
Monodirectional P Systems?

Alberto Leporati, Luca Manzoni, Giancarlo Mauri,
Antonio E. Porreca, Claudio Zandron

Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano-Bicocca
Viale Sarca 336/14, 20126 Milano, Italy
{leporati,luca.manzoni,mauri,porreca,zandron}@disco.unimib.it

Summary. We investigate the influence that the flow of information in membrane systems
has on their computational complexity. In particular, we analyse the behaviour of P systems
with active membranes where communication only happens from a membrane towards
its parent, and never in the opposite direction. We prove that these “monodirectional
P systems” are, when working in polynomial time and under standard complexity-theoretic
assumptions, much less powerful than unrestricted ones: indeed, they characterise classes
of problems defined by polynomial-time Turing machines with NP oracles, rather than
the whole class PSPACE of problems solvable in polynomial space.

1 Introduction

P systems with active membranes working in polynomial time are known to be able
to solve all PSPACE-complete problems [1]; this exploits membrane structures
of polynomial depth and a bidirectional flow of information (in terms of moving
objects or changing charges), both from a parent membrane to its children, and
the in opposite direction.

When restricting the depth of the membrane structures of a family of P systems
to a constant amount, it is still possible to solve problems in the counting hier-
archy CH, defined in terms of polynomial-time Turing machines with oracles for
counting problems [4]. In the proof of this result, it has been noticed that send-in

communication rules of the form a []αh → [b]βh allow us to check whether the amount
of objects located in a membrane exceeds a (possibly exponential) threshold in
polynomial time.

It is then natural to ask whether that feature is actually necessary in order to
obtain the power of counting in polynomial time. In this paper we prove (under the
standard complexity-theoretic assumption that PNP 6= P#P) that this is actually

? This work was partially supported by Università degli Studi di Milano-Bicocca, FA 2013:
“Complessità computazionale in modelli di calcolo bioispirati: Sistemi a membrane e
sistemi di reazioni”.

208 A. Leporati et al.

the case: P systems with monodirectional communication, where the information
flows only towards the outermost membrane, are limited to PNP, the class of
problems efficiently solved by Turing machines with NP oracles. This happens
even when allowing polynomially deep membrane structures, a weak form of non-
elementary membrane division, or dissolution (which, in this case, turns out to be
as powerful as weak non-elementary division). The PNP upper bound is actually
reached when dissolution or weak non-elementary division are allowed; if neither is
available, then the computation power decreases to PNP

‖ , where the queries must
all be fixed in advance, rather than asked adaptively. Chapter 17 of Papadimitriou’s
book [7] provides more details on complexity classes defined in terms of Turing
machines with NP oracles.

For an introduction to P systems with active membranes (AM), we refer the
reader to the original paper by Gh. Păun [8], supplemented by the definitions
of complexity classes PMCAM (resp., PMC?AM) of problems solved by uniform
(resp., semi-uniform) families of confluent P systems in polynomial time [5]. De-
fine M = AM(−i,−n,+wn) to be the class of monodirectional P systems with
active membranes, without send-in rules; we also remove the usual (“strong”)
non-elementary division rules, of the form[

[]+h1
· · · []+hm

[]−hm+1
· · · []−hn

]α
h
→
[
[]δh1
· · · []δhm

]β
h

[
[]ζhm+1

· · · []ζhn

]γ
h

since they also provide a way for membrane h to share information with its children
by changing their charge. We replace these rules by “weak” non-elementary division
rules [11] of the form [a]αh → [b]βh [c]γh, which allow the creation of complex membrane
structures (such as complete binary trees) without exchanging information with
the children membranes.

Let M(−d), M(−wn), and M(−d,−wn) denote monodirectional P systems
without dissolution, without weak non-elementary division, and without both kinds
of rules, respectively. For each class D of P systems, let PMCD and PMC?D be the
classes of problems solvable by uniform and semi-uniform families of P systems of
class D. Then, the main results of this paper can be summarised as follows:

• The whole class PMC
[?]
M, as well as PMC

[?]
M(−d) and PMC

[?]
M(−wn), are equiva-

lent to PNP. Here [?] denotes optional semi-uniformity.

• The class PMC
[?]
M(−d,−wn) is equivalent to PNP

‖ .

The rest of the paper is structured as follows: in Section 2 we prove some basic
limitations of monodirectional P systems; in Section 3 we exploit these results
to prove upper bounds to the complexity classes for monodirectional P systems;
in Section 4 we provide the corresponding lower bounds by simulating Turing
machines with NP oracles; in Section 5 some results of the preceding sections are
improved; finally, in Section 6 we present some open problems and directions for
future research.

Monodirectional P Systems 209

2 Properties of monodirectional P systems

We begin by proving some properties of monodirectional P systems that show how
the lack of inbound communication substantially restricts the range of behaviours
exhibited during the computations.

Definition 1. Let Π be a P system, and let C and D be configurations of Π. We
say that C is a restriction of D, in symbols C v D, if the membrane structures of
the two configurations are identical (i.e., they have the same shape, labelling, and
charges) and each multiset of objects of C is a submultiset of that located in the
corresponding region of D.

The following proposition shows that, while a recogniser P system working in
time t might create exponentially many objects per region during its computation,
only a polynomial amount (with respect to t) of them in each region does actually
play a useful role if the system is monodirectional: indeed, the final result of the
computation can be identified by just keeping track of a number of objects per
region equal to the number of steps yet to be carried out.

Lemma 1. Let Π be a monodirectional recogniser P system, and let C = (C0, . . . , Ct),
with t ≥ 1, be a halting computation of Π. Then, there exists a sequence of configu-
rations (D0, . . . ,Dt) such that

(i) we have Di v Ci for 0 ≤ i ≤ t, and each multiset of Di has at most t − i
objects;

(ii) for all i < t there exists a configuration Ei+1 such that Ei+1 is reachable in
one step from Di (Di → Ei+1 for brevity) and Di+1 v Ei+1;

(iii) a send-out rule of the form [a]αh → []βh yes (resp., [a]αh → []βh no) is applied
to the outermost membrane during the transition step Dt−1 → Et if and only
if C is an accepting (resp., rejecting) computation.

Proof. By induction on t. If t = 1, then the environment of C1 contains yes
or no, which have been sent out during the computation step C0 → C1 by a
rule [a]αh → []βh yes or [a]αh → []βh no. Let D0 v C0 be obtained by keeping only the
objects on the left-hand side of send-out, dissolution, and division rules applied
during C0 → C1 (we call these rules “blocking”, since at most one of them can be
applied inside each membrane at each step). At most one object per region is kept,
given the lack of send-in rules. Let D1 v C1 be obtained by deleting all objects.
Then:

(i) we have D0 v C0 and D1 v C1 by construction, and all multisets of D0 and D1

have at most 1 and exactly 0 objects, respectively;
(ii) let the transition D0 → E1 be computed by applying all blocking rules applied

during the step C0 → C1, which are all enabled by construction; then E1 v C1
and, since D1 v C1 and D1 contains no objects, necessarily D1 v E1;

(iii) the computation C is accepting if and only if the rule [a]αh → []βh yes is
applied from C0, and the latter is equivalent by construction to that rule
being applicable from D0 (the reasoning is similar if C is rejecting).

210 A. Leporati et al.

This proves the base case. Now let C = (C−1, C0, . . . , Ct) be a halting computation
of length t+ 1. The sub-computation (C0, . . . , Ct) is also halting, and by induction
hypothesis there exists a sequence of configurations (D0, . . . ,Dt) satisfying (i)–(iii).
Construct the configuration D−1 as follows: first of all, keep all objects from C−1
that appear on the left-hand side of blocking rules applied during the computation
step C−1 → C0; this requires at most one object per region, and guarantees that
the membrane structure’s shape and charges can be updated correctly (i.e., the
same as C0 and D0).

We must also ensure that all objects of D0 can be generated from D−1 during
the transition D−1 → E0. Once the blocking rules to be applied have been chosen,
any object a located inside a membrane of D0 can be traced back to a single object
in D−1. Either a appears on the right-hand side of one of those blocking rules,
or it appears on the right-hand side of an object evolution rule applied in the
step C−1 → C0, or it does not appear explicitly in any rule applied in that step; in
the latter case, it is either carried on unchanged from D−1 (possibly from another
region, if membrane dissolution occurred), or is created by duplicating the content
of a membrane by applying a division rule (triggered by a different object). As a
consequence, at most t objects per region of D−1, possibly in conjunction with a
single object per region involved in blocking rules, suffice in order to generate the t
objects per region of D0. As a consequence,

(i) we have D−1 v C−1 by construction, and D−1 contains at most t+ 1 objects
per region;

(ii) by applying all blocking rules and as many evolution rules as possible from
the computation step C−1 → C0 in D−1, we obtain a configuration E0 with
the same membrane structure as D0 and, as mentioned above, containing all
objects from D0 (and possibly other objects generated by evolution rules).

Since (iii) holds by induction hypothesis, this completes the proof. ut

Notice that this lemma does not give us an efficient algorithm for choosing
which objects are important for each step of the computation; it only proves that
a small (i.e., polynomial-sized) multiset per region exists. However, it is easy to
find such an algorithm by slightly relaxing the conditions: instead of limiting the
cardinality of the multisets to t − i, we limit the number of occurrences of each
symbol to that value, and simply delete the occurrences in excess separately for
each symbol. This gives us the larger cardinality bound |Γ | × (t − i) per region,
which is polynomial whenever the number of computation steps of the system is,
and still allows us to simulate the overall behaviour of the P system.

Lemma 1 fails for P systems with send-in rules because some configurations
where each multiset is small nonetheless require a previous configuration with a
region containing exponentially many objects. This is the case, for instance, for
P systems solving counting problems, where the number of assignments satisfying a
Boolean formula is checked against a threshold by means of send-in rules [4]. Those
assignments are represented in the P system by a potentially exponential number of
objects located in the same region, which are sent into exponentially many children

Monodirectional P Systems 211

membranes in parallel (i.e., at most one object enters each child membrane), and
cannot always be reduced to a polynomial amount without changing the accepting
behaviour of the P system.

Another property of monodirectional P systems is the existence of computations
where membranes having the same labels always have children (and, recursively, all
the descendents) with the same configuration. This property will be useful when
simulating confluent recogniser monodirectional P systems in Section 3.

Lemma 2. Let Π be a monodirectional P system. Then there exists a computa-
tion C = (C0, . . . , Ct) of Π where, in each configuration Ci, the following holds:
any two subconfigurations2 of Ci having membranes with the same label as roots
are identical, except possibly for the multiset and charge of the root membranes
themselves.

Proof. By induction on i. The statement trivially holds for the initial configuration
of Π, since the membranes are injectively labelled.

When a division rule is applied to a membrane h, two subconfigurations with
root h are created; this is the only way to generate multiple membranes sharing
the same label. The two resulting subconfigurations may only differ with respect
to the contents and charges of the root membranes, since the internal membranes
have evolved before the division of h occurs (recall that the rules are applied, from
a logical standpoint, in a bottom-up way [8]).

On the other hand, if two subconfigurations with identically labelled root
membranes already exist in a configuration Ci, then we can assume that the
property holds by induction hypothesis. We can then nondeterministically choose
which rules to apply in the subconfiguration having the first membrane as root,
excluding the root itself; since the other subconfiguration is identical (except
possibly for the root), the same multiset of rules can also be applied to it, thus
preserving the property in the next configuration of the system. ut

While Lemma 2 somehow “compresses” each level of the configuration of
monodirectional P systems, it does not, however, reduce the number of distinct
membranes per level to a polynomial number. Indeed, the standard membrane
computing technique of generating all (exponentially many) possible assignments
to a set of variables does not require send-in rules [10], and can be carried out in
parallel on all levels of the membrane structure.

Lemma 2 also fails for P systems with send-in rules. The reason is that two
identical subconfigurations can be made different by having a single object located
immediately outside, and nondeterministically sending it into one of the root
membranes of the two subtrees; the evolution of the two branches of the system
might then diverge completely.

2 We define a subconfiguration of Ci as a subtree (a root node together with all its
descendents) of the membrane structure of Ci, including labels, multisets, and charges
of the membranes.

212 A. Leporati et al.

3 Simulation of monodirectional P systems

It is a well-known result in membrane computing that P systems with active
membranes can be simulated in polynomial time by deterministic Turing machines
if no membrane division rules are allowed [10]. More specifically, the portion of the
system that is not subject to membrane division can be simulated deterministically
with a polynomial slowdown, while the output of the dividing membranes can
be obtained by querying an appropriate oracle. It was recently proved that, for
standard (bidirectional) P systems where only elementary membranes can divide,
an oracle for a #P function is necessary and sufficient [5].

In what follows we prove that an NP-oracle is sufficient for the simulation
of monodirectional P systems. In particular, the oracle will solve the following
problem.

Lemma 3. Given the initial configuration of an elementary membrane with label h
of a monodirectional P system, an object type a ∈ Γ , and two integers k, t ∈ N in
unary notation, it is NP-complete to decide whether the set of membranes with
label h existing at time t emits (via send-out or dissolution rules) at least k copies
of object a at that time step.

Proof. The problem is NP-hard, since one can simulate an arbitrary polynomial-
time, nondeterministic Turing machine M by using a single membrane with ele-
mentary division (without using send-in rules) and obtain the same result as M
by checking if the resulting membranes send out at least one (k = 1) “acceptance
object” at a specific time step [4].

Conversely, the problem can be solved by a nondeterministic, polynomial-time
Turing machine M as follows. Simulate t computation steps of the membrane explic-
itly, by keeping track of its charge and multiset, as in any standard simulation [10].
If the membrane divides, then M keeps track of all the resulting membranes, until
the number exceeds k. If that happens, then k copies of the membrane are chosen
nondeterministically among those being simulated (which are at most 2k after any
simulated step, if all membranes divide), and the remaining ones are discarded.
Since there is no incoming communication, any instance of the membrane can
be simulated correctly, as its behaviour does not depend on the behaviour of its
siblings. If one of the simulated membranes dissolves before t steps, one of the k
“slots” is released and can be reused in case of a further membrane division.

After having simulated t steps as described, the machine M accepts if and only
if at least k copies of a are emitted (sent out, or released by dissolution) in the
last step by the membranes being simulated. At most k membranes need to be
simulated in order to check whether at least k copies of the object are emitted
and, by exploiting nondeterminism, we are guaranteed that the correct subset
of membranes is chosen by at least one computation of M . Since k and t are
polynomial with respect to the size of the input, the result follows. ut

Monodirectional P Systems 213

The values of t and k are given in unary since, otherwise, the number of steps
or the number of membranes to simulate could be exponential with respect to the
size of the input, and the problem would not be solvable in polynomial time.

As a consequence of Lemma 3, monodirectional P systems without non-
elementary division can be simulated in polynomial time with access to an NP

oracle.

Theorem 1. PMC?M(−wn) ⊆ PNP.

Proof. The rules applied to non-elementary membranes can be simulated directly
in deterministic polynomial time by a Turing machine M [5]; this includes the
outermost membrane, which ultimately sends out the result object. In order to
update the configurations of the non-elementary membranes correctly, the objects
emitted from elementary membranes (which potentially divide) have to be added
to their multisets.

Suppose the P systems of the family being simulated work in polynomial
time p(n). By Lemma 1, the final result of the computation can be correctly
determined by keeping track of at most p(n) copies of each object per region.
Hence, we can update the configurations by using an oracle for the problem of
Lemma 3. At time step t, we make multiple queries for each label h of an elementary
membrane and for each object type a ∈ Γ : by performing a binary search on k
over the range [0, p(n)], we can find the exact number of copies of a emitted by
membranes with label h at time t, or discover that this number is at least p(n)
(and, in that case, we only add p(n) objects to the multiset). This completes the
proof. ut

Monodirectional P systems without non-elementary division become weaker if
dissolution is also disallowed: now a membrane cannot become elementary during
the computation, and thus the evolution of each dividing membrane is always
independent of the rest of the system. This allows us to perform all queries in
parallel, rather than sequentially (in an adaptive way).

Theorem 2. PMC?M(−d,−wn) ⊆ PNP
‖ .

Proof. If dissolution rules are not allowed, being elementary is a static property
of the membranes, i.e., a membrane is elementary for the whole computation if
and only if it is elementary in the initial configuration. By observing that each
query is completely independent of the others (i.e., each query involves a different
membrane, time step and object) and also independent of the configurations of the
non-dividing membranes (due to the lack of send-in rules), we can perform them
in parallel even before starting to simulate the P system. This proves the inclusion
in PNP

‖ . ut

Now consider monodirectional P systems with non-elementary membrane divi-
sion. For this kind of systems, the behaviour of a dividing membrane is, of course,
dependent on the behaviour of its children and, recursively, of all its descendants.

214 A. Leporati et al.

In order to simulate the behaviour of the children by using oracles, we define a more
general query problem, where we assume that the behaviour of the descendents of
the membrane mentioned in the query has already been established.

First of all, notice that the lack of send-in rules allows us to extend the notion
of transition step C → D between configurations to labelled subforests3 E of C
and F of D as E → F ; the only differences from the standard definition are that E
is not necessarily a single tree, and that its outermost membranes may divide and
dissolve.

Definition 2. Let Π be a monodirectional P system, let C be a configuration of Π,
and let h ∈ Λ be a membrane label. A subforest S of C is called a label-subforest
induced by h, or h-subforest for brevity, if one of the following conditions hold:

• C is the initial configuration of Π, and S consists of a single tree rooted in the
(unique) membrane h,
• C is a possible configuration of Π at time t+ 1 with C′ → C, and there exists

an h-subforest S ′ in C′ such that S ′ → S.

The notion of h-subforest can be viewed as a generalisation of the equivalence classes
of membranes in P systems without charges defined by Murphy and Woods [6].

Lemma 4. Let Π be a monodirectional P system. Then there exists a computation
of Π where, at each time step and for each membrane label h ∈ Λ, all h-subforests
are identical.

Proof. Multiple h-subforests can only be created by division of an ancestor of h; but
then, by Lemma 2, there exists a computation of Π where the resulting h-subforests
are identical. ut

Example 1. Figure 1 shows the evolution of the membrane structure of a monodi-
rectional P system and its label-subforests. The label-subforests in the initial
configuration C0 coincide with all downward-closed subtrees. In the computation
step C0 → C1 both h2 and h3 divide; the division of the latter causes the duplication
of the h3- and h4-subforests (and, indirectly, of the h5-subforest); the division of
an ancestor membrane is the only way to have more than one label-subforest. By
Lemma 4, we can always assume that multiple label-subforests induced by the same
label are identical. In the computation step C1 → C2, the rightmost membrane
having label h2 and both instances of h4 dissolve. Notice that this does not cause
the disappearance of the two h4-subforests: in the general case, the membranes h4
might contain label-subforests induced by different labels, and we still need to refer
to them as a single entity (the h4-subforest), without the need to describe the
internal structure, even when h4 ceases to exist.

As can be observed from Figure 1, a subforest can be identified as an h-subforest
by checking whether it can be generated from the downward-closed subtree rooted
in h in the initial configuration.

3 We define a subforest F ′ of a forest F to be any subgraph such that, whenever F ′

includes a vertex v, it also includes all the descendents of v.

Monodirectional P Systems 215

h1

h2

h4

h5

h2

h4

h5

h1

h2

h3

h4

h5

h3h3 h3h3

h1

h2

h3h3 h3h3

h4

h5

h4

h5

C0 C1

C2
Fig. 1. Evolution of a membrane structure and its label-subforests, which are enclosed
by dashed rectangles.

A computation that ensures that all h-subforests are identical for all h ∈ Λ
can be obtained by imposing a total ordering (a priority) on the set of rules of
the P system, and applying inside each membrane the rules with higher priority
whenever possible. In the following, we assume that a priority order (e.g., the
lexicographic order) has been fixed; there is no loss of generality in doing that,
since we only focus on confluent P systems in this paper. We define the multiset of
objects emitted by a label-subforest as the union of the multisets emitted by its
outermost membranes.

Lemma 5. Given the initial configuration of a membrane with label h of a monodi-
rectional P system, an object a ∈ Γ , two integers k, t ∈ N in unary notation, and a
table T of the objects emitted during computation steps 1, . . . , t by the label-subforests
immediately contained in h, it is NP-complete to decide whether each h-subforest
emits at least k copies of object a at time t.

216 A. Leporati et al.

Proof. The problem is NP-hard, since the set of elementary membranes with
label h of Lemma 3 is an example of h-subforest; that problem is thus a special
case (limited to label-subforests of height 0) of the current one.

To prove membership in NP we also use an algorithm similar to the proof of
Lemma 3: simulate up to k instances of membrane h, nondeterministically choosing
which ones to keep when a membrane division occurs. However, besides simulating
the rules directly involving the membranes with label h, we need to update their
configuration by adding, at each computation step, the objects emitted by the
label-subforests they contain. This is trivial, since the required data is supplied as
the input table T . Here we exploit Lemma 4, and simulate a computation where
all label-subforests contained in multiple instances of h are identical, and always
emit the same objects.

The other main difference from the proof of Lemma 3 is that we do not release
one of the k slots when one instance of membrane h dissolves, since its children may
still emit objects, and those count in determining the output of the h-subforest.
Rather, if an instance of h currently being simulated dissolved during steps 1, . . . , t,
then we add the outputs at time t of the label-subforests immediately contained
in h to the result of the computation; those outputs are obtained from table T .

The statement of this lemma then follows from an argument completely anal-
ogous to that presented in the proof of Lemma 3: there exists a sequence of
nondeterministic choices leading to the simulation of k instances of h sending out
at least k objects if and only if at least k objects are actually sent out by the
P system being simulated. ut

We can finally show that monodirectional P systems using non-elementary
division (and dissolution) also do not exceed the upper bound PNP.

Theorem 3. PMC?M ⊆ PNP.

Proof. We use an algorithm similar to the one described in the proof of Theorem 1.
However, instead of using the oracle to compute the output of the elementary
membranes, we use it to compute the output of the label-subforests. This requires
first asking all queries for the label-subforests of height 0 (with an empty table T),
then using the results as the table T for the queries involving label-subforests
of height 1, and so on, until reaching the non-divisible membranes; these can be
simulated directly by using the results of the queries involving the label-subforests
immediately contained in them. Notice that the queries involving label-subforests
of a given height can always be asked in parallel (across all values of a, k, t); the
queries must be asked sequentially only when involving different heights. ut

4 Simulation of PNP machines

In order to prove the converse inclusions between complexity classes, we describe a
simulation of any Turing machineM with an NP oracle by means of monodirectional

Monodirectional P Systems 217

P systems (an adaptation of [4]). Let Q be the set of states of M ; we assume,
without loss of generality, a binary alphabet {0, 1} for M . Finally, we denote
by δ : Q×Σ → Q×Σ × {/, .} the transition function of M .

Suppose that the configuration of M at a certain time step is the following:
the tape contains the string x = x1 · · ·xm, the state of the machine is q, and the
tape head is located on cell i. This configuration is encoded as a multiset located
in a single membrane h of the P system, as follows. There is one object 1j−i for
each 1 ≤ j ≤ m such that xj = 1; that is, each 1 in the string x is represented as an
object indexed by its position in x, shifted by i; the 0s of x are not represented by
an object, but rather by the absence of the corresponding 1. The object 10 (resp.,
its absence) represents a 1 (resp., a 0) located under the tape head; the indices
will be updated (increased or decreased) when simulating a tape head movement.
Finally, the state q of M is encoded as an object q with the same name. Further
objects, not part of the encoding of the configuration of M , may also appear for
simulation purposes.

A transition step of M is simulated by 7 steps of the P system. We assume that
the membrane h containing the encoding of the configuration of M also contains
the object 	.

Step 1. The object 	 is sent out (as the “junk” object #) in order to change the
charge of h to negative:

[]0h → []−h # (1)

Step 2. When h is negative, the object 10 is sent out, if appearing, in order
to change the charge to positive. If 10 does not appear, the membrane remains
negative.

[10]−h → []+h # (2)

The remaining tape-objects are primed:

[1i → 1′i]
−
h for i 6= 0 (3)

The state-object q is also primed, and produces the object �:

[q → q′ �]−h (4)

Step 3. The system can now observe the charge of h and establish whether 10

appeared (i.e., whether the symbol under the tape head was 1) or not (i.e., the
symbol was 0); this corresponds to a positive or negative charge, respectively. The
object q′ is rewritten accordingly:

[q′ → (q, 1)]+h [q′ → (q, 0)]−h (5)

At the same time, the neutral charge of h is restored by �:

[�]αh → []0h # for α ∈ {+,−} (6)

218 A. Leporati et al.

Step 4. For the sake of example, suppose the transition function of M on state q
is defined by δ(q, 0) = (r, 1, .) and δ(q, 1) = (s, 0, /); the other cases are similar.
The object (q, 0) or (q, 1) is rewritten accordingly:

[(q, 0)→ (r, 1, .)]0h [(q, 1)→ (s, 0, /)]0h (7)

Simultaneously, the tape-objects are primed again:

[1′i → 1′′i]0h for i 6= 0 (8)

Step 5. Now the triple generated in the previous step is “unpacked” into its
components, which include an object that will be eventually rewritten into the new
state-object, the object 1′′0 (or nothing), and an object to be used to change the
charge according to the direction of the movement of the tape head:

[(r, 1, /)→ r̂ 1′′0 ⊕]0h for r ∈ Q (9)

[(r, 1, .)→ r̂ 1′′0]0h for r ∈ Q (10)

[(r, 0, /)→ r̂ ⊕]0h for r ∈ Q (11)

[(r, 0, .)→ r̂]0h for r ∈ Q (12)

Step 6. The object ⊕, if appearing, changes the charge of the membrane to
positive:

[⊕]0h → []+h # (13)

If 	 appears, it behaves similarly, according to rule (1). Simultaneously, the object r̂
is primed and produces �:

[r̂ → r̂′ �]0h for r ∈ Q (14)

Step 7. Now the charge of h is negative if the tape head is moving right, and the
indices of the tape-objects have to be decremented, or positive if the tape head is
moving left, and the indices must be incremented; the primes are also removed:

[1′′i → 1i−1]−h [1′′i → 1i+1]+h for − (m− 1) ≤ i ≤ m− 1 (15)

The object r̂′ is now rewritten into the state-object r, and produces the 	 object
to be used in Step 1 of the simulation of the next step of M :

[r̂′ → r]αh for r ∈ Q non final and α ∈ {+,−} (16)

Finally, the neutral charge of h is restored by � through rule (6). The configuration
of the membrane now encodes the next configuration of M , and the system can
begin simulating the next computation step. The process is depicted in Figure 2.

Monodirectional P Systems 219

0 1 1 1

q

0 01 0

h

0

10 11 121−3

q 	

h

−

10 11 121−3

q #

h

+

1′1 1′21′−3

q′ #

#

�

h

0

1′1 1′21′−3

(q, 1) #

#

#

h

0

1′′1 1′′21′′−3

(s, 0, /) #

#

#

h

0

1′′1 1′′21′′−3

ŝ #

#

#⊕

h

+

1′′1 1′′21′′−3

ŝ′ #

#

#�
#

h

0

12 131−2

s #

#

#	
#

#

0 0 1 1 0 01 0

s

Fig. 2. Two successive Turing machine configurations, and the configurations of the
P system simulating the transition step (in left-to-right, top-to-bottom order).

When r ∈ Q is a final state (accepting or rejecting), instead of applying rule (16)
the system rewrites the object r̂′ as yes or no:

[r̂′ → yes]αh for r ∈ Q accepting and α ∈ {+,−} (17)

[r̂′ → no]αh for r ∈ Q rejecting and α ∈ {+,−} (18)

The object yes or no is then sent out as the result of the computation of the
P system in the next step:

[yes]0h → []0h yes [no]0h → []0h no (19)

It is easy to see that this simulation provides us with a uniform family of
P systems ΠM = {Πx : x ∈ {0, 1}?}, each consisting of a single membrane h and
simulating the deterministic Turing machine M on all possible inputs.

220 A. Leporati et al.

4.1 Simulating oracle queries

If membrane h is not the outermost membrane of the system, then we can use
division rules to simulate nondeterminism with parallelism. Suppose, for the sake
of example, that the transition function of M describes nondeterministic binary
choices such as δ(q, 0) = {(r, 1, .), (s, 0, /)}. Then, instead of the rules (7), we define
the elementary division rule

[(q, 0)]0h → [(r, 1, .)]0h [(s, 0, /)]0h (20)

The two resulting copies of membrane h can then evolve in parallel according to
the two possible choices.

This construction allows us to simulate polynomial-time deterministic Turing
machines M with an NP oracle. In this section, we use the following conventions:
the machine M simulates a work tape and a query tape with a single tape, by
using the odd and even positions, respectively. When making a query, M writes
the query string in the even positions of its tape, then enters a query state q?. The
oracle answers by erasing the query string (i.e., overwriting it with zeros), except
for the first cell, where it writes 0 or 1 according to the result. The machine M
then resumes its computation in state q!, with the tape head located on the answer.

The oracle can be simulated by a polynomial-time nondeterministic Turing
machine M ′, having initial state q? and deciding the oracle language. This machine
uses only the even positions of the tape, and ends its computation in the post-
query configuration described above. We assume that M ′ performs a series of
nondeterministic choices leading to acceptance, if an accepting computation exists
at all.

This combination of M and M ′ can be simulated by linearly nested membranes
of a P system, one membrane for each query to be asked. The computation begins
inside the innermost membrane, where we place a multiset encoding the initial
configuration of M on its input x; whenever a query is performed, the computation
moves one level higher in the membrane structure. In the following description we
refer to all nested membranes as h, for brevity; the labels can be made unique,
and the rules replicated for each label, with a polynomial-time preprocessing. The
P system simulates the computation steps of M as described above, until M
enters the query state q?. Now the system pauses the simulation of M . Instead of
producing q? and 	, as in rule (16), the system produces q? and q̃!,t, where t is the
maximum number of steps required by M ′ on query strings written by M . This
number can be bounded above by considering the polynomial running time of M ′

on the longest possible query string, which is at most as long as the running time
of M on its input x. The object q̃!,t is sent out from h as q!,t, setting its charge to
negative as 	 does, and upon reaching the parent membrane it begins counting
down:

[q̃!,t]
0
h → []−h q!,t (21)

[q!,j → q!,j−1]0h for 1 ≤ j ≤ t (22)

Monodirectional P Systems 221

In the internal membrane, the nondeterministic Turing machineM ′ is now simulated.
Since M ′ is allowed to make nondeterministic choices, in general there will be a
number of membranes simulating M ′ after the first simulated step. When one of
these membranes is simulating the last step of a computation of M ′, the object q̂′!
is produced by rule (14): then, instead of having a rule of type (16), the object q̂′! is
used to dissolve the membrane and release the tape-objects to the parent membrane:

[q̂′!]
α
h → # for α ∈ {+,−} (23)

After t steps, all membranes simulating M ′ have completed the simulation, and
have released their contents to the parent membrane. This membrane now contains:

• the object q!,0;
• objects 1i corresponding to the 1s contained in the odd positions of the tape

of M (which are left unchanged by the simulation of M ′); each of these objects
has a multiplicity equal to the number of computations of M ′ on the previous
query string;
• zero or more occurrences of 11, one for each accepting computation of M ′ on

the query string; in particular, there is at least one occurrence of 11 if and only
if the query string is accepted by the oracle. Notice that this object has index 1
even if it is on the first even position of the tape, since index 0 is reserved to
the tape cell under the head (tape cell 1).

Before resuming the simulation of M , the system needs to eliminate any duplicate
copies of objects 1i. First of all, the object q!,0 is rewritten into q!, the next state
of M :

[q!,0 → q!]
0
h (24)

We then change the behaviour of M in such a way that, before continuing its
original computation after receiving the answer to the oracle query, it sweeps its
entire tape left-to-right and back to the first cell. This behaviour, in conjunction
with the following extra rule of the P system:

[10 → ε]+h (25)

erases any duplicate of 1i for all i. Indeed, if a copy of 10 appears when h is positive,
then another copy has been sent out in the previous step by rule (2); rule (25)
eliminates such duplicates.

When the tape head of M moves back to the leftmost cell, the machine can
resume its original behaviour, and the encoding of the configuration of M in the
P system is now correct according to the description given at the beginning of this
section.

Further queries by M are simulated analogously, by exploiting another level
of the membrane structure. Notice that simulating a query actually “consumes”
one level of the membrane structure, due to the dissolution rule (23). For this
reason, the initial membrane structure of the P system simulating M consists of
an outermost membrane, containing as many nested membranes as the number of
queries performed by M .

222 A. Leporati et al.

Theorem 4. A deterministic polynomial-time Turing machine which asks p(n)
queries to an NP oracle on inputs of length n can be simulated by a uniform family
of monodirectional P systems of depth p(n) without non-elementary division rules.

Proof. The family of P systems Π = {Πx : x ∈ {0, 1}?} simulating M on input x
can be constructed uniformly in polynomial time, since only the initial multiset
depends on the actual string x, while the set of rules and the membrane structure
only depend on |x|. We only need to make sure that the indices of the tape-objects
are large enough to ensure that both the tape of M and the tape of M ′ can be
represented at the same time. ut

Corollary 1. PNP ⊆ PMCM(−wn). ut

Instead of using membrane dissolution as in rule (23), we can use the object q̂′!
to produce ⊕:

[q̂′! → ⊕]αh for α ∈ {+,−} (26)

which ensures that the charge of h is positive instead of negative two steps later.
The tape-objects are then sent out, one at a time, by using the following rules:

[1i]
+
h → []+h 1i for − (m− 1) ≤ i ≤ m− 1 (27)

The timer t of the object q̃!,t has to be increased appropriately, in order to take
into account the time needed to send out all the tape-objects. However, since
the membrane where the simulation of M is non-elementary after the first query,
rule (20) is now a weak non-elementary division rule. As a consequence, we have:

Theorem 5. A deterministic polynomial-time Turing machine which asks p(n)
queries to an NP oracle on inputs of length n can be simulated by a uniform family
of monodirectional P systems of depth p(n) without dissolution rules. ut

Corollary 2. PNP ⊆ PMCM(−d). ut

In order to prove the converse of Theorem 2, we introduce an auxiliary com-
plexity class (a variant of the class of optimisation problems OptP [3]).

Definition 3. Define OrP to be the class of functions f : {0, 1}? → {0, 1}? having a
polynomial-time nondeterministic Turing machine M such that, for all x ∈ {0, 1}?,
we have f(x) =

∨
M(x), where M(x) denotes the set of possible output strings

of M on input x, and
∨

denotes bitwise disjunction of strings; here we assume
that the bitwise disjunction of strings of different lengths is performed by padding
the shortest ones with zeros.

The purpose of the class OrP is to capture a polynomial number of parallel NP

queries with a single query to a function over binary strings.

Proposition 1. PNP
‖ = POrP[1].

Monodirectional P Systems 223

Proof. A polynomial number of parallel queries y1, . . . , ym to an oracle for L ∈ NP

can be replaced by a single query to an oracle for the function f(y1, . . . , ym) =
z1 · · · zm, where zi = 1 if and only if yi ∈ L. Let M be an NP machine decid-
ing L, and let M ′ be the following nondeterministic machine: on input y1, . . . , ym
simulate M on each yi and record the corresponding output bit zi; finally, out-
put z1 · · · zm. For all 1 ≤ i ≤ m, if yi is accepted by the oracle, then there exists a
computation of M ′ such that zi = 1: thus, by taking the bitwise disjunction of all
possible output strings of M ′, we obtain the i-th bit of f(y1, . . . , ym); this proves
that f ∈ OrP. Notice that this proof requires the query strings y1, . . . , ym to be
fixed in advance, i.e., the queries cannot be performed adaptively.

Vice versa, a single query to an oracle for f ∈ OrP with query string y
can be replaced by the following polynomial number of parallel queries, one for
each 1 ≤ i ≤ |f(y)|: “is the i-th bit of f(y) a 1?”. These queries are in NP,
since they can be answered by simulating an OrP machine M for f and selecting
only its i-th output bit; the answer will be positive if and only if there exists a
computation of M having a 1 as the i-th output bit, which (by definition of OrP)
is equivalent to the i-th bit of f(y) being 1. ut

Simulating an OrP query by means of a P system is completely analogous to
simulating an NP query, except that, instead of a single output bit, we have a
polynomial number of them. These binary strings are automatically combined by
bitwise disjunction when the tape-objects are sent out of the membrane simulating
the nondeterministic Turing machine. Furthermore, since a single OrP query suffices
to capture PNP

‖ , we obtain the following results:

Theorem 6. A deterministic polynomial-time Turing machine which asks a poly-
nomial number of parallel queries to an NP oracle on inputs of length n can be
simulated by a uniform family of monodirectional P systems of depth 1 without
dissolution (and, necessarily, without non-elementary division). ut

Corollary 3. PNP
‖ ⊆ PMCM(−d,−wn). ut

5 Further results

The depth of the P systems of Theorems 4 and 5 can be asymptotically reduced
by exploiting the equivalence of a logarithmic number of adaptive queries and a
polynomial number of parallel queries [7, Theorem 17.7], formally PNP

‖ = PNP[logn].

Suppose a deterministic polynomial-time Turing machine performs p(n) sequential
NP queries, and divide these queries into Θ(p(n)/ log n) blocks of Θ(log n) queries.
Each block can then be replaced by a polynomial number of parallel NP queries
or, by Proposition 1, by a single OrP query. Hence, p(n) sequential NP queries
can be simulated by Θ(p(n)/ log n) sequential OrP queries, and each of the latter
can be simulated by one level of depth in a P system:

224 A. Leporati et al.

Corollary 4. A deterministic polynomial-time Turing machine which asks p(n)
queries to an NP oracle on inputs of length n can be simulated by a uniform family of
monodirectional P systems of depth Θ(p(n)/ log n) without non-elementary division
rules (resp., without division rules). ut

Theorem 3 can be sharpened by making the intra-level query parallelism explicit
with OrP queries:

Corollary 5. Let Π be a family of semi-uniform polynomial-time monodirectional
P systems of depth f(n). Then Π can be simulated by a polynomial-time determin-
istic Turing machine with f(n) queries to an OrP oracle. ut

We can also prove that monodirectional families of P systems of any con-
stant depth, even with dissolution and non-elementary division rules (in sym-
bols M(O(1))), are always equivalent to families of depth one without dissolution
and without non-elementary division (in symbols M(1,−d,−wn)), and thus only
able to simulate parallel NP queries.

Theorem 7. PMC
[?]
M(O(1)) = PMC

[?]
M(1,−d,−wn) = PNP

‖ .

Proof. By Theorem 6, we already know that PNP
‖ ⊆ PMCM(O(1)), even when

limited to depth 1; the inclusion PMCM(O(1)) ⊆ PMC?M(O(1)) holds by definition.

The inclusion PMC?M(O(1)) ⊆ PNP
‖ can be proved as follows. By Theorem 3, a

family of P systems of constant depth k can be simulated in polynomial time by
asking k sets (one per level) of p(n) parallel queries, for some polynomial p. Each
set of p(n) parallel queries can be converted into Θ(log n) sequential queries [7,
Theorem 17.7], for a total of k×Θ(log n) sequential queries. These can be converted
back into a polynomial number of parallel queries. ut

Finally, observe that Theorem 3 also trivially holds for monodirectional P sys-
tems without charges. This implies a better upper bound than previously known [5]
for a monodirectional variant of the P conjecture [9, Problem F], which states that
P systems without charges and without non-elementary division characterise P.

6 Conclusions

In this paper we confirmed the importance of the direction of the information flow
in P systems with active membranes with respect to their computing power. Indeed,
when working in polynomial time and using only outward-bound communication,
the corresponding complexity class decreases from PSPACE to PNP, or from P#P

to PNP
‖ when non-elementary division and dissolution rules are disallowed. It is

interesting to notice that, unlike with other restrictions such as removing membrane
division [10] or charges and dissolution [2], the resulting P systems are still more
powerful than P (unless, of course, P = NP).

Monodirectional P Systems 225

The role of strong non-elementary division (which is replaced in this paper
by weak non-elementary division) in the absence of send-in rules is still unclear.
Even if it provides a way to convey information from a parent membrane to its
children, we do not know whether this is sufficient to altogether replace send-in
communication while maintaining a polynomial run-time.

Finally, it would be interesting to investigate monodirectional P systems where
the information flow is reversed, i.e., send-out communication and dissolution rules
(as well as strong non-elementary division rules) are disallowed. A first issue to
overcome is choosing an appropriate acceptance condition for the P systems, to
replace sending out yes or no from the outermost membrane. The acceptance
condition most similar “in spirit” to the original one is probably accepting (resp.,
rejecting) by having at least one yes (resp., no) object appear, either anywhere in
the system, or inside a distinguished (and possibly dividing) membrane, during the
last computation step; we also add the restriction that yes and no can never appear
together, since giving the priority to one of them would allow us to solve NP-
complete (or coNP-complete) problems “for free”. Such monodirectional P systems
appear to be very weak when working in polynomial time; indeed, even though
exponentially many membranes can still be created by division, they can never
communicate. Is P actually an upper bound to the class of problems they can
solve?

References

1. Alhazov, A., Mart́ın-Vide, C., Pan, L.: Solving a PSPACE-complete problem by
recognizing P systems with restricted active membranes. Fundamenta Informaticae
58(2), 67–77 (2003)

2. Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Nuñez, A., Romero-Campero,
F.J.: Computational efficiency of dissolution rules in membrane systems. International
Journal of Computer Mathematics 83(7), 593–611 (2006)

3. Krentel, M.W.: The complexity of optimization problems. Journal of Computer and
System Sciences 36, 490–509 (1988)

4. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Membrane division,
oracles, and the counting hierarchy. Fundamenta Informaticae (2015), in press

5. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Simulating elemen-
tary active membranes, with an application to the P conjecture. In: Gheorghe, M.,
Rozenberg, G., Sośık, P., Zandron, C. (eds.) Membrane Computing, 15th International
Conference, CMC 2014, Lecture Notes in Computer Science, vol. 8961, pp. 284–299.
Springer (2015)

6. Murphy, N., Woods, D.: Active membrane systems without charges and using only
symmetric elementary division characterise P. In: Eleftherakis, G., Kefalas, P., Păun,
Gh., Rozenberg, G., Salomaa, A. (eds.) Membrane Computing, 8th International
Workshop, WMC 2007. Lecture Notes in Computer Science, vol. 4860, pp. 367–384
(2007)

7. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1993)
8. Păun, Gh.: P systems with active membranes: Attacking NP-complete problems.

Journal of Automata, Languages and Combinatorics 6(1), 75–90 (2001)

226 A. Leporati et al.

9. Păun, Gh.: Further twenty six open problems in membrane computing. In: Gut́ıerrez-
Naranjo, M.A., Riscos-Nuñez, A., Romero-Campero, F.J., Sburlan, D. (eds.) Proceed-
ings of the Third Brainstorming Week on Membrane Computing. pp. 249–262. Fénix
Editora (2005)

10. Zandron, C., Ferretti, C., Mauri, G.: Solving NP-complete problems using P systems
with active membranes. In: Antoniou, I., Calude, C.S., Dinneen, M.J. (eds.) Uncon-
ventional Models of Computation, UMC’2K, Proceedings of the Second International
Conference, pp. 289–301. Springer (2001)

11. Zandron, C., Leporati, A., Ferretti, C., Mauri, G., Pérez-Jiménez, M.J.: On the
computational efficiency of polarizationless recognizer P systems with strong division
and dissolution. Fundamenta Informaticae 87, 79–91 (2008)

