF with at most a
linear increase in size of the problem.

Note 3.5. Furthermore, ity is a formula and® is a problem in DSNF obtained from
¢ by the transformations given above, then every model cén beexpandedo a model
of P, and every model oP can bereductedto a model of$, where the notions of an
expansion and reduct are analogous to the once used incelefist-order logic [Gallier
1986].

Example3.6. Letus considerthe temporal formdtal |OVyVz3u ®(z,y, 2z, u) where
®(x,y, z,u) does not contain temporal operators and reduce it to DSM§t, e rename
the innermost temporal subformula by a new predicate,

Jz [P (z) A [IVz[P(z) = OVyVzIu @(z,y, 2, u)].
Now, we rename the firsf"]’-formula and the subformula under thé ‘operator,

JxPs(z) A V[P (z)= QP ()]

A [Vz[Py(z) = VYyVz3u (x,y, 2, u)]
A [Vz[Ps(z)= [P (x)],
8



“unwind” the ‘[]" operator

JxPs(x) A DVT[Pl (z) = OP2(x)]

A [Vz[Py(z) = VyVzIu ®(z,y, 2, u)]
A [Vz[P3(z) = Py(x)]

A T[P4(m) = O Py(z)]

A C¥a(Pi(x) = (o))

and, finally, reduce the conditional eventuality to an urtitional one.
,Pf;(T) :>P4( )]
Py(x)
Py(z) = P (2)]
Py (x) A =Py(z)) = waitforPs(x)]

L IVz[(waitforPy (z) A O—Py(z)) = OQwaitforPs(z)]
LIVzQ—waitforPe (x).

>>>>>> >
L
<
2

The parts of this formula form the following monodic tempgyeoblem (we also rename
the complexPs (x) V waitforPs () expression byPs (z)):

I = {3azPs(x) },

VT(P2(T) = YyVzIu ®(x,y, z,u)),
Vi(Ps(x) = Py(x)),
U = { Va(Pi(x) = Py(2),
VYz((P(z) A =Py(z)) = waitforPs(z)),
Vi (Ps(z) = Py(x) V waitforPgy(x))

_ [ Pu(z) = OPy(z),
S = {w(m‘forPQ( ) = OPs(x )}

& = { O~waitforPy(z) } .

4. TEMPORAL RESOLUTION

As in the propositional case [Fisher 1991; Degtyarev et@22, our calculus works with
merged step clausgbut here the notion of a merged step clause is much more eampl
This is, of course, because of the first-order nature of thblpm and the fact that skolemi-
sation is not allowed under temporal operators. In ordeuitnlhowards the calculus, we
first provide some important definitions.

While the formal definitions of various different forms ofclse are given below, it is
useful to consider a simple example. Imagine we have, amang®original set of step
clauses, the three step clauses:



From these clauses we can derive the ground step clauses

Yo(P(v) V R(v) VT (W) = OVw(Q(w)V S(w)V U(w))
Ju(P(v) AR(w) AT (v)) = OFw(Q(w) AS(w) AU (w))

Since we know the set of constants that can be used in thegonolwbe can also derive
clauses of the form

P(e) = OQ(c)

The above three types of clause are catledved clausesWe can then combine (conjoin)
these derived clauses both with each other and with a cotmjumnaf original ground step
clauses. Such combinations are caltedrged derived step clauseBinally, combining
(again, conjoining) merged derived step clauses togetlithr avconjunction of original
step clauses gives fisll merged step clause# is these that we will work with in general.

Definition 4.1 Derived Step Claused_et P be a monodic temporal problem, and let

be a subset of the set of its original non-ground step cladden

(P, () A -+ A Py (2)) = OFz(M;, (z) A--- A M;, (2)), (6)
Pi;(c) = OMi,(c) (7)

arederived step clauses, wherec const(P) andj =1...k.

A derived step clause is a logical consequence of its preneisined by “dividing” and
bounding left-hand and right-hand sides.

Definition 4.2 Merged Derived Step Clausetet{®, = OV¥,,...,®, = O¥,} be
a set of derived step clauses or origigedundstep clauses. Then

i=1 i=1
is called amerged derived step clause

Note that the left-hand and right-hand sides of any mergeigiatestep clause are closed
formulae.

Definition 4.3 Full Merged Step Claused.et A = OB be a merged derived step

clause P (z) = O My (z),..., Pr(z) = O My (z) be original step clauses, ardx) def

k def K

A Pi(z), B(z) = A M;i(z). Then

i=1 i=1
Ve(AN A(z) = O(B A B(z)))

is called afull merged step clauseln the caseé: = 0, the conjunctionsi(z), B(x) are

empty, that is, their truth value tsue, and the merged step clause is just a merged derived
step clause.
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Definition 4.4 Constant Flooding Let P be a monodic temporal problerR; = P U
{OL(c) | OL(z) € &, ¢ € const(P)} is theconstant flooded forfrof P.

Evidently,P¢ is satisfiability equivalent t®.
Example4.5. Let us consider a temporal problem given by

7 = {il. Q(c)},
ul. dz
U= { u2. vz Q(w) A Jy(=Pi(y) A -Pa(y)) = L(z)) }

(

(

{sl. P (z) = O-Pi(x) }
S =1 52. Py(z) = O-Fax)

Then
dl. Pi(c) = O-P(e),
d2. P (y) = OJy—Pi(y),
d3. YyPi(y) = OVy—Pi(y),
dd. Jy(Pi(y) A Pa(y) = OFy(=Pi(y) A —~Pa(y))
d5. Vy(Pi(y) VvV Pa(y)) = OVy(=Pi(y) VP (y))

are examples of derived step clauses. Every derived stapecia also a merged derived
step clause. In addition,

ml. Pi(e) ANJyPi(y) = O((=Pi(c) AJy—Pi(y)),
m2. JyPi(y) AVyPi(y) = OFy—Pi(y) AVy—Pi(y))

are other examples of merged derived step clauses. Finally,

fml. V(P (z) A Pi(c) = O(=Py(z) A—=Pi(c))),
fm2. Vz(Q(z) AJy(Pi(y) A Pa(y) = O(Q(z) AJy(=Pi(y) A —Pa(y)))),
fm3. Va(Pi(z) AJyPi(y) AVyPi(y) = O(Q(z) A3y=Pi(y) AVy—Pi(y)))

are examples of full merged step clauses.
Note that, constant flooding adds to the problem the evahtuahL(c).

Inference RulesThe inference system we use consists of the following imeseules.
(Recall that the premises and conclusion of these rulesmapi¢itly) closed under thg_|
operator.) The conclusion of every rule is a first-order folarto be added to the universal
part (see the definition of a derivation, Definition 4.11 B@lovhere neither of the initial,
step, or eventuality parts is changed by our rules.

In what follows, A = OB andA; = OB, denote merged derived step clausag, AN
A(z) = O(B A B(z))) andVz(A; A A;(x) = O(B; A Bi(x))) denote full merged step
clauses, antf denotes the (current) universal part of the problem.

A= OB

(1) Step resolution rule w.r.i4: ]

(OU,), whereld U {B} =L

3Strictly speaking,P¢ is not in DSNF: we have to rename ground eventualities by gsitipns. Rather than
“flooding”, we could have introduced special inference sutedeal with constants.
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()
3)

(4)
()

(6)

Initial termination rule w.r.t..{: The contradictionL is derived and the derivation is
(successfully) terminated # U Z |=L

Eventuality resolution rule w.r.i4:
V(Ar A A (z) = OBy A By (x)))

OL(z)
V(A /\A():>O(B A B, (x))) (0)
e A (- A; V ~Ai()
i=1
whereQ L(z) is a non-ground eventuality frohandvz(A; A A;(z) = OB;AB;(z))
are full merged step clauses such that foi @l {1, ...,n}, theloop side conditions

Va(U ABi A By(z) = ~L(z)) and Ya(U A Bi A By \n/A/\A

are both valid.
The set of merged step clauses, satisfying the loop sideitomms] is called doop in

OL(x) and the formula\n/ (Aj(x) A Aj(x)) is called doop formula
j=1

Eventuality termination rule w.r.i{: The contradictiorL is derived and the derivation
is (successfully) terminated iff = Vz—L(z), whereQL(z) € £%.

Ground eventuality resolution rule w.ri:
A= OBy, ..., A,= OB, Ol
(A4
whereA; = OB; aremerged groundedtep clauses such that tgeundloop side
conditions

(O%es) »

UNBi ==l and UABiE\/ A; forall ie{l,... n}
j=1
are satisfied.

Ground eventuality termination rule w.ri:
The contradictionL is derived and the derivation is (successfully) termindited |~
—l, wheredl € £.

Note 4.6. In principle, the eventuality resolution and eventyaermination rules
could handle both ground and non-ground eventualities. d¥ew we consider their
ground counterparts explicitly. Note that the ground ewalitly resolution rule does not
usefull merged step clauses and can be considered, thus, as a sgeatfigyfor the
general eventuality resolution rule.

For a temporal problerR, by TRes(P) we denote the set of all formulae which can be
obtained fronP applying the inference rules above.

4In the case/ |= Va—L(z), thedegenerate clausdrue = Otrue, can be considered as a premise of the
eventuality resolution rule; the conclusion of the rulenisrt—true and the derivation successfully terminates.
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Note 4.7. Theeventuality resolution rulabove can be thought of as two separate rules:
an induction rule to extract a formula of the fokm(P(x) = O [ ]-L(x)) and a resolu-
tion rule to resolve this withy O L(y), that is,

—Induction rule w.r.t.2/:
Va(Ar A Ay (z) = O(B1 A Bi(z)))

VA, A A, (x) =0 (Bn A By (2)))

Va(V (4; A Ai(x) = O O~L(x))

i=1

(ind"),

(with the same side conditions as the eventuality resaiutide above).
The formula'\/ (B; A B;(x)) can be considered as @variant formulasince, within

=1
the loop detected, this formula is always true.
—Pure eventuality resolution:

V.r('\z (A A Ai(2)) > OO-L(z))  OL(x)

Vo A (- AV -Ai(x))

i=1

(Ores) .

We see here that a classical first-order formula is genertitisds added t@/.
Theground eventuality resolution rulean be split into two parts in a similar way.

Example4.8 Example 4.5 contd.We apply temporal resolution to the (unsatisfiable)
temporal problem from Example 4.5. It can be immediatelyckbd that the loop side
conditions are valid for the full merged step clayse?2,

fm2. Vz(Q(z) Ay(Pi(y) A P2(y) = O(Q(x) AJy(=Pi(y) A =P(y)))),
that is,

Fy(=Pi(y) A —Pa(y)) A Q(z) = L(x) (seeu2),
Fy(=Pi(y) A -Pa(y)) AQ(z) = 3y(Pi(y) A Pa(y)) AQ(x)  (seeul).

We apply the eventuality resolution ruled® andm1 and derive a new universal clause

nul.  [Vz(=(3y(Pi(y) A Pa(y))) V —~Q(x))
which contradicts clausesl andi1 (the initial termination rule is applied).

Example4.9. The need for constant flooding can be demonstrated bfotogving
example. None of the rules of temporal resolution can beiegplirectly to the (unsatisfi-
able) temporal problem given by

I ={P(c)}, S={q¢= Oq},
U={q4=P()}, €={0-P()}.
If, however, we add to the problem an eventuality clagsend a universal claude=
—-P(c), the step clausg = Oq will be a loop in{l, and the eventuality resolution rule
13



would derive-true>.
Correctness of the presented calculi is straightforward.

THEOREM 4.10 DUNDNESS OFTEMPORAL RESOLUTION. The rules of temporal
resolution preserve satisfiability.

Proof Considering models fofOTL formulae, it can be shown that the temporal reso-
lution rules preserve satisfiability. L&t = (D, I) be a temporal structure andbe a
variable assignment. We assume that a temporal proBlentrue in9t under the assign-
menta and show thaP, extended with the conclusion of a temporal resolution,ligsleue

in M undera. We do this by considering cases of the inference rule usef)laws.

—Consider the step resolution rule. Lét=- O B be a merged derived clause and assume
thatdM, =* [1(A = OB), U UB =1, but for somei > 0, M; =#* -A. Then
9,1 E* Bin contradiction with the side condition of the rule.

—Consider now the eventuality resolution rule. Mat(A; A A;(z) = OB; A B;(x)),

i € {1,...,n}, be full merged step clauses afdd.(z) be an eventuality such that

My =° 7\ Va(A; A Ai(z) = OB; A Bi(z)), My = [IVzOL(x), and the loop side

i=1
conditionsVz (U A B; A Bi(z) = —L(z)) andVz(U A B; A B;(x) = \7 (A; NAj(x))
j=1

J]=
n

are both valid, but for some > 0, M;, E°* Vo A (—A; V —A;i(x)). It follows there
i=1
exists a domain elemedte D such thatht, =° (A; A A;(d)). Itis not hard to see
that, by validity of the loop side conditions and by the fdwdttthe full merged clauses
are true in?t undera, M, = —L(d) for all I > k, thatis, M1 E° [J-L(d) in
contradiction with the eventuality.
—Correctness of the initial termination and eventualityrtmation rules is obvious.

—Correctness of the ground counterparts of the eventualitylution and eventuality ter-
mination rules can be proved in a similar way.

0

Similarly to classical first-order resolution, temporasotition is a refutationally com-

plete saturation-based theorem proving method, i.e., &adiotion can be deduced from
any unsatisfiable problem, and the search for a contradigtioceeds by saturation the
universal part of a given problem.

Definition 4.11Derivation A derivationis a sequence of universal pas,= Uy C
U C U, C ..., extended little by little by the conclusions of the infetenules. The,
S and¢ parts of the temporal problem are not changed during a dimniva

A derivationterminatesf, and only if, either the contradiction is derived, in whicase
we say that the derivatiosuccessfully terminatesr if no new formulae can be derived
by further inference steps. Note that since there exist &inlfely many different full

5Note that the non-ground eventualify-P(z) is not used. We show in Section 7 that if all step clauses are
ground, for constant flooded problems we can neglect nonrgreventualities.
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merged step clauses, the number of different conclusiotieaohference rules of temporal
resolution is finite. Therefore, every derivation is finité.a (finite) derivation does not
terminate, we call ipartial. Any partial derivation can be continued yielding a terntiimg
derivation.

We adopt the notion of a fair derivation from [Bachmair anch@ager 2001].

Definition 4.12Fair derivation A derivationl{ = Uy C Uy C Uy C --- C U, IS
calledfair if for any i > 0 and formulap € TRes({U;,Z,S,&)), there existg > i such
thato € U;.

We formulate now the completeness result and prove it ini@e&, which is entirely
devoted to this issue.

THEOREM 4.13 COMPLETNESS OFTEMPORAL RESOLUTION. Let an arbitrary
monodic temporal problen® be unsatisfiable. Then arfgir derivation by temporal
resolution fromP® successfully terminates.

5. COMPLETENESS OF TEMPORAL RESOLUTION

In short, the proof of Theorem 4.13 proceeds by building algessociated with a monodic
temporal problem, then showing that there is a corresparaleatween properties of the
graph and of the problem, and that equivalent propertiesapeured by the rules of the
proof system. Therefore, if the problem is unsatisfiablenéwally our rules will discover
it.

First, we introduce additional concepts. lRet= (U/,Z,S,E) be a monodic temporal
problem. Let{P;,..., Py} and{pi,...,pn}, N,n > 0, be the sets of all (monadic)
predicate symbols and all propositional symbols, respelgtioccurring inS U £.

A predicate coloury is a set of unary literals such that for evef;(z) €
{Pi(z),...,Pn(z)}, eitherP;(z) or —-P;(z) belongs toy. A propositional colourd is
a set of propositional literals such that for everye {pi,...,pn}, eitherp; or —p; be-
longs tod. LetT" be a set of predicate coloufspe a propositional colour, andbe a map
from the set of constantsonst(P), toI". Atriple (', 6, p) is called acolour schemgandp

is called aconstant distributionWe write sometimey € C wheny € T'andC = (T, 8, p).

Note 5.1. The notion of colour scheme came, of course, from thékmelwn concept
used in the decidability proof for the monadic class in dtaddirst-order logic (see, for ex-
ample, [Borger et al. 1997]). In our cadejs the quotient domain (a subset of all possible
equivalence classes of predicate valués$,a propositional valuation, angdis a standard
interpretation of constants in the domdin We construct quotient structures based only
on the predicates and propositions which occur in the teaiart of the problem, since
only these symbols are really responsible for the satidifialpor unsatisfiability) of tem-
poral constraints. In addition, we have to consider scedatbnstant distributions because,
unlike in the classical case, we cannot eliminate constaplacing them by existentially
bound variables since in doing this the monodicity propestyld be lost.

For every colour schemé = (T, 8, p) let us construct the formulagg, Ac, Be in the
following way. For everyy € T and for every, introduce the conjunctions:
Ex)= A L) F=AL
L(z)ey A<
15



Let

Ay(x) = ML(z) | L(z) = OM(xz) € S, L(z) €7},

By(z) = MM (z) | L(z) = OM(z) € S, L(z) € 7},

Ay NMi|1=0OmeS, leb},

By = A{m|l=0meS, leb}
(Recall that there are no two different step clauses witlstimee left-hand side.)
Now F¢, Ac, Be are of the following forms:

Fe= N\ FeE(x) NFp A N Fyeye) ANVz \ Ey(x),

~yerl c€const(P) ~yerl

Ac= A FzA,(x) NAg AN N Ap(c) AV Ay (x),
yer cE€const(P) ver

Be= A 32B,(x) ABgA N Byelc) AV \/ B,(z).
yer cE€const(P) ver

We can consider the formuld: as a “categorical” formula specification of the quotient
structure given by a colour scheme. In turn, the formdidarepresents the part of this spec-
ification which is “responsible” just for “transferring” geirements from the current world
(quotient structure) to its immediate successors,ancepresents the result of transferal.

Example5.2. Consider a monodic temporal probléP given by

7 =0, S = {P(z) = OP(2)},
For this problem, there exist two predicate coloufs= [P(z)] andy, = [-P(z)]; two

propositional colourg; = [I] andf, = [~I]; and six colour schemes (we omit the empty
constant distribution for readability),

= ({m}.01), Cs = ({m},02),
Co = ({12}, 01), Cs = ({12},0-),
Cz = ({m,72},0h), Cs = ({m,72},02).

The categorical formulae for these colour schemes are tlosviag:

0
\

Fe, = 3JxP(x) ANVzP(z) Nl Ac, = FzP(x) AVzP(z) Be, = dxP(x) AVzP(z)
Fe, = Jz—P(x) AVz-P(z) ANl Ac, =true B¢, =true

Fe, = FxP(x) A 3Jx—-P(z) A Ac, = JxP(x) Be, = 3xP(x)

Fe, = JxP(x) ANVzP(z) A -l Ac, = FzP(xz) AVzP(z) Be, = dxP(x) ANVzP(z)
Fey = Jz—P(z) AVz—-P(xz) A=l Ae, =true Be, = true

Fes = JzP(x) ANJz—P(x) A=l A, = FzP(z) Be, = 3z P(x)

Definition 5.3 Canonical Merged Derived Step Clausdset P be a first-order tempo-
ral problem( be a colour scheme fét. Then the clause

(Ac = OBc),
is called acanonical merged derived step claudseP.

If all conjunctions inA¢ are empty, which implies all conjunctions By are empty and
vice versa, the truth value of both, and B¢ is true, and the clauséA: = OB¢)
degenerate$o (true = Otrue). If a conjunctionA,(z), v € T, is empty (which also
implies the conjunctio, () is empty and vice versa) then the formifta\/_ .. A, (z)

16



Fig. 1. Behaviour graph for the probleth = 0, &/ = {l = JzP(x)}, S = {P(z) = OP(x)}, &€ =
{0—P(z), Ol} (Example 5.6).

(andVz V»yer B, (z)) disappears fromd¢ (from B¢ respectively). In the propositional
case, the clausedc = O B¢) reduces tq4y = O By).

Definition 5.4 Canonical Merged Step Clausé.etC be a colour schemel: = O B¢
be a canonical merged derived step clausejaad’.

Va(Ae N Ay(z) = O(Be A By(x)))
is called acanonical merged step clause

If the truth value of the conjunctiond. (z), B, (z) is true, the canonical merged step
clause is just a canonical merged derived step clause.

Definition 5.5Behaviour Graph Now, given a temporal problefr = (U/,Z,S,£) we
define a finite directed grapfi as follows. Every vertex of7 is a colour schemé for
P such that/ U F¢ is satisfiable. For each vertéx= (T, 8, p), there is an edge i&' to
C'=(I",0" p", if UNFe A B is satisfiable. They are the only edges originating from
C.
A vertex( is designated as dnitial vertex of G if Z AU A F¢ is satisfiable.
Thebehaviour graphH of P is the subgraph aff induced by the set of all vertices reach-
able from the initial vertices.

Example 5.6 Example 5.2 contd.Let us construct the behaviour graph for the problem
given in Example 5.2. Note tha&, A U |=L, so the vertex; is not in the graph. The
behaviour graph foP, given in Fig. 1, consists of five vertices; all of them areiadi

There is an edge in the graph from the nddeto the node’; since the formuld/ A
Fe, N Be,,

| = JxP(x) ANJzP(z) AVzP(z) Nl AJzP(z),
~ ~ ~ e e

u Fe, Be,
17




is satisfiable. There is no edge fragmto C; since the formul&/ A F¢, A Be,,

I = 3xP(x) AJzP(x) AJz—-P(z) NlAJxP(x) AVeP(x)

% Feq Be,

is unsatisfiable. Other edges are considered in a similar way

LEMMA 5.7. LetPy = (U,Z,S,&) andPy, = (Us,Z, S, E) be two problems over the
same set of symbols, such thatcC U,. Then the behaviour graph &% is a subgraph of
the behaviour graph d®; .

Proof Satisfiability ofi/, implies satisfiability ot/ . a

Definition 5.8 Path; Path SegmentA path =, through a behaviour graptf, is a
function fromIN to the vertices of the graph such that for any 0 there is an edge
(w(i),w(i+1)) in H. Inasimilar way, we define path segmerds a function fronfm, n],
m < n, to the vertices o with the same property.

Recall that vertices of the behaviour graph of a problBmare quotient representations
of “intermediate” interpretation®t,, in possible models oP. Intuitively, if a pair of
vertices, or of colour schemes,and(’ is suitable, then this pair can represent adjacent
interpretation$)t; and9t; 1 in a model ofP. The definition of predicate colour suitability
given below expresses the condition when a pair of predadtairs specify an elementin
adjacent interpretations with regard to the step paR.oA similar intuition is behind the
notions of suitable propositional colours and suitablestamt distributions.

Definition 5.9 Suitability. ForC = (T',6,p) andC’' = (I, ¢, p'), let (C,C’) be an
ordered pair of colour schemes for a temporal probRem
An ordered pair of predicate coloufs,v') wherey € T', v’ € T is calledsuitableif the
formulal{ A 3z(F, (x) A B,(x)) is satisfiable;
Similarly, an ordered pair of propositional colouis ') is suitable ift/ A Fy: A By is
satisfiable; and
an ordered pair of constant distributiof)s p') is suitable if, for every: € C, the pair
(p(c), p'(c)) is suitable.

When the graph is clear from the context, we denote suitadiles by connecting them

with an arrow, for example, if a pair of predicate colo(sy’) is suitable, we denote it
byy — +'.
Note that the satisfiability aiz(F, / (z) A B, (z)) implies = Vz(F, () = B, (x)) as
the conjunctior¥, - () contains a valuation at of all predicates occurring iB., ().
LEMMA 5.10. Let H be the behaviour graph for the probleh= (i/,Z,S,E) with
an edge from a verteX = (I, 8, p) to a vertexC' = (I, ', p'). Then
(1) foreveryy € I' there exists & ' € I'" such that the paiv,~') is suitable;
(2) foreveryy' € I" there exists a € I" such that the paifv,~') is suitable;
(3) the pair of propositional colour§d, §') is suitable;
(4) the pair of constant distribution&, p') is suitable.
Proof From the definition of a behaviour graph it follows that\ F¢: A Bc is satisfi-
able. Now to prove the first item it is enough to note that Eabdity of the expression
18



U N Fer N Be implies satisfiability ot/ A (Yo \/ Fy(z)) A 3zB,(x). This, in turn,
,.Ylel"l
implies satisfiability of its logical consequenteA \/ 3Jz(F, (z) A By(z)). So, one
IEFI

of the members of this disjunction must be satisfiable. Tlcersa item follows from the
satisfiability ofd A (Vz \/ B, (z)) A 3zF., (z). Other items are similar. a
vel

Example5.11Example 5.6 cont. Let us consider suitability of predicate and proposi-
tional colours from Example 5.2.
Since the formuléd/ A 3z(F,, (z) A B4, (z)), whereld = {l = JzP(z)}, F,, = P(x),
andB,, = true, is satisfiable, the pairy, 7-) is suitable.
Since the formulé/ A 3z(F,, (z) A B4, (z)), whereld = {l = JzP(z)}, F,, = -P(z),
andB,, = P(z), is unsatisfiable, the pafty», 1) is not suitable.
In a similar way, it can be easily checked that the pairs ofljsege colours

(vi,m) and (y2,72),
and the pairs of propositional colours

(91791)7 (91702)7 (92701)7 and (02792)
are suitable.

Let H be the behaviour graph for a temporal problem= (/,Z,S,£) andn =
Co,-..,Cn,... be a path inH whereC; = ([';,0;,p;). LetGy = Z U {F¢,} and
Gn = Fe, N B, , forn > 1. According to the definition of a behaviour graph, the
setl{ U {G, } is satisfiable for every > 0.

From classical model theory, since the langudgis countable and does not contain
equality, the following lemma holds.

LEMMA 5.12. Letx be a cardinal,k > 8q. For everyn > 0, if the set/ U {G,,} is
satisfiable then there exists @rmodeldn,, = (D, I,,) of &Y U {G,} such that for every
v €Ty thesetD, ,y ={a € D |M, |= F,(a)} is of cardinalitys.

Definition 5.13Run/E-Run Letr be a path through a behaviour grajitof a temporal
problemP, andx (i) = (I';,6;, p;). By arun in 7 we mean a functiom(n) from N to
Uien T such that for every. € N, r(n) € T',, and the paifr(n),r(n + 1)) is suitable.
In a similar way, we define aun segmenas a function fronjm, n], m < n, to J,;c T
with the same property.

Arunr is called are-runif for all : > 0 and for every non-ground eventualy.(z) €
€ there existg > i such thatL(z) € r(j).

Let 7 be a path, the set of all runsinis denoted byR (), and the set of all e-runs inis
denoted byR . (7). If = is clear, we may omit it.

Here(C,v) —* (C',~v') denotes that there exists a patfrom C to C’ such thaty and
~" belong to a run inr; andC —* C’ denotes that there exists a path fr6ro C'.

Example5.14. = = C3,Cs,C3,Cs, - . . IS a path through the behaviour graph given in
Fig. 1.71 = y,v1,7,... andra = y1,%2,7, 72, . .. are both runs inr. 9 is an e-run,
butr is not.

We now relate properties of the behaviour graph for a prolitethe satisfiability of the
problem.
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THEOREM 5.15 EXISTENCE OF A MODEL LetP = (U, Z,S, &) be a temporal prob-
lem. LetH be the behaviour graph dP, let C and C' be vertices ofH such that
C =(I',0,p) andC' = (I",0', p'). If both the set of initial vertices off is non-empty
and the following conditions hold

(1) For every vertex, predicate coloury € T', and non-ground eventualityL(z) € £
there exist a verte®’ and a predicate colouy’ € I such that

(€7 =T (¢, v )AL(z) €7');

(2) For every vertex, constantc € const(P), and non-ground eventualityL(z) € &,
there exists a verte%’' such that

(C=TC' ANL(z)€p (c);
(3) Forevery vertexX and ground eventualit)l € &, there exists a verteX' such that
(C=TC'AlLed)
thenP has a model.

The proof proceeds as follows. First, we provide a lemma ghpthat, under the condi-
tions of Theorem 5.15, there exists a path through the bebagraph satisfying certain
properties, and then we show that, if such a path exists,ttteeproblem has a model.

LEMMA 5.16. Under the conditions of Theorem 5.15, there exists a pativough H
where:

(&) w(0) is an initial vertex ofH;

(b) for every colour schem&= (i), i > 0, and every ground eventuality liter@l € £
there exists a colour scherié = = (j), j > 4, such that € ¢';

(c) forevery colourschem&= = (i), i > 0 and every predicate colourfrom the colour
scheme there exists an e-rure R.(7) such that-(i) = ~; and

(d) for every constant € L, the functionr.(n) defined byr.(n) = p,(c), wherep,, is
the constant distribution from(n), is an e-run inr.

Proof [of Lemma 5.16] LetOL,(z),...,0Lk(x) be all non-ground eventuality literals
from &; Oly, ..., Ol, be all ground eventuality literals frody, andcy, .. ., ¢, be all con-
stants ofP. LetC, be an initial vertex ofH. We construct the path as follows. Let
{m1,-.-,7s, } be all predicate colours frofi¢,. By condition (1) there exists a vertex
Cé’“’Ll) and a predicate colouﬁ(l) € Fcéﬂ,Ll) such that(Cy,v1) —* (Cé“’Ll)ﬁfl))

andL,(z) € 7](1). In the same way, there exists a verﬂ%&“’“) and a predicate colour

7}2) € L' 41,00 sUCh that(Cé”""‘),V{])) =+ (Cé”“’”“),yf)) and L, (z) € 7{2). And
0
so on. Finally, there exists a verté}%”"""’) and a predicate Colouyfk) € Loonro
0

such that(c{™ ") A* 1y S+ (et 49y and Li(z) € A%, Clearly, i,
...,7](1),. . ,7](2),. . ,7]('“) forms a segment of a run and every non-ground eventuality is
satisfied along this segment.

Now, let 750) be any successor of, in Fcéwl,Lk). As above, there exists a sequence

v2,L1)
)

. L1 .
of vertlcescé . ,Cé’*z *) and a sequence of predicate coloui’g € Fcéw,Ll) e
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wék) € Tiaz such thatys,... ,750), e ,751), e .72 ) forms a segment of a run and
0

every non-ground eventuality is satisfied along this segm@nntlnue th|s construc'uon
At a certain point we construct a segment of a path férto a vertexC, (7:0:5+) guch that

for everyy € Cy there existSy’ € C(()%‘”L’“) such that all eventualities are satisfied on the
run-segment fromy to v '.

In a similar way we can construct a ver@f' ") such thaC(%“ Byt c{ 1) and
Li(x) € pycer.o(e1). And so on. As above, at some point we will have constructed a
0

segment to a vertex such that all eventualities are satisfiettie run-segment. Then we
can construct averte(i‘él‘) such tha’C((f"”"") —* C[()l‘) andl; € 6,,). And so on.
0

Finally, we construct a verte%), = Célp) such thaly —* Cj and on this path segment
all conditions of the theorem hold fér = C,. Let us denote this path segmentas and
letC; be any successor 6f,.

By analogy, we can construct a veri&xand a path segmeng from C; to C; such that
all conditions of the theorem hold faf = C;. An so forth. Eventually, we construct a
sequence€y, Cy,...,C; such that there exists, 0 < n < j andC,, = C; because there are
only finitely many different colour schemes. Let = Ag, ..., Ap—1, T2 = Ap, .o Aja.
Now, we define our path asm (m2)*. Properties (a) and (b) evidently hold en

LetC = (i) andvy € T[¢. Clearly, there existy’ € C, andy"” € C, such that
(Co,v") =T (C,v) and(C,v) —Tt (Cn,v"). Since for everyy” € C, there exists
~" e C,({“" 1) such that all eventualities are satisfied on the run-segframty” toy "’
and there exists¥ € C,,, (C"""*) v ") 5+ (Cp,7™), then there is an e-rum, such
thatr(i) = v, that is, property (c) holds.

Note that, for every constantof P the sequencep( ) is a run inw. By construction,
for everyQL(z) € € there is averteg"") in 5 such thatL(z) € pcg,n)( ¢). Therefore,

r.(n) is an e-run inr and property (d) holds. a

Proof [of Theorem 5.15] Following [Hodkinson et al. 2000; Deggtaand Fisher 2001]
take a cardinak > ¥, exceeding the cardinality of the sBt.. Let us define a domain
D = {(r,§) | r € R, ¢ < }. Then for everyh € N we have

D = U D(nry), WhereD(nﬁ) = {(T‘, f) ‘ r(n) = 'y} and|D(nﬁ)| = K.

YETR
Hence, by Lemma 5.12, for every € N there exists arC-structuredt,, = (D, I,)
satisfyingl/ U {G,. } suchthatD, ., = {(r,§) € D | M,, = F,({r,£))}. Moreover, we

can suppose that" = (r.,0) for every constant € const(P ) A potential first order
temporal model i9 = (D, I'), whereI(n) = I,, for alln. € N. To be convinced of this
we have to check validity of step and eventuality clausegcéf that satisfiability off
andl{ in 2, is implied by satisfiability of7, in 9ty and definition of a behaviour graph.)
Let [)Vz(P;(z) = OR;(z)) be an arbitrary step clause; we show that it is tru@in
Namely, we show that for eveny > 0 and every(r,§) € D, if M, = P;((r,&)) then
M,r1 = Ri((r,&)). Suppose(n) = € I', andr(n + 1) = v' € T, where(y,v"')
is a suitable pair in accordance with the definition of a rafiollows that(r,{) € Dy, -)
and(r,§) € D(,41,47), inother worddt,, = F,((r,§)) anddM, 1 = F, ((r,§)). Since
M, = P;((r,£)) thenP;(z) € . It follows thatR (z) is a conjunctive membech ().
Since the pall(’y,”y ) is suitable, it follows that the conjunctict(F, (z) A B, (z )) is
satisfiable and, moreoves Vz(F, . (z) = B,(z)). TogetherwnmJInH = F ((r &)
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this implies thatht,, ., = R;({r,£)). Propositional step clauses are treated in a similar
way.

Let ([ JVz)QL(z) be an arbitrary eventuality clause. We show that for ewely 0 and
every(r,£) € D, r € R.,{ < &, there existsn > n such thatht,,, = L((r,¢)). Since
r is an e-run, there exist¥ = «(m) for somem > n such that(m) = v’ € I and
L(z) € ~'. Itfollows that(r,{) € D(,, ), thatis,, = F, ((r,£)). In particular,
M, = L((r,&)). Propositional eventuality clauses are considered in dasiway.
a

Note 5.17. Forconstant floodetemporal problems condition 3 of Theorem 5.15 im-
plies condition 2.

LEMMA 5.18. Let 9t be a first-order temporal structure. Then there exists a @olo
scheme such thatht |= F¢.

Proof Letd = (D, I). Foreverya € D, lety, be the set of unary literals such that for
every predicaté’;(x),0 < i < N,

P,(T) € 7(0,) if m ‘: P,((l)
-P;(z) € Yy M # Pi(a).

Similarly, leté be the set of propositional literals such that for every psionp;, 0 <
Jj<mn,

pj €60 if MEp;
_|pj € 0 |f m bé pj-

We definel’ as{v(,) | a € D}, andp(c) asy,r). Clearly, 9 = Fe. a

Proof [Theorem 4.13: completeness of temporal resolution] To simplify denotation,
we assume that the temporal probl@m= (U, Z,S,£) is already in the constant flooded
form. Recall that according to our definitions, a fair detiiva for the problen® is a finite
sequence of universal parté,= Uy C Uy C U> C --- C U, such that for any > 0 and
formulag € TRes((4;,Z,S,E)), there existg > i such thatp € ;. In particular, for
any formulagp € TRes((U,,Z,S,E)) we havep € U,.

The proof of the theorem proceeds by consideration of thebaurof vertices in the
behaviour graphH for P, = (U,,Z,&,S), which is finite. If H is empty, then by
Lemma 5.18 the s&¥,, U 7 is unsatisfiable, ané¥,, contains the contradiction due to
the initial termination rule.

Now supposéd is not empty. In the following we show that there exists artiahce
rule of temporal resolution such that whip is extended with the conclusion of the rule
yielding 24/,, the behaviour graph for the resulting temporal probRm= (U, Z,S, &)
contains at least one vertex less tlf&nBy lemma 5.7 this means, however, thét Z U,
in contradiction with our assumption thd}, is the last member of the fair derivation.

Suppose there exists a verterf H which has no successors. In this case thé/set53¢
is unsatisfiable. Indeed, suppdseU {B¢} is true in a modei. By lemma 5.18, we can
define a colour schen® such thatht = F¢.. As Be A Fe: is satisfiable, there exists an
edge from the verte& to the vertexC' in the contradiction with the choice 6f as having
no successor. The conclusion of the step resolution rulk;,, is added to the sét,,; this
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implies removing the verte& from the behaviour graph because the{sgt, —.4¢ } is not
satisfiable.

Next, we check the possibility whefé is not empty and every vertgX has a successor.
Since the problen®, is unsatisfiable, at least one condition of Theorem 5.15%dkated.
By Note 5.17, it is enough to consider only two cases of viofabf the conditions of
Theorem 5.15.

First condition of Theorem 5.15 doesnot hold. Then, there exist a vertéy, predicate
colour~y, and eventuality) L, (=) such that for every verte®’ and predicate colouy €
I,

(Co,v0) =F (C',7") = Lo(z) ¢ 7' (8)

LetJ be a finite nonempty set of indexes such tfGt| i € J} is the set o&ll successors
of Cy (possibly includind, itself); and lety;, for i € J, be finite nonempty sets of indexes
suchthat{v;; € Ty | i € 3, j € Ji, 7 =" 7,;} is the set ofall predicate colours
7i,; such that there exists a run going throughand the coloury; ;. (To unify notation,
if 0 ¢ 3, we define, as{0}, andyg ¢ asvp; and if0 € J, we add the index ofy to
Jo. ThereforeJ, is always defined and without loss of generality we may asstinaie
Y,0 = Y0-)

LetC;,,...,C;, be the set of allimmediate successorggf To simplify the proof, we
will represent canonical merged derived step clauses= O B¢, (andAc,, = OB, )
simply asA; = OB; (andA;, = OB, resp.), and formulage, (andFc, ) simply as
Fi (and.F;,, resp.).

Consider two cases depending on whether the canonical theleygved step clause
Ag = OBg (orany of 4; = OB;, i € J) degenerates or not.

(1) Let Ay = By = true. It follows that¥,, = Vz—L¢(z). Indeed, suppos#,, U
{3xLy(z)} has a model). Then we can construct a colour schefesuch that
M |= Fer. SinceCy,, ..., C;, is the set of all immediate successorLefand B, =
true, it holds that there exists 1 < j < k, suchthat’;; = C'. SinceB,,(z) = true,
every pair(yo,v'), wherey’ € T, is suitable; henceLy(x) € ' for everyy’ € T,
andF¢ |= Vz—Lo(z) leading to a contradiction. Therefoté, = Yz—Ly(z) and the
eventuality termination rule can be applied. The same hbltsy one ofA; = OB;
degenerates.

(2) Let none of thed; = O B; degenerate. We are going to prove that the eventuality
resolution rule can be applied. First, we have to check e sbnditions for such an
application.

(@) Vz(U, AB;i AN B, ;(x) = —Lo(x)) foralli € Tu {0}, € Js.
Consider the case whén= j = 0 (for other indexes the arguments are similar).
We show that

Va(Uy, A By A By () = \V F,/(z))
1e{1,....k}, v €Ty, v—=v'
is valid (it follows, in particular, tha¥z (U, A By A B, () = —Lo(z)) is valid).
Supposélt is a model for

32Uy, A Bo A By (z) A A —F, ().
lef{1,...,k}, v'Eli, v’

23



Then there exists a colour sche@flesuch thatht |= F¢:. Sincedt = By A Fer,

we conclude thaf’ is amongC;, , ..., C;, . Note thatht = Fe follows, in par-

ticular,M =Vz \/ F,.(z)and, hencel |=Va (B, (z) = V F,.(z)).
’Y”EFI ,YIIG]"I

Together with the fact thadt = U,, A 3z(B,, (z) A F»(z)) impliesy, — 7",

we havedlt |= Vz (B4, (z) = V F, »(z)). This contradicts the choice

y"eEr, o=y "
of the structurént.

(b) Ya(U, A B; A By, () = V (Ax N A, (x))) foralli € JU {0},
keJu{0}, l€Jk
J € Ji-
Again, consider the case= j = 0. Suppose

U N By A Em(ng (z) A /\ (=(Ar A AWc,l (2))))
keIU{0}, 1ET,

is satisfied in a structur@®. LetC' be a colour scheme such that = F¢.
By arguments similar to the ones given above, there is awégtel < | < k,
which is an immediate successor@f, such that;, = C’, and hencéit = A'.
It suffices to note that

ME=Va(By(z) =\ Aye(a).
"Y”EFI, FYO_>PY 1"
(As in the case 2(a) abov®} |= Vz(B,,(z) = V F, . (z)), and for
FY”GF’, ,.YO_>,.Y 1"
ally" e I, the formulavz(F, » (z) = A, (z)) is valid.)
After applying the eventuality resolution rule we add4gits conclusion:

Ve N\ (RAV-AL ().

1€JU{0}, jEJ:

Then, the vertexC, will be removed from the behaviour graph (recall tifat =
Ao ATz A, (2)).

Third condition of Theorem 5.15 doesnot hold. This case is analogous to the previous
one; we only sketch the proof. There exist a velfgxand eventuality)ly such that for
every vertexC' and predicate colouy € T,

Co 10 = lo ¢ . (9)

Let J be a finite nonempty set of indexds;; | ¢ € J} be the set of all successors@f
(possibly includind’, itself). As in the previous case, one can show that

—If any of 4; = OB; (wherei € J) degenerates theé, = -, and the ground eventu-
ality termination rule can be applied.

—If none of the canonical merged derived step clauses deggertben the following con-
ditions hold
—foralli € U {0} U, UB; =l
—foralli € 3U {0} UUB, = VA
jeaufo}
and so the ground eventuality resolution rule can be applied
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Example5.19example 5.6 contd.We illustrate the proof of Theorem 4.13 on the tem-
poral problem introduced in Example 5.6. The behaviour lgrapthe problem is not
empty; every vertex has a successor. It is not hard to seahthdirst condition of The-
orem 5.15 does not hold, and, following the proof, we can skaCy, o, and L, for
example(;, v1, and—P(z), respectively. Then for every vert€x and predicate colour
,Y/ c 1-\/’

(Co,70) =7 (C',7") = Lo(z) ¢ 7.
The set of all (and all immediate) successorgois {C;,C4}. Note that the canonical full
merged step clauses correspondingt@ndC, are identical, and none of them degener-
ates. Foi € {1, 4}, the loop side conditions,

Ve (((I = 3zP(x)) A (zP(z) AVzP(x)) A P(x)) = P(z))

N AN NI
U B; By, (2)
and
Ve(((I = JzP(z)) A (FzP(z) AVzP(x)) N P(z)) =
- N NI
Ui Bi By, (z)

\V (3zP(x) AVzP(z) A P(z)))
j€{1,4} ~~ R
A; Ay (2)

hold. Therefore, we can apply the eventuality resolutide whose conclusion,

Va( \ (=(EzP(z) AVzP(x))) A=P(x)),
je{1,4}
can be simplified talz—P(z). After the conclusion of the rule is addediQ verticesC,
andC, and edges leading to and from them are deleted from the bmivayiaph.
For the temporal problem with the new universal part, agaéfirst condition of Theo-
rem 5.15 does not hold and, for example,fgr= Cs, 7o = 71, andLy(z) = = P(x), and
for every colour schemé@ and every predicate cologf € T,

(Co,70) =T (C',7") = Lo(x) ¢ 7.

(Note thaty, is never a successor of.) The set of all (and all immediate) successors
of C5 is {Cs,Cs}. The canonical full merged step clauses correspondiidg tndCg are
identical, and none of them degenerates. In a similar waypthp side conditions hold and
the conclusion of the eventuality resolution rule simpéfieVxz—P(z). This time, vertices
Cs andCg are deleted from the behaviour graph.

For the new problem, the third condition of Theorem 5.15 dwuoashold forCy = Cs,
lo = I. Then for any vertex’,

Co . =l ¢ 0.
As the canonical full merged step clause degenerated{aad-l), the ground eventuality
termination rule can be applied.

Note that if, in the beginning, instead 6f we selected’; (or Cg) asCy, verticexy, Cs,
C4, andCg would be deleted after the first application of the eventyadisolution rule.
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6. EXTENSION OF THE MONODIC FRAGMENT

In this, and the subsequent, section we adapt the resobeitbmique to a number of vari-
ations of monodidOTL, whose completeness follows from the corresponding atlapta
of the completeness results given in Section 5. We here denan extension of monodic
temporal problems allowing an additioredtended par®’ given by a set of arbitrafyOTL

in the language without function symbols and with trdy temporal operator being)’.
Since this temporal operator can be “moved inside” claksjgantifiers, we can assume,
without loss of generality, that’ is given by a set of first-order formulae constructed from
temporal atomf the form QO P(ty,ts,...,t,), WhereP(ty,ts,...,t,) is a first-order
atorf. Such an extension permits more complex step formulae taripdoged while re-
stricting the allowed temporal operators.

Example6.1. A set of formula&P given by

X = {VaVy(P(z,y) = OOP(z,y))},
I ={323yP(z,y)},

U = (Va¥y(P(z.y) = R(x))}.

S ={R(x) = OR(2)},

£ = [0R(x)}

is an example of an extended monodic problem.

We are going to show that an extended monodic temporal probbn be translated
(with a linear growth in sizginto a monodic temporal problem while preserving satis-
fiability. Essentially, we encode a few initial states of enporal model as a first-order
formula and ensure that this encoding is consistent witmebeof the model.

Reduction Let XP = P U X be an extended monodic temporal problem. Bet
(Z,U,S,E). Letk be the maximal number of nested application§pin X, that is, the
maximali such thatO?P(t,,t»,...,t,) occurs inX for some predicate symbd!. For
every predicateP, occurring inXP, we introducek + 1 new predicate®?, P!, ..., Pk
of the same arity. Lep be a first-order formula in the languageX®. We denote bys]?,
0 < i < k, the result of substitution of all occurrences of predisatep with their i-th
counterparts; (e.gF(x1, z2) is replaced withP?(z1, z:»)).

We define the monodic probleRi = (7',1/',S',£') as follows. Let/' = U, S' = S,
&' = E&. Asfor7', we take the following set of formulae.

(1) Foreveryp € Z, the formula¢]® isinZ'.

k
(2) Foreveryp € U, the formula A [¢]’ isinZ'.

i=0

k—1
(3) ForeveryP(z) = OQ(z) € S, the formula A\ (Vz(Pi(z) = Q™+ (z)) isinZ’.
=0
(4) Foreveryy € X, the formulay’, the result of replacing all occurrences of temporal
atomsO'P(%),i > 0, in ¢ with Pi(7),isinZ’.
(5) For every n-ary predicate P in the language of XP, the formula
Vi, ... 2, (P(zy,...,2,) = P¥(2q,...,2,))isinT".

6Decidability of this extension of the monodic fragment waggested in a private communication by M. Za-
kharyaschev.
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Fig. 2. Model transformation

(6) No other formulae are i’.

Example 6.2 Example 6.1 contdWe give the reductio? = (U, Z,S, &), of the ex-
tended temporal probleXXP from Example 6.1. The universal, step and eventuality parts
of P' are the same as oP. The initial part,Z, consists of the following formulae

V(R () |
Vay(P(r. ) = P, ),
Yy (P(r,) = P(r,)).
Vz(R(z) = R*(z)).

THEOREM 6.3 REDUCTION OFEXTENDED PROBLEMS. XP is satisfiable if, and only
if, P" is satisfiable.

Proof We prove that given a model f&tP it is possible to find a model fd?’ and vice
versa. The transformation of models is depicted in Fig. 2.

First, consider a modeébt = (D, I) for XP and construct a modé&’ = (D, ') as
follows. The interpretation of constants in the languag&®Bfin 9t is the same as it
(recall that constants arigid).

For everyn-ary predicate® in the language oKP (in the initial signature), every-tuple
(di,...,d,) € D,and every > 0, we define

M = P(dy,....dn) iff Mips = P(dy,....dn).

3

For everyn-ary predicate”?, 0 < i < k, in the extension of the initial language (that is, in
the language o’ but not in the language ofP) we define
My = Pi(d,....d,) iff M = Pldi,...,dy),
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andP? is false indt’ for all other tuples and moments of tifad his definition is consistent
with formulae from part 5 of’; thereforedt’ is defined correctly.

Since truth values of all predicates frdPrare not changed but “shifted”, cleary}’ =
U and?M' = S. Since all our eventualities are unconditional, that is,@frthe form[_] 01
and (JVzOL(z), the truth value ofL(z) in the firstk + 1 states oft does not affect
the truth value of’ in 2'; so M’ = £'. The fact that’ = Z' can be established by
considering step by step the definitionf Indeed:

(1) Let a formulaj¢]® be inZ', where¢ € Z. Then9y = [¢]° because for every
predicates? andP°,

Mo = P(dy,...,d,) iff 9 P%di,....d,)

holds andi, = ¢.

(2) Letaformuldg]’, 0 < i < k, beinZ’, wheregp € U. Thend), |= [¢]’ because for
all predicates? and P,

M; = P(dy,...,d,) iff 9, = Pi(d,...,d,)

holds andMt; |= ¢.

(3) Letmy = Pi(di,...,
cause ofP(z) = OQ
My = QL (dy,. .. dn).

(4) Lety € X, thatis, M, |= ¢. For every subformul®P(d:,...,d,) of 1, My |=
OiP(dy,...,d,) holdsif, and only if I, = Pi(d;,...,d,). SO, = o'

(5) In accordance with the definition 8f', 9t = P(ds,...,d,) if, and only if, 9, =
P(dy,...,d,)if,and only if, M} = P*(dy,...,d,).

< i < k. Then®; = P(di,...,d,), and be-
S, we haveM; 11 = Q(d,...,d,). It follows

LetOM' be a model foP’. We construct a mod@h for XP. The interpretation of constants
in the language oKP in M1 is the same as iA'. For everyn-ary predicateP in the
language oXP and evenn-tuple(d, ..., d,) € D we define for every > k

M; = P(dy,...,dy) iff 9,_, |E Pdi,...,d,),
and for everyi such that) <i < k

M = P(dy,...,d,) iff 9 = Pi(d,... d,).
Note thatht; = Z' and, in particular, formulae from part 5 &f; therefore ) is defined
correctly. Indeed, in the cage= k£ we obtain

M, = P(dy,...,d,) iff 9 = PH(dy,...,d,).

Evidently, fori > k, M; = U and9M; = S. Again, since our eventualities are uncondi-
tional, evaluation of does not depend on a finite number of initial states,Bhg- £. It

is enough to show thaBt; = U« and; |= S fori € [0, (k — 1)], andM, = Z. Again,
this can be done by analysing the definitiorZof

The first claimM; = U, follows from item 2 of the definition of’, from the relation
M; = P(dy,...,d,) iff M |= Pi(d,...,d,)

“Note that all new predicates occur onlyh.

28



and the fact tha®t), = [¢]® for everyg € U, 0 < i < k.

The second claimt; = S, follows from item 3 of the definition of’ and from the
relation

M = P(dy,...,d,) iff 9 = Pi(dy,... d,).

The last claimt, = Z, follows immediately from item 1 of the definition @ and from
the relation

Mo = P(dy,...,d,) iff 9 = P%di,....d,)

given above. a

7. GROUNDING TEMPORAL PROBLEMS

In this section we adapt the core temporal resolution catcgiven in Section 4 to a vari-
ation of monodidOTL where sub-parts of the temporal problem greunded Not only
does this characterise an important class of formulae Hiitvvariation admits simplified
clausal resolution techniques (in particular, simplifie8&NIF).

Definition 7.1 GroundednessA temporal problen® is calledgroundedf all the step
clauses and the eventuality clausePaire ground. (Correspondingly, a monodic temporal
formula is called grounded if it can be transformed to a gomehtemporal problem.) A
temporal problen® is called aground eventualitproblem if all the eventualities & are
ground. A temporal problerR is called aground next-timgroblem if all the step clauses
of P are ground.

If P is a ground eventuality problem then only the ground versifrihe eventuality reso-
lution and eventuality termination rules are needed.

THEOREM 7.2 REDUCING A GROUND EVENTUALITY PROBLEM. Every ground
eventuality monodic temporal problem can be reduced to #sfetility equivalent
grounded monodic problem with an exponential growth in efzbe given problem.

Proof Note that the ground eventuality resolution rule, step Itggm rule, and initial
termination rule operate on merged derived step clausesif 8stead of original step
clauses we consider step clauses given by formilg€6), and(5) (and strictly speaking,
rename by propositions closed first-order formulae in thatriand left-hand sides), we
obtain a satisfiability equivalent grounded temporal peotl a

Example7.3. Consider an unsatisfiable formula
Odx(P(x) AN O-P(z)) A L1(P(z) = OP(x)).

In DSNF we have (note th&tis empty throughout),

3_{P(~77)=>OP(.7¢) } U=,
T Qx) = O-P(x) [ £ — [032(P() A Q(e))}.
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According to our reduction, this problem is satisfiabilityuévalent to the following

Uu=790,
JzP(x) = O3xP(x)
VzP(z) = OVzP(z)
JzQ(z) = OFz—P(z)
V:UQ( ) = OVz—P(z)
35(P(#) A Q(x)) = O3e(P(x) A—P())
Va(P(x) v Q(x) = OVa(P(z) v ~P(x))
£ = {03(P(x) A Q(2))}.

The last step clause is a tautology which can be eliminatedediately, the next to last
can be moved to the universal part by an application of stegluéon. .

U= {Ve(=P(z) v -Q(z))},

dzP(x) = O3zP(x)

S VzP(z) = OVaP(x)
) F2Q(z) = O3z-P(z)
Vz@Q(z) = OVz—P(x)

& ={03z(P(x) AQ(x))}-
Now the ground eventuality termination rule can be applied.

Together with Theorem 7.2 the following theorem shows thaghy problen®, if either
all the step clauses are ground or all the eventuality ckaase ground, then it can be
reduced to a grounded problem.

THEOREM 7.4 REDUCING A GROUND NEXT-TIME PROBLEM.
LetP = (Z,U, S, £) be atemporal problem such that all step rule®are ground. Let?
be obtained frong as follows: every eventuality clause of the fapth(z) (in the meaning
of Vx O L(z)) is replaced with itgroundconsequenceéz( L(z) (equivalent tod3zL(zx)).
LetP' = (Z,U,S,E3 U {OL(c) | OL(z) € &, c € const(P)}). ThenP is satisfiable if
and only ifP’ is satisfiable.

Proof (Sketch) Evidently, i is unsatisfiable, theR is unsatisfiable. Suppose ndv
is unsatisfiable, then there exists a successfully teriigémporal resolution derivation
from P°. Note that the added eventualities of the foprh(c) exactly correspond to the
eventualities added by reduction to constant-flooded form.

Suppose the eventuality resolution rule is applied to agraund eventualityz O L(z).
The validity of the side conditions implies the validity &iet formula

Cva@ n \/ A= O C-L() (10

j=1
foraset{A; = OB;,1 <i <} of groundmerged derived step rules. (10) is resolved with
the formulal ]vVz{ L(z) giving the conclusior /\ —-A;). However (10) or, equivalent to
(10), =

O A \n/ A; = O [Va—L()) (11)
j=1
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can be resolved with a “weaker” formulal 3z{ L(z) giving the same result.

If the eventuality termination rule is applied ¥:OL(z), its side conditionl/ E
Vz—L(z), equally contradicts to the ground eventuality0 L.(x). So, we can conclude
that replacing non-ground eventualities of the fovm) L(z) with ground eventualities

JzQ L(z) (equivalent tod3z L(z)) does not affect (un)satisfiability. a
Example7.5.

=11}, U= {Vall = Q())},
S={l=00}, &£={0-Q)}

Evidently, the initial, universal, and step parts implyVzQ) () which also contradicts to
[IVzO-Q(z) and [ 1320-Q(x).

8. DECIDABILITY BY TEMPORAL RESOLUTION

Temporal resolution provides a decision procedure for asctd monodic temporal for-
mulae provided that there exists a first-order decisiongutace for side conditions of all
inference rules. Direct examination of the side conditisimsws that we are interested in
the satisfiability of the conjunction of the (current) unisal part and sets of monadic for-
mulae built from predicate symbols which occur in the tenappart. At the same time, the
current universal part of a derivation is obtained by exiegthe initially given universal
part by monadic formulae from the conclusions of the infeesrules. So, after imposing
appropriate restrictions on the form of the universal p&g given temporal problem, we
can guarantee its decidability (the addition of monadierfiolae usually does not affect
decidability).

To reflect our “rename and unwind” transformation to the ralrform, we define de-
cidable fragments in terms sfirrogategHodkinson et al. 2000]. Let us reserve for every
formulag, whose main connective is a temporal operator, a unaryqag=ft, (z), and for
every sentence, whose main connective is a temporal operator, a propasiticariable
py- Py(x) andp,, are called surrogates. Given a monodic temporal formutae denote
by ¢ the formula that results from by replacing all of its subformulae whose main con-
nective is a temporal operator and which is not within a saffamother temporal operator
with their surrogates.

Such an approach allows us to define decidable monodic slassed on the properties
of surrogates analogously to the classical first-ordersitmtiproblem [Borger et al. 1997].
Note however, that it is necessary to take into consideratezurrences of temporal oper-
ators as the following example shows.

Example8.1. The first-order formul@xzVyVz3ud(z,y, z,u), whered is quantifier
free, belongs to the classical decidable fragm#it?’3*. Let us consider the temporal
formuladx [ JOVyVz3ud(z,y, 2z, u) with the samed. It is not hard to see that after the
translation into DSNF (see Example 3.6), the first formutarfi/ does not belong to
3*v23* any more. (Formally, it belongs to the undecidable Sur@Bgiger et al. 1997]
classv?3.)

The following definition takes into account the considenasi above.

Definition 8.2 Temporalisation by Renamind.et € be a class of first-order formulae.
Let ¢ be a monodic temporal formula in Negation Normal Form (thathie only boolean
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connectives are conjunction, disjunction and negatiod,r@gations are only applied to
atoms). We say that belongs to the clasg.., ¢ if

(1) ¢ belongs taz and

(2) for every subformula of the forfivy, where7 is a temporal operator (or of the form
1 Ty if T is binary), eithen) is a closed formula belonging # or the formula
Vz(P(z) = ), whereP is a new unary predicate symbol, belong€tanalogous
conditions foryy, ¥s).

Note that the formulae indicated in the first and second itefrihie definition exactly
match the shape of the formulae contributingtevhen we reduce a temporal formula to
the normal form by renaming the complex expressions ancceq) temporal operators
by their fixpoint definitions.

THEOREM 8.3 DECIDABILITY BY TEMPORAL RESOLUTION. Let € be a decidable
class of first-order formulae which does not contain eqyaditd functional symbols, but
possibly contains constants, such that

—<¢ is closed under conjunction;
—¢ contains monadic formulae.

Then7,.,¢ is decidable.

Proof After reductionto DSNF, all formulae frotd belong to¢. The (monadic) formulae
from side conditions and the (monadic) formulae generagetéimporal resolution rules
belong to¢. Theorem 4.13gives the decision procedure. a

Theorem 8.3 provides the possibility of using temporalgsmn to confirm decidability of
all temporal monodic classes listed in [Hodkinson et al.@0olter and Zakharyaschev
2002a]:monadic, two-variable, fluted, guarded and loosely guardddreover, combin-
ing the constructions from [Hodkinson 2002] and the saiomabased decision procedure
for the guarded fragment with equality [Ganzinger and Deeliév/1999], it is possible
to build a temporal resolution decision procedure for thenatlic guarded and loosely
guarded fragments with equality [Degtyarev et al. 2003a].

In addition, using the above theorem, we also obtain dedijabf some monodic
prefix-likeclasses.

COROLLARY 8.4 TEMPORALISED GODEL CLASS. The class7,.,3*V?3* is decid-
able.

Proof Every monadic formula can be reduced, in a satisfiabilityiedence preserving
way, to a conjunction of formulae of the fordx:(ly vV --- VI, V Li(z) V --- V Ly(z)),

p,g > 00r3z(Li(z) A--- A Ly(x)), r > 0, wherel; are ground literals andl; (z) are
non-ground literals. Obviously, every conjunct isdifiv>3*. Satisfiability of a conjunction

of formulae belonging t&@*v23* is decidable, e.g. by the resolution-based technique (see
clause set clasS™ in [Fermiiller et al. 2001]). Q

COROLLARY 8.5 TEMPORALISEDMASLOV CLASS. The class7,.,K is decidable
(whereK is the Maslov class [Maslov 1968]).

Proof Again, monadic formulae can be rewritten as a conjunctiokla$lov formulae;
satisfiability of a conjunction of Maslov formulae is dedidaas shown in [Hustadt and
Schmidt 1999]. a
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Input. A temporal problenP and an eventuality clauseL(z) € £.
Output. A formula H (x) with at most one free variable.
Method:. (1) LetHo(z) = true; No = 0;4 = 0.
@ Let Nipy = {Vz(A"(2) = OB/ (2))}i_, be the set ofall full
merged step clauses such that for evgne {1...k}, Vo A Bi*V(z) =

(~L(x) A H;(x))) holds. (The setV;,: possibly includes the degenerate clayse
true = Otruein the casé( |= Vx(—~L(z) A H;(z)).)

k .
(3) If Niyr = 0, retumnfalse; else letH ;41 (z) = \/ (AVTV ().
i=1

(4) fVz(Hi(z) = Hiyi(z)) returnH; 41 (z).
(5) i =i+ 1; goto 2.

Fig. 3. Breadth First Search algorithm.

Example8.6. Let us consider the temporal formidla= 3z [(10VyVzTud(z,y, z,u)
from example 8.1. In case whel(x,y, z,u) is a literal, the first formula frond/ (see
Example 3.6) belongs to the Maslov class, and, tiubglongs to7,..,, K. If, however,®
is a complex formula, for exampl@,(z,y, z,u) = Q1(z,y) V Q2(y,2) V Q(z,y, z,u),
the first formula froni/ does not belong t&” any more.

9. LOOP SEARCH ALGORITHM

The notion of a full merged step clause given in Section 5 ikeqavolved and the search
for appropriate merging of simpler clauses is computatigieard. Findingsetsof such
full merged clauses needed for the temporal resolutionisidgen more difficult. In Fig. 3
we present a search algorithm that findap formula(cf. page 12) — a disjunction
of the left-hand sides of full merged step clauses that tegewith an eventuality literal
form the premises for the temporal resolution rule. Themtlym is based on Dixon’s loop
search algorithm for the propositional case [Dixon 199@jJr §implicity, in what follows
we consider non-ground eventualities only. The algoritmu #he proof of its properties
for the ground case can be obtained by considering mergeadestep clauses instead of
the general case and by deleting the parametéahd quantifiers. We are going to show
now that the algorithm terminates (Lemma 9.2), its outpuat isop formula (lemmas 9.3
and 9.4), and temporal resolution is complete if we consiady the loops generated by
the algorithm (Theorem 9.5).

LEMMA 9.1. The formulaeH;(x), i > 0, constructed by the BFS algorithm, satisfy
the following property¥z(H; 1 (z) = H;(z)).

Proof By induction. In the base case= 0, we haveH,(z) = true and, obviously,
Vz(Hi(xz) = true). The induction hypothesis is th&t:(H;(z) = H,_1(z)). In the
induction step, letV;.1 # 0 (otherwise,H;,(z) = false and, evidentlyyz(false =
H;(z)) holds). LetN;y1 = {¥a(A'™ () = OB ()}, . Foreveryj € {1...k}
we haveVm(B;.”])(z) = (=L(z) A H;(z))). By the induction hypothesi¥z(H;(z) =
H;_1(x)) and, thereforeyz(B\""" (z) = (=L(z) A Hi_1(z))), thatis, Ny, C N;. It
follows thatVz(H;11(z) = H;(z)). a
LEMMA 9.2. The BFS algorithm terminates.
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Proof There are only finitely many differer{;(z). Therefore, either there existssuch
that Hy (z) = falseand the algorithm terminates by step 3, or there éxist: I < m such
thatVz(H;(z) = H,,(z)). In the latter case, by Lemma 9.1, we hatvg H,,, 1(z) =
H(x)), thatisVz(H,,_1(z) = H,(x)). By step 4, the algorithm terminates. a

LEmMMA 9.3. Let H(x) be a formula produced by the BFS algorithm. Thar{i/ A
H(z) = O [-L(x)).

Proof If H(z) = false, the lemma holds. Otherwise, consider the last computel sat
(thatis,H () = Hii1(x)). Let Nipy = {Va(AS " (2) = OB (2))}5_,. Note that

J
forall j € {1...k}, it holdsVz(t A B{"*"(2) = -L(z)) and, sincevz(H;(z) =
Hii1(z)), we also haverz(U A BY*(z) = Hiii(z)), that is, Ny, is a loop and
H;y () is its loop formula. a

LEMMA 9.4. Let P be a monodic temporal problerd, be a loop inQL(z) € £, and
L(x) be its loop formula. Then for the formufd(z), produced by the BFS algorithm on
O L(z), the following holdsVz(L(z) = H(x)).

Proof We show by induction that for all sets of full merged step sk8N; . 1, constructed
by the algorithm,L. C N;;1. In the base case= 0, Hy(z) = true and for every full
merged step clausér(A(z) = B(z)) € L, we havevz (U A B(z) = (—L(z) Atrue));
therefore L C NV;.

Our induction hypothesis is that ¢ N;, thatis,N; = £ U N/. ThenH;(z) =
L(z) Vv Hj(z). LetVz(A(z) = B(z)) be any full merged step clause froth By
the definition of a loopyz(U A B(z) = (=L(z) A L(z))), henceVz(U A B(z) =
((nL(z)AL(z))V(-L(z)ANH}(x)))), thatisVz (UAB(z) = (—~L(z)AH;(x))). Since the
setN;,1 consists of all full merged step cIausﬁs(Ay“) (z) = OB§’+1) (z)), such that

VU A B (2) = (-L(z) A Hi(z))) holds, we have/z(A(z) = B(x)) € Nij1. As
Vx(A(z) = B(z)) is an arbitrary full merged step clause fraimit means thatl C N;,4.
It follows thatVx(L(xz) = H(z)). a

The proof of the completeness theorem goes by showing thet #xists an eventuality
OL(z) € £ and a loopL = {Vz(A;(z) = OB;(z))}r, such that the application of
the eventuality resolution rule ©L(x) and L leads to the deletion of some vertices from
the eventuality graph. A verteX is deleted from the graph if the categorical formula,
Fe, together with the universal pat, is satisfiable, buFe A Vz— \/;?:1 Aij(z) AU is
unsatisfiable.

THEOREM 9.5 RELATIVE COMPLETNESS Temporal resolution is complete if we re-
strict ourselves to loops found by the BFS algorithm.

Proof Let H(x) be the output of the BFS algorithm, I&t(z) = \/*_| A;(z). By

Lemma 9.4Vx(L(x) = H(zx)) holds; thereforeH (z) is notfalse. From the proof of
Lemma 9.3 it follows that the last computed 9€t,, (thatis, H(xz) = H,;11(z)) is a
loop in OL(x) and H(z) is its loop formula. Sinc&/z(L(z) = H(z)), the formula

Fe AN Vz—H(z) AU is unsatisfiable as well and the application of the evertiuadis-
olution rule to{Q L(z) and N, leads to deletion of at least the same vertices from the
eventuality graph. a
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Note 9.6. The need to includall full merged step clauses satisfying some particular
conditions intoV;, 1 might lead to quite extensive computations. Note howe\ardhe to
the trivial fact that iVz(A(z) = B(z)) thenVz((A(z) vV B(z)) = B(z)), we can restrict
the choice to only those full merged step clauses whoséd&eft sides do not imply the
left-hand side of any other clause ¥y, yielding a formulaf;_ , (=) equivalent to the
original formulaH; ().

Example9.7. Let us consider an unsatisfiable monodic temporal prof#®, given by

T = {3rA(2)},
U = {Vz(B(z) = A(z) AN —=L(z))},
S = {A(z) = OB()},
& = {0L(x)}
and apply the BFS algorithm ©L(z).
The set of all full merged step clauség,, whose right-hand sides imptyL(z), is:
(VyA(y)) = O(VyB(y)), (12)
(A(z) AVYA(y)) = O(B(z) AVyB(y)) (13)
(A(z) AFyA(y)) = O(B(z) AdyB(y)) (14)
Note thatvz(Vy A(y) = A(x) AVyA(y)) andVa(A(z) AVyA(y)) = A(z) A JyA(y));
therefore, claused 2) and(13) can be deleted fronV; yielding

Ny ={(A(z) A3yA(y)) = O(B(z) AJyB(y))} and  Hi(z) = (A(x) AJyA(y))-

A(
A(

The set of all full merged step clausds whose right-hand sides imply(z) A H; (z)
coincides withN; and the output of the algorithm &) (z) = H; (x). The conclusion of
the eventuality resolution rul&z—A(z) vV -3y A(y), simplified toVz—A(x), contradicts
the initial part of the problem.

Note that all full merged step clauses fravh are loops inG L(x), but both conclusions
of the eventuality resolution rule, applied to the logpg) and(13), can be simplified to
Jz—A(x) which does not contradict the initial part.

10. SEMANTICS WITH EXPANDING DOMAINS

So far, we have been considering temporal formulae intergrever models with theon-
stant domain assumptionin this section we consider another important case, namely
models that havexpanding domainsAlthough it is known that satisfiability over ex-
panding domains can be reduced to satisfiability over cahsitamains [Wolter and Za-
kharyaschev 2001], we here provide a procedure that caniedglirectly to expanding
domain problems. Our interest in such problems is partlyivatgd by the fact that the
expanding domain assumption leads to a simpler calculus amaenable to practical im-
plementation [Konev et al. 2003b], and partly by the coroesience between expanding
domain problems and important applications, such as spatiporal logics [Wolter and
Zakharyaschev 2002b; Gabelaia et al. 2003] and temporatigéen logics [Artale et al.
2002]. In addition, the way we refine the calculus of Sectido the expanding domain
case constitutes, we believe, an elegant and significaplification.

We begin by presenting the expanding domain semantics axg@d to give the give the
resolution calculus for the expanding domain case.
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Under expanding domain semantics, formulaeFOfTL are interpreted in first-order
temporal structures of the foriit = (D,,, I,), n € N, where everyD,, is a non-empty
set such that whenever < m, D,, C D,,, andI, is an interpretation of predicate and
constant symbols ovdp,,. Again, we require that the interpretation of constantsgisir
A (variable) assignment is a function from the set of individual variablestg,cn Dy;
the set of all assignments is denoted®y

For every moment of time, the corresponding first-order structud®,, = (D, I,,);
the corresponding set of variable assignm@hisis a subset of the set of all assignments,
U,, = {a € V| a(z) € D,, for every variabler}; clearly,5,, C B,, if n < m.

Then, thetruth relationt,, =* ¢ in a structured is defined inductively in the same
way as in the constant domain case, tly for those assignmenisthat satisfy the con-
ditiona € ,,.

Example10.1. The formulavzP(z) A [ J(VzP(z) = OVzP(x)) A 0Jy—P(y)
is unsatisfiable over both expanding and constant domahms;farmulaVzP(z) A
L(Ve(P(z) = OP(x))) A 0Jy—P(y) is unsatisfiable over constant domains but has
a model with an expanding domain.

It can be seen that our earlier reduction to DSNF holds forettganding domain case
(the only difficulty is Lemma 3.3 where, in defininguitforL(d), we must consider cases
wheredt, = [JOP(d) or M, = O [ J-P(d) wherek is the moment whed “appears”).

The calculus itself coincides with the calculus given int®ec4; the only difference
occurs in the merging operation. As Example 10.1 shows, ¢nivet] step clausés) is
not a logical consequence 6f) in the expanding domain case. Surprisingly, if we omit
derived step clauses of this form, we not only obtain a cogaiculus, but also a complete
calculus for the expanding domain case!

Definition 10.2Derived Step Clauses: Expanding Domairet P be a monodic tem-
poral problem, and let

be a subset of the set of its original non-ground step cladden

Jz(P, (z) A -+ APy, (2) = OFx(M;, () A--- A M;, (x)),
P;;(c) = O M, (c)

aree-derived step clauses, wherds a constant occurring iR.

The notions of a merged derived and full step clause as waikasalculus itself are exactly
the same as in Section 4.

Correctness of this calculus is again straightforward. gxscbmpleteness, we have to
slightly modify the proof of Section 5.

The proof of Theorem 4.13 relies on the theorem on existeheemdel, Theorem 5.15,
and it can be seen that if we prove an analog of Theorem 5.1théoexpanding domain
case, the given proof of completeness holds for this case.

We outline here how to modify the proof of Theorem 5.15 for tase of expanding
domains. All the definitions and properties from Section & ansfered here with the
following exceptions.
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Now, the universally quantified part does not contributeezito.A or B.
Ac = A HTAFY () AN Ag A A Ap(c)((f),

y€T c€const(C)
Be = /\ Eil‘B7 (CL’) A By A /\ Bp(c)(c).
yer c€const(C)

This change affects the suitability of predicate colours.

LEMMA 10.3 ANALOGUE OF LEMMA 5.10. Let H be the behaviour graph for the
problemP = (U,Z,S, &) with an edge from a verte® = (T, 0, p) to a vertexC' =
(T, 6',p'). Then

1. foreveryy € T there exists & ' € T such that the paify, ') is suitable;
3. the pair of propositional colourd, §') is suitable;
4. the pair of constant distribution, p') is suitable.

Note that the missing conditidh of Lemma 5.10 does not hold in the expanding domain
case. However, under the conditions of Lemma 108, i p'(¢), for somec € const(P),
there always exists4@ € I" such that the paify,y') is suitable.

Since for a predicate coloyrthere may not exist a coloyf such that the paify’, ) is
suitable, the notion of a run is reformulated.

Definition 10.4Run Letr be a path through a behaviour grafitof a temporal prob-
lemP. By arunin = we mean a functiom(n) mapping its domaindom(r) = {n €
N | n > ng} for someng € N, to|J,. I'i such that for every. € dom(r), r(n) € T,
r(n) the pair(r(n), r(n + 1)) is suitable.

Finally, the proof of Lemma 5.16 is modified as follows.

Proof [of Lemma 5.16 for the expanding domain case] We construeith, p, through
the behaviour graphy, satisfying properties (a), (b), and (d) in exactly the sarag as in
the proof for constant domains. The only difference is invilag how we prove condition
(c). We assume the denotation from that proof. Sc( let 7 (i) andy € T'¢.

LetC = #(i) andy € T'¢c. Then there exists” € C, such thatC,~) =+ (Cn,v").

Since foreveryy"” € C,, there existy " € C,({“"’L‘“') such that all eventualities are satisfied

on the run-segment from” to v and there exists(!) € C,, (C") ) 5+
(Cn,y™), then there is an e-rum, such that-(i) = ~, i.e., property (c) holds. (Note that
we now do not assume that the e-run must stafh gt a

This contributes to the following theorem.

THEOREM 10.5 EXPANDING DOMAINS: CORRECTNESS ANDCOMPLETNESS The
rules of temporal resolution preserve satisfiability. Let @bitrary monodic temporal
problemP be unsatisfiable over expanding domain, then fairyderivation by temporal
resolution fromP¢ successfully terminates.

11. IMPLEMENTATION

Temporal resolution, as described in this paper, can beecimghted in a straightforward
way—one would enumerate all possible (full) merged stepsea and extend the universal
part by all possible conclusions. While this approach bé&n&fhm the ability to employ
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any classical first-order method to test applicability of th&es) thus making the method
widely applicable, it is obviously not very practical.

For the case when the universal part fits into a “nice” firgteorfragment which can be
decided by resolution [Fermuller et al. 2001], we have tigwed a more machine-oriented
calculus which we calline-grainedtemporal resolution [Konev et al. 2003a; 2003b]. We
show that the set of conclusions by fine-grained resolutidgmoides with the set of conclu-
sions by the inference rules given in this paper proving gausdness and completeness
of the new system. At the moment, we are performing somemimdiry experiments com-
bining the propositional resolution temporal prover TRRHtistadt and Konev 2003] and
a successful classical first-order theorem prover, VanjRi@zanov and Voronkov 2001];

a report on the combination can be found in [Hustadt et al4R00

12. CONCLUSIONS

In this paper, we have modified and extended the clausal texhpesolution technique
in order to enable its use in monodi©®TL. We have developed a specific normal form
for FOTL and have provided a complete resolution calculus for foamuh this form.
The use of this technique has provided us with increasedrataheling of the monodic
fragment, allowing definitions of new decidable monodissks, simplification of existing
monodic classes by reductions, and completeness of cl@mspbral resolution in the case
of monodic logics with expanding domains.

However, not only is this approach useful in examining antbrding the monodic
fragment, butitis being used as the basis for a practicalfpechnique for certain monodic
classes [Konev et al. 2003b]. Refining and analysing thidémpntation forms part of
our future work, as does the application of this techniqueriactice. Since formulae
such ad_1Vz,y(p(z,y) = Op(z,y)) are non-monodic, the monodic restriction disallows
us from describing the evolution of relational structuregéeneral. However, within the
monodic class we still have the capability of describingpiasting and useful systems,
particularly where the evolution of properties of compasés required (e.g. via formulae
such as[]Vz(p(z) = Op(x))) which allows us to apply monodic reasoning to a range
of areas including program verification [Fisher and Lisig¥03], temporal description
logics [Artale and Franconi 2004], agent theories [Fishred &hidini 2002] and spatio-
temporal logics [Wolter and Zakharyaschev 2002b].

We are developing an implementation of fine-grained tempesolution; a detailed
description of the system is a matter of forthcoming puliaces.

Acknowledgements We thank the anonymous referees for their helpful commends a
suggestions for future work. The authors would like to ackiedge support from EPSRC
via research grants GR/M46631 and GR/R45376. The thircbaigtsupported in part by
Award No. RM1-2409-ST-02 of the U.S. Civilian Research & B®pment Foundation
for the Independent States of the Former Soviet Union (CRDF)

REFERENCES

ARTALE, A. AND FRANCONI, E. 2004. Temporal description logics. Handbook of Temporal Reasoning in
Artificial Intelligence M. Fisher, D. M. Gabbay, and L. Vila, Eds. Elsevier. (To agpe

ARTALE, A., FRANCONI, E., WOLTER, F., AND ZAKHARYASCHEV, M. 2002. A temporal description logic
for reasoning over conceptual schemas and querieBrdeeedings of JELIA'QZNCS, vol. 2424. Springer,
98-110.

BACHMAIR, L. AND GANZINGER, H. 2001. Resolution theorem proving. Handbook of Automated Reason-
ing, A. Robinson and A. Voronkov, Eds. Elsevier, Chapter 2, 29-9

38



BORGER E., GRADEL, E.,AND GUREVICH, Y. 1997. The classical decision problenspringer.

DEGTYAREV, A. AND FISHER, M. 2001. Towards first-order temporal resolution. Kh2001, Proceedings
LNCS, vol. 2174. Springer, 18-32.

DEGTYAREV, A., FISHER, M., AND KONEV, B. 2002. A simplified clausal resolution procedure for msip
tional linear-time temporal logic. Ifableaux 2002, Proceedingkecture Notes in Computer Science, vol.
2381. Springer, 85-99.

DEGTYAREV, A., FISHER, M., AND KONEV, B. 2003a. Handling equality in monodic temporal resolutitn
Proceedings of 10th International Conference on Logic fmgPamming, Artificial Intelligence, and Reason-
ing (LPAR) Lecture Notes in Computer Science, vol. 2850. Springelage Almaty, Kazakhstan, 214-228.

DEGTYAREV, A., FISHER, M., AND KONEYV, B. 2003b. Monodic temporal resolution. Rroc. CADE-19
LNAI, vol. 2741. Springer, 397-411.

DEGTYAREV, A., FISHER, M., AND LISITSA, A. 2002. Equality and monodic first-order temporal logstudia
Logica 72,2, 147-156.

DixoN, C. 1996. Search strategies for resolution in temporakkgiln Proc. CADE-13 LNAI, vol. 1104.
Springer, 673-687.

FERMULLER, C., LEITSCH, A., HUSTADT, U., AND TAMMET, T. 2001. Resolution decision procedures. In
Handbook of Automated Reasonig Robinson and A. Voronkov, Eds. Vol. Il. Elsevier, Chap28, 1791—
1850.

FISHER, M. 1991. A resolution method for temporal logic. Proc. IJCAI'9], J. Myopoulos and R. Reiter, Eds.
Morgan Kaufman, 99-104.

FISHER, M. 1992. A normal form for first-order temporal formulae. 1fith International Conference on Auto-
mated DeductionD. Kapur, Ed. Lecture Notes in Artificial Intelligence, v@07. Springer Verlag, Saratoga
Springs, NY, USA, 370-384.

FISHER, M. 1997. A normal form for temporal logics and its applica in theorem proving and execution.
Journal of Logic and Computation %, 429-456.

FISHER, M., DIXON, C.,AND PEIM, M. 2001. Clausal temporal resolutioACM Transactions on Computa-
tional Logic 2,1, 12-56.

FISHER, M. AND GHIDINI, C. 2002. The ABC of rational agent programming. Aroc. First International
Conference on Autonomous Agents and Multi-Agent SystefdAS) ACM Press, 849-856.

FISHER, M. AND LISITSA, A. 2003. Deductive verification of cache coherence prdsctn Proceedings of
3rd International Workshop on Automated Verification oftiCal Systems (AVoCS 2003outhampton, UK,
177-186.

GABBAY, D. 1987. Declarative past and imperative future: exeeutamporal logic for interactive systems. In
Proceedings on Colloquium on Temporal Logic and SpecifinaB. Baniegbal, H. Barringer, and A. Pnueli,
Eds. LNCS, vol. 398. Springer Verlag, Altrincham, U.K., 4@30.

GABELAIA, D., KONTCHAKOV, R., KURUCZ, A., WOLTER, F., AND ZAKHARYASCHEV, M. 2003. On the
computational complexity of spatio-temporal logics.Aroc. 16th International FLAIRS Conferenc®AAl
Press, 460-464.

GALLIER, H. 1986.Logic for computer scienceHarper and Row, New York.

GANZINGER, H. AND DE NIVELLE, H. 1999. A superposition decision procedure for the guhfdegment
with equality. InProc. 14th IEEE Symposium on Logic in Computer ScieB88-305.

HODKINSON, I. 2002. Monodic packed fragment with equality is deciéalStudia Logica 72185-197.

HODKINSON, |., WOLTER, F.,AND ZAKHARYASCHEV, M. 2000. Decidable fragments of first-order temporal
logics. Annals of Pure and Applied Logic 1085-134.

HoLzMANN, G. J. 1997. The model checker SpiREE Trans. on Software Engineering Z3,279-295.

HuUsTADT, U. AND KONEYV, B. 2003. TRP++ 2.0: A temporal resolution prover.FAroc. CADE-19LNAI, vol.
2741. Springer, 274-278.

HUSTADT, U., KONEV, B., VORONKOV, A., AND RIAZANOV, A. 2004. TeMP: A temporal monodic prover.
Tech. Rep. ULCS-04-004, University of Liverpool, Departthef Computer Science. Submitted.

HUSTADT, U. AND SCHMIDT, R. A. 1999. Maslov's class K revisited. Froceedings of the 16th International
Conference on Automated Deduction (CADE;H8)Ganzinger, Ed. LNAI, vol. 1632. Springer, 172-186.

KAIVOLA, R. 1995. Axiomatising linear-time mu-calculus. Pmoc. Concur'95

39



KESTEN, Y. AND PNUELI, A. 1995. A complete proof system for QPTL. Rroceedings of 10th Annual IEEE
Symposium on Logic in Computer Science (LICSEE Computer Society Press, San Diego, California, USA,
2-12.

KONEV, B., DEGTYAREYV, A., DIXON, C., HSHER, M., AND HUSTADT, U. 2003a. Mechanising first-order
temporal resolution. Tech. Rep. ULCS-03-023, University.igerpool, Department of Computer Science.
Submitted.

KONEV, B., DEGTYAREV, A., DIXON, C., HSHER, M., AND HUSTADT, U. 2003b. Towards the implementation
of first-order temporal resolution: the expanding domasec#nProceedings TIME-ICTL'03EEE Computer
Society Press, 72-82.

KONTCHAKOV, R., LUTZ, C., WOLTER, F.,AND ZAKHARYASCHEV, M. 2004. Temporalising tableaugtudia
Logica, to appear.

MANNA, Z. AND PNUELI, A. 1992. The temporal logic of reactive and concurrent systems: ifipation.
Springer.

MAsLov, S. 1968. The inverse method for establishing deducibftitylogical calculi. Trudy Math. Inst.
Steklov XCVII| 22-25. Engl. transl. AMS 1971.

MERz, S. 1992. Decidability and incompleteness results for-&irder temporal logic of linear timelournal of
Applied Non-Classical Logics, 239-156.

NONNENGART, A. AND WEIDENBACH, C. 2001. Computing small clause normal forms. Handbook of
Automated Reasoning. Robinson and A. Voronkov, Eds. Elsevier, Chapter 6, 339~

PLAISTED, D. AND GREENBAUM, S. 1986. A structure-preserving clause form transformnatiJournal of
Symbolic Computation 3 (Sept.), 293-304.

PNUELI, A. 1977. The Temporal Logic of Programs. Rroceedings of the Eighteenth Symposium on the
Foundations of Computer Scienet-57.

RiAzANOV, A. AND VORONKOV, A. 2001. Vampire 1.1 (System description). Pmoc. IJCAR 2001LNCS,
vol. 2083. Springer.

SzZALAS, A. AND HOLENDERSK], L. 1988. Incompleteness of first-order temporal logidwintil. Theoretical
Computer Science 5317-325.

TSEITIN, G. 1983. On the complexity of derivations in propositiogalculus. InAutomation of Reasoning
(Classical papers on Computational Logid). Siekmann and G. Wrightson, Eds. Vol. 2. Springer Verlag,
466-483. Original paper (in Russian) appeared in 1968.

WOLPER, P. 1982. Synthesis of communicating processes from teshpagic specifications. Ph.D. thesis,
Stanford University.

WOLTER, F. AND ZAKHARYASCHEYV, M. 2001. Decidable fragments of first-order modal logidsurnal of
Symbolic Logic 661415-1438.

WOLTER, F. AND ZAKHARYASCHEV, M. 2002a. Axiomatizing the monodic fragment of first-ordemporal
logic. Annals of Pure and Applied logic 11833-145.

WOLTER, F. AND ZAKHARYASCHEV, M. 2002b. Qualitative spatio-temporal representatiod @asoning: a
computational perspective. Bxploring Artificial Intelligence in the New MilleniunMorgan Kaufmann,
175-216.

Received June 2003; revised February 2004; accepted A 2

40



