Electronic Supplementary Information

Monodisperse mesoporous cobalt ferrite nanoparticles: Synthesis and application in targeted delivery of antitumor drugs

Sasmita Mohapatra,*^a Smruti R. Rout,^a Swatilekha Maiti,^b Tapas K. Maiti^b and Asit B. Panda^c

^a Department of Chemistry, National Institute of Technology, Rourkela, India-769008

^bDepartment of Biotechnology, Indian Institute of Technology, Kharagpur, India-721302

^cCentral Salt and Marine Chemicals Research Institute, Bhavnagar, Gujurat, India-364021

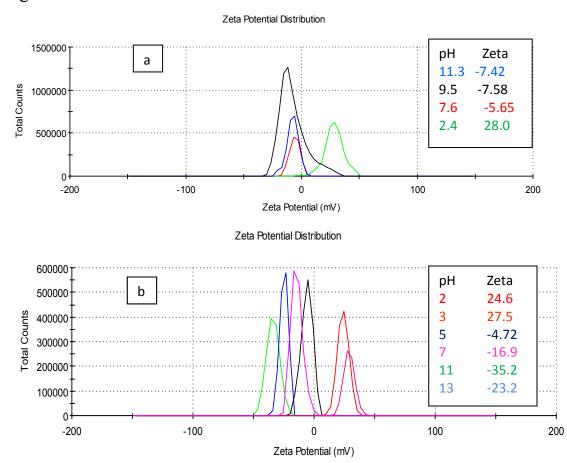
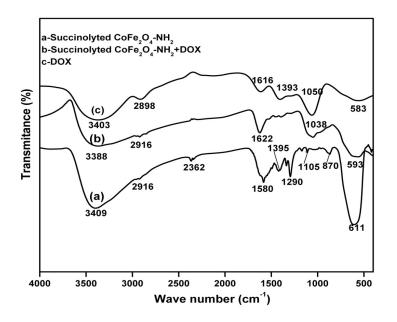



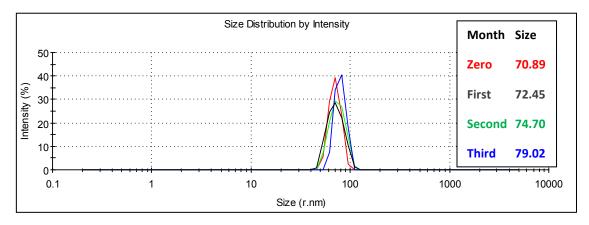
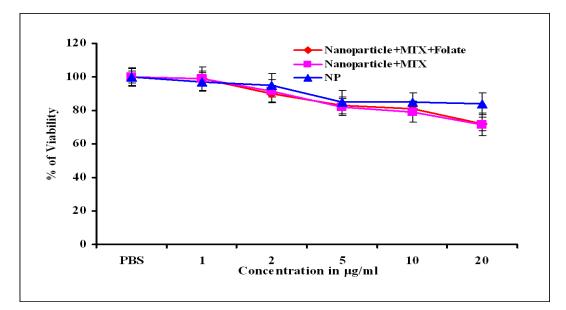
Figure S1

Figure S1 Change in zeta potential with respect to pH(a) as synthesized $CoFe_2O_4$ nanoparticles (b) after treated with succinic anhydride.

Figure S2

Figure S2 FTIR spectra demonstrating conjugation of doxorubicin on –COOH functionalized nanoparticles

Figure S3

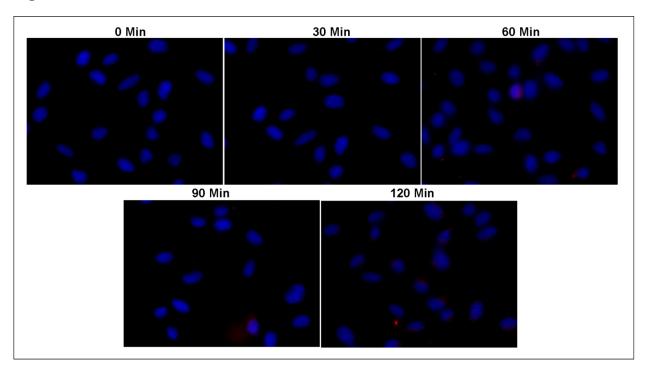

Figure S3 Change in HD size of DOX loaded particles with time

Figure S4

Figure S4 Cytotoxicity assay of nanoparticles on NIH/3T3 cells. Cells were treated with different concentrations of nanoparticles for 72 h and cell viability was measured by MTT assay.

Figure S5

Figure S5 Uptake study of nanoparticle in NIH/3T₃ cells using florescence microscopy. Cells were incubated with CoFe₂O₄-FA-RITC-MTX nanoparticles for different time intervals and observed under florescence microscope (200X).

Calculation of drug loading capacity

The drug loading capacity was calculated as per the following method. First, NH₂ /-COOH functionalized particles were conjugated with MTX/DOX as described in the experimental section and then separated from the aqueous suspension medium using magnetic separator (Invitrogen). The obtained drug-loaded CoFe₂O₄ nanoparticles were incubated at 60 °C in vacuum overnight and were weighted. Drug concentration in supernatant was analyzed by the ultraviolet absorption ($\lambda_{MTX} = 270 \text{ nm}$, $\lambda_{DOX} = 255 \text{ nm}$), with reference to a calibration curve on a UV-Vis-NIR spectrophotometer. The measurements were performed in triplicate. Drug-loading content and encapsulation efficiency were obtained by eqs 1 and 2, respectively [1,2].

Doxorubicin

Drug-loading content (%) =
$$\frac{\text{Weight of the drug in nanoparticles}}{\text{weight of the nanoparticles}} \times 100 \dots(1)$$

= $\frac{0.00944}{0.0697} \times 100$
= 13.54 %
Encapsulation efficiency (%) = $\frac{\text{Weight of the drug in nanoparticles}}{\text{Weight of the feeding drug}} \times 100 \dots(2)$

 $= \frac{0.00944}{0.0118} \times 100 = 80\%$

Methotrexate

Drug-loading content (%) = 13.8 %

Encapsulation efficiency= 80%

Table 1

Approximate estimation of functional groups/molecules on the surfaces of synthesized nanoparticles, ND (not determined)

Nanoparticles	-NH ₂	FA	RITC	MTX	-COOH	DOX
CoFe ₂ O ₄	490					
CoFe ₂ O ₄ -FA	352.8	120			ND	ND
CoFe ₂ O ₄ -FA-RITC	321.9	120	46	ND	ND	ND
CoFe ₂ O ₄ -FA-RITC-MTX	40.8	120	46	280	ND	ND
CoFe ₂ O ₄ -FA-COOH	34	120	46		325	
CoFe ₂ O ₄ _FA-DOX	34	112	46		25	298

Reference

- Wang Wei, Zou M, and Chen K, Novel Fe₃O₄@YPO₄ :Re (Re = Tb, Eu) multifunctional magnetic–fluorescent hybrid spheres for biomedical applications, *Chem. Comm.* 2010; 46: 5100-5102.
- 2. Li S, Ma Y, Yue X, Cao Z and Dai Z, One-pot construction of doxorubicin conjugated magnetic silica nanoparticles, *New Journal of Chemistry*, 2009; 33: 2414-2418.