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l .  I n t r o d u c t i o n  

I n  th i s  paper ,  we  shal l  be  c o n c e r n e d  w i t h  m o n o d r o m y  g roups  of  s econd -o rde r  l i nea r  

d i f f e r en t i a l  e q u a t i o n s  on  c o m p a c t  R i e m a n n  surfaces :  

d 2 u dU 1 

~x ~ q- Ql(X' Y) -dx + O2(x, y) u = 0 t"  (1.1) 

P(x,  y) = 0 

T h e  coeff ic ients  Qk(x, y) are  a s s u m e d  to  be  r a t i o n a l  f u n c t i o n s  a n d  P(x,  y) is a s s u m e d  to  be  

an  i r r educ ib le  p o l y n o m i a l .  T h e r e  a re  e s sen t i a l l y  t w o  m a i n  p r o b l e m s  in  t h e  classical  t h e o r y  

of m o n o d r o m y  groups :  

(1) This work was done at Harvard University and was supported in part by NSF Grant GP- 

38886 and the U.S. Army Research Office (Durham). 
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(A) to calculate the group, when the differential equation is given; 

(B) to determine all differential equations having a specified monodromy group. 

Most of our results will concern problem B for differential equations of the so-called Fuch- 

sian type. 

Although there was extensive work on both questions during the last half of the nine- 

teenth century, the over-all state of affairs is still rather primitive (after 70 some years). 

In  part, this may be due to the non-Abelian nature of the problems. Certainly, the classical 

theory of Abelian integrals and theta functions is much more developed. 

A few historical remarks may help to put  matters in perspective. First of all, work of 

the nineteenth century mathematicians on monodromy groups was largely motivated by 

problems having to do with uniformization and discontinuous groups. There is in fact 

a very close connection between these areas. Assume, for instance, tha t  the surface 

F: P(x, y) = 0 has genus g/> 2. We may therefore represent F in the form U/Q, where U is the 

unit disk and Q is a Fuchsian group. The problem of calculating Q and the universal 

covering map ~: U-~F is essentially equivalent to the notorious problem of choosing cor- 

rectly the values of 3g-3  acc~sory parameters in a certain rational function R(x, y) and 

then solving the equation 
d~u 

+ R(x, y)u = 0. (1.2) 

The basic (historical) references here are: Klein [32, 33], Poincar~ [47], Riemann [50, pp. 

440-n~a~n.], and Schottky [56, 57]. One may also want to refer to [5, pp. 282-286], [6, pp. 

371-372], and [53]. 

The problem of the accessory parameters has turned out to be quite difficult; in fact, 

it has not yet received an entirely satisfactory solution. This particular approach to uni- 

formization and discontinuous groups based on differential equations was gradually 

abandoned after 1900, when better methods were found. 

A second, very important  reason for the study of problem B stems from its close 

connection to the classical Riemann problem (Hilbert problem 21; see also [50, pp. 379-390]). 

The first at tempts at  solving the Riemann problem used the zeta-Fuchsian series of Poin- 

car6 [48] and were carried out in the context of differential equations. I t  turned out, how- 

ever, tha t  the classical Riemann problem could be solved most directly by using singular 

integral equations. See, for example, Hilbert [28] and Plemelj [45]. Because of this, zeta- 

Fuchsian series (and differential equations) have largely disappeared from modern treat- 

ments of the subject: RShrl [52] gives a useful survey. 

There has of course been a revival of interest in various areas of classical function 

theory: uniformization, Kleinian groups, theta functions, etc. I t  seems only natural that  
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one should take another look at differential equations and their monodromy groups. This 

is especially true in view of recent results [12] connecting monodromy groups with quasi- 

Fuchsian and totally degenerate groups. 

Such an undertaking might prove to be of interest, in view of the fact that  a careful 

reading of the work of Poincar~ on these topics suggests that  a number of his ideas can 

actually he pushed much further; e.g. the method of continuity. 

Schiffer and Hawley [53, p. 209] have in fact raised the possibility of using the mono- 

dromy groups of certain second-order equations as a kind of moduli for compact Riemann 

surfaces. This possibility necessitates looking at problem B in a context in which both  the 

monodromy group and the Riemann surface are allowed to vary. One is very much tempted 

to apply here a continuity method similar to that  of Poincar~. 

Generally speaking, the main purpose of this paper is two-fold: (a) to obtain a better 

understanding of this problem of Schiffer and Hawley; and (b) to clarify certain important  

aspects of section IV of Poincard [47]. Parts (a) and (b) are very much interrelated. 

Our basic method tends to be quite geometric: we shall actually "look" at fundamental 

membranes in the spirit of Klein [32, 33, 34, 35] and Poincard [47]. 

A brief statement of our results may be helpful at this point. We concern ourselves 

mainly with locally schlicht, linearly polymorphic (L.P.) functions arising from equations 

(1.1) of Fuchsian type. We shall prove that: 

(1) there exist monodromy groups which look just like ordinary Fuchsian (or Schottky I 

groups, but  which do not correspond to a uniformization. A geometric argument based on 

the Hopf-Poincard index theorem for vector fields will be used to s tudy these situations. 

One important consequence is tha t  the classical accessory parameter problem cannot be 

solved simply by adjusting the group. 

(2) the monodromy mapping p: TQ~ ~ from the vector bundle of quadratic differ- 

entials to the monodromy space is well-behaved locally, but  has some rather unfortunate 

topological properties globally. For example, it is not even a covering map. As a consequ- 

ence, the moduli proposed by Schiller and Hawley can be used only locally. 

(3) however, when restricted to the so-called quasi-Fuchsian part  of ~ ,  the mono- 

dromy mapping p is a topological covering. 

(4) the monodromy space ~ contains monodromy groups arbitrarily close to the 

identity. This tends to support the conjecture that  ~ is actually dense in the appropriate 

ambient space (N]LF below). 

(5) the monodromy space ~ also contains certain rather special groups which have 

2 g -  2 out of their 2g generators equal to the identity. 
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(6) there seems to exist a ra ther  general method for translating data  about  ramified 

L.P. functions into nontrivial information about  locally schlicht L.P. functions. This 

method makes contact with classical algebraic geometry. 

As might be expected, the developments we give raise many  further questions. We 

hope to t reat  some of these questions in subsequent publications. (A list of open problems 

can be found in section 12.) 

Finally, I would like to express m y  sincere thanks to Professors L. Ahlfors and M. 

Schiffer for providing me with many  helpful remarks and criticisms during the course of 

this work. 

2. Notation 

The following is a list of various notations and abbreviations used throughout sections 

3-12. 

D.E. = differential equation 

L.P. =linearly polymorphic 

QC = quasi-conformal 

iff = i f  and only if 

C = complex plane 

R = real line 

U = t h e  open unit disk 

Cap ( E ) = t h e  capacity of E 

means isomorphic 

{], z} = the Schwarzian derivative of/(z):  

L.F. =l inear  fractional 

NE =non-Euclidean 

WLOG = without loss of generality 

c=CU{oo} 
Z = the integers 

Ix] =greates t  integer function (occasionally) 

A(:~) = the  area of :~ (occasionally) 

means approximately equal 

lr(zl]' 

~rl(F, O) = t h e  fundamental  group of F with base point O 

GL(n, C)= {M: M is an n x n matr ix  over •, det (M)4=0} 

SL(n, C)= {M: M is an n • n matr ix  over C, det (M)= 1} 

sl(n, C) ~{M:  M is an n •  matr ix  over C, Tr(M) =0} 

L_F(2, C)=the  set of all linear fractional transformations ((az + b)/(cz + d)) over C 

IT1 ..... Tn] = t h e  group generated b y  the L.F. transformations T 1 ..... T n 

(X, Y ) = X Y X - 1 Y  -1 = the commutator  of X and Y 
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The following conventions are also useful: 

(a) E > r  means that  the set E is non-void; 

(b) the dimensions of all loci are understood to be complex: e.g. dim (R s~) =n; 

(c) a function H(z 1 . . . .  , zn) is said to be real-analyticiff R e ( H ) a n d  I r a ( H ) c a n  be ex- 

panded (locally) as power series in Re (zk), Im (zk), 1 </r ~< n. 

3. General remarks (for arbitrary n) 

Before we get into a more detailed discussion of the case n=2,  a few basic remarks 

valid for general nth order linear equations may be helpful. We shall use Forsyth [16, 

pp. 478-525] as a reference. 

The local solution space structure of the D.E. 

d" u d n-1 u d n-~ u 1 
dx n ~- Qi(x, y ) ~  + Q~(x, y ) ~  + . . .  + Q n ( x ,  y)u  = 0 ] (3,1) 

P(x ,  y) = o 

is most naturally studied by transforming the independent variable from x into t, where t 

is a local coordinate on the surface F defined by  P(x, y) =0. 

Throughout this paper, we restrict ourselves to D.E. of the Fuchsian type, that  is, to 

those having only regular singular points [16, pp. 78, 123]. Note here tha t  the nature of 

these singular points is determined by  use of the loom variable t. 

Let  ~ denote a column vector of n linearly independent solutions of (3.1). The local 

situation is quite elementary: as t circles around the regular singular point t--0,  ~ simply 

transforms into M ~ ,  where M E GL(n, C). 

The global situation is more interesting. Assuming that  D.E. (3.1) is of Fuchsian type, 

we let E denote the (finite) set of regular singular points. We then select any non-exeep- 

tionM base point ~0 = (x0, Y0) E F and form a solution vector ~ near ~0. Now, as we move 

along any closed path 7 E g l ( F - E ,  $o), the vector ~ gets transformed into M(7)~,  

where M(7)EGL(n , C). I t  is readily checked that  7-~M(~) defines a homomorphism 

M: gl (-F - E, ~o) -~ GL( n, C). The image group {M(7)} is known as the monodromy group of (3.1). 

Because the choices of ~0 and ~ are not unique, there  is a certain ambiguity in the 

monodromy group. One readily checks, however, tha t  changes in ~0 and ~ will affect 

things by  at  most inner automorphisms. 

I t  is sometimes rather useful to be able to assume that  the monodromy group {M(7)} 

is actually a subgroup of SL(n, C). This can always be achieved by  a simple change of 

variable. 

Namely, consider the effect of the substitution: 
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where fA(x,  y ) d z  denotes an Abelian integral of the first or third kind on F, whose 

logarithmic singularities are confined to a set E 0 such that  E _ E 0. I t  is easily seen that  the 

D.E. for v is still of Fuchsian type, and that  its regular singular points are all contained in 

E 0. I t  is also clear that  the monodromy groups of the u and v equations are very simply 

related. One might almost say they are equivalent. 

A simple calculation shows tha t  A (z, y) = (1/n) Ql(x, 9) is admissible (for an easily calcul- 

ated set E0) and leads to the D.E. 

d n V d n-~ v 
dx  ~ + R2(z, y) ~ + . . .  + Rn(z, y) v = 0. (3.2) 

Since the Wronskian for the general equation (3.1) satisfies W' +Q1 W =0, we see that  the 

Wronskian of (3.2) must reduce to a non-zero constant. Notice, however, that  the Wronskian 

determinant satisfies the equation WIN@)~] = W[~] det IN@)], where N@) denotes the 

monodromy homomorphism for ~. I t  follows therefore that  det [N@)] = 1, whence N@) fi 

SL(n ,  C). 

Finally, it is frequently useful to think of the solution vector ~/as  being imbedded in 

the projective space Pn_I(C). I t  is then quite natural to consider the monodromy group as 

being a subgroup of the general projective group P G L ( n ,  C). In the case n = 2 ,  this just 

corresponds to looking at monodromy groups of linear fractional transformations. However, 

for n >~ 3, one encounters some very interesting connections with the classical theory of 

invariants. See, for example, [16, pp. 174-218], [54, pp. 180-199], and [67]. Not very much 

work has been done on these higher-dimensional monodromy groups (in the context of 

differential equations). 

Note: I t  is reasonable to expect, however, that  by  imposing further restrictions on the 

equations (3.1) one can obtain a better grip on the corresponding monodromy groups. 

There are two important  examples of this in the literature: (1) the generalized (nth order) 

hypergeometric equation; and (2) the Picard-Fuchs equation encountered in algebraic 

geometry. For  a discussion of (1), we refer to [27, pp. 549-553], [35], [68], and [92]. See also 

section 5. For the Picard-Fuchs equation, one may refer to [27, pp. 553-555], [69], [70], 

[73], [76], and [89]. 

4. Further remarks (for n - - 2 )  

We now turn to a more thorough discussion of second-order equations of Fuchsian 

type: 
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d 2 u d u  ) 

dx' + Ql(x, y ) ~  + Q2(x, y) u = o ]. (4.1) 

p(x, y) = o 

As before, we let F denote the l%iemann surface P(x, y)=0,  E denote the set of regular 

singular points, and ~/denote  a solution vector (ul) with linearly independent u~. 
\ ] u2 

Following Klein [32, 33, 34, 35] and others, we wish bo investigate the conformal 

mapping properties of the multi-valued function z = uJu~. We mast  therefore consider the 

projective monodromy group. 

Making a substitution v = u  exp [~A(x, y)dx] as above will clearly leave z invariant. 

For this reason, we may assume from the star~, whenever helpful, tha t  our D.E. reads 

d2u } 
dx ~ t- R(z, y) u ffi 0 . (4.2) 

P(x, y) = 0 

A simple calculation with A(x, y)=12Ql(X , y) shows that  

I , I dQ1 (4.3) R(x, y) = Q,(x, y) - ~ Ql(X, y) - -  ~ d Z  ' 

where the derivative dQ1/dx is taken with the constraint P(x, y)=0. The monodromy 

group of (4.2) will be a subgroup of SL(2, C). 

I t  is simple to check that  z is both locally meromorphic and locally schlicht away from 

E. To ensure reasonable mapping properties of z near the regular singular points, we shah 

assume that  the multi-valued function z is locally meromorphie everywhere on F.  This will 

impose certain conditions on R(x, y), as we shall see. 

Locally meromorphic or not, the multi-valued function z trans[orms linear fractionally 

under the action of ~ I ( F - E ,  $0): 

z-~L(y)z, L(r  ) ELF(2, C). 

The projective monodromy group (L(y)} is defined by the homomorphism L: g l ( F -  E, 40) 

LF(2, C). Notice, however, tha t  the monodromy near the points of E will be trivial if 

z is assumed to be locally meromorphic. In  this case, one naturally thinks of L as being a 

h o m o m o r p h i s m  gl(_F, 40) ~LF(2 ,  C). 

In  the following lemma, we assume that  ~1---(zl, Yl) is a regular singular point and tha t  

the local uniformizer satisfies z - x  1 = ~ ( t ) ,  ~(0)4:0, ]~ 1> 1. 

L~.MMA 1. A nec~sary and sufficient condition/or the mu~i-vaZv2J function z associated 

with di/ferentia~ equation (4.2) to be meromorphio at t = 0 with multiplicity m >I 1 is tha~ 
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Fk ~- m2 ~ 

R(x,y)dx~= [ ~  + i + L o:,tn] d f  , 

where ~ satisfies 

k 2 - 1  ~'(o) 
- - ' - ~ - ~  w h e n m = l ,  

F[a; ~ . . . . .  am-2; ~(0), ~'(0) . . . . .  ~(m) (0)] = 0 when m/> 2. 

Flu; u o ..... um_,; re, ..., v,~] i8 a certain l~olynomial dependent 8oldy on k and m. 

Proof. To begin with, we readily make the change of variable x-~t in (4.2): 

d~u [1 k ~'(t)ldu [dx\'  
" (4.4) 

where y(t)=/c~(t)+t~'(t). Since t = 0  is a regular singular point, we can automatically 

write 

Observe, however, tha t  the functions ux =z(dx/dz) 1/2, u2ffi(dx/dz) 1/~ are solutions of (4.2). 

I t  follows that  z is meromorphic at t=O with multiplicity rn iff the D.E. (4.4) has indicial 

equation R ~ - k R  + ~(k 2 - m  2) =0  and only non-logarithmic solutions at  t =0. 

The problem is now reduced to tha t  of writing down the condition for the D.E.~(4.4) 

with A = �88162 2) to have only non-logarithmic solutions [16, p. 106]. This condition can 

be found by straightforward substitution of u = Y,~=0 cn tR + ~ and careful s tudy of the resulting 

recurrence relation: 

c,[(R +n)~-k(R +n)+ �88 ~ (R + p)cl, yJ,--~.cn_,-- ~ c~,~,. 
i z+v= n - 1  iz+v~n--2 

The Taylor coefficients of ~2'(t)/~o(t) are denoted here by ~ov. The critical case is easily seen 

to be R = � 8 9  and n=m. �9 

Remark. We omit the trivial modifications called for when Xx = oo. (One simply takes 

1r in the above.) 

Suppose next  tha t  we are given a nonconstant locally meromorphie function w on F 

which transforms linear fractionally under the action of ~rl(F, ~0). 

Lv.M~A 2. Every such multi-valued function w arises from some differential equation 

(4.2) of Fuchsian type. 

Proof. The Schwarzian derivative (w, x) is immediately seen to be a single-valued 

meromorphic function on F; the local behavior is easily studied using the identi ty 
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{w, x} dx ~ + {x, t} dt 2 = {w, t} dt ~. 

We shall therefore write {w, x} = 2R(x, y) and consider the D.E. 

dsu 
-~-~ + R(x, y)u=O.  

This D.E. is easily seen to be of Fuchsian type via (4.4). Direct computation proves tha t  

the associated function z = ux/u ~ satisfies 

{z, x} = 2R(x, y). 

I t  follows that  w = Tz for some T ELF(2, C), which proves the lemma. �9 

As the proof clearly shows, there is a naturM correspondence between the differential 

equations (w, x}=2R(x ,  y) and u"+R(x ,  y)u=O. This is a well-known classical fact [16, 

p. 495], which will be used frequently in all that  follows. 

A locally meromorphic function which transforms linear fractionally under ~x(F, ~0) 

is called linearly polymorphic. 

Linearly polymorphic functions which have m = 1 at  every point of iv, that  is, which 

are locally schlicht, play a very important role in modern uniformization and Teichmiiller 

theory. See, for example, Bers [12]. We shall work mainly with such functions in this 

paper. 

The connection with uniformization can be seen quite easily. Assume, for example, 

that  g: U-~F is the universal covering map for F. The multivalued inverse function 

w =g-l(~) will then be a locally schlicht L.P. function. The associated monodromy group 

will be a Fuchsian group ~: F = U/O. 

Similarly, if D ~ C denotes the Schottky covering surface of F,  the covering map 

~: D ~ F  will give rise to a locally schlicht L.P. function w=~-l(~)  whose monodromy 

group is a Schottky group S: ~' =DIS.  See [2, pp. 239-243], [5, pp. 484 495], and [23]. 

We remark tha t  there are natural examples of locally schlicht L.P. functions which 

(apparently) have nothing to do with uniformization. One such example can be found in 

[53, pp. 203-204] and also in [57, pp. 265-272]. This particular example is important be- 

cause it requires only an Abelian integral of the third kind. 

Let Ro(x, y) be the rational function corresponding to any one of the above three 

examples. Lemmas 1 and 2 show that  the most general locally schlicht L.P. function on F 

can be obtained by solving the Schwarzian D.E. 

{w, x} = 2[R0(x, y) +Q(x, y)], (4.5) 

where Q(x, y)dx ~ is any regular quadratic differential on iv. If we let {Qx ..... Q~} be a basis 

for such quadratic differentials, 
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then we clearly obtain 

[ 3 g - 3 ,  g~>2 

N - - / 1 ,  g = l ,  

(0, g=0 

(w, x} f 2 [Ro(x, y) + j~12j Qj(x, y)] . (4.6) 

The complex constants 2j are precisely the accessory parameters mentioned in section 1. 

The corresponding linear D.E. is 

d~ t- Ro(x,y)§ ~ ~jQj(x,y) u=O. (4.7) 
t - 1  

One naturally wonders what happens to w and its monodromy group as t h e  parameters 

21 .. . .  , ~N vary. A complete answer to this question has proved quite elusive. See also [24] 

and [25]. 

Suppose, finally, that  F has genus g 1> 2. We let (U, ~) be the universal covering sur- 

face of F and let 0 denote the automorphic group: F = U/~. Let us / ix  t o E U so that ,( t0)  = 

~0. The general theory of covering surfaces [2, pp. 34-39] then yields a natural isomorphism 

I t  follows that,  when lifted to (U, g), linearly polymorphic functions are simply mero- 

morphic functions z(t) on U which satisfy a transformation law 

z(Lt) = z(L)z(t), g(L) ELF(2, C), 

for LE ~. The mapping L-~)~(L) is seen to be a homomorphism ~-~LF(2, C). 

The function q(t) = (z, t} satisfies the equation q(Lt)L'(t) ~ = q(t) for L E ~. q(t) can there- 

fore be thought of as a quadratic differential on F = U/~. I t  is easily seen that  locally 

schlicht L.P. functions correspond to regular quadratic differentials q(t). 

Throughout the following sections, we shall work on either F or (U, ~) as dictated by 

convenience. That  is: on F in section 5, and on (U, g) in sections 6-12. 

5. The hyl~rgeometrie e~uation 

In an ideal situation, one would be able to calculate the monodromy group of any 

linear D.E. by some sort of explicit formula. (We recall problem A.) Unfortunately, the 

actual state of affairs is far from ideal, and we can carry out the explicit computation of 

monodromy groups for only a few special cases. 

The most important  such case is that  of the classical hypergeometric equation. The 

necessary formulas for calculating its monodromy group can be found in [7, pp. 93-95], 
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[16, pp. 135-150], and [35, pp. 53-57]. Comparatively speaking, the simplicity of these 

formulas stems from the fact that  the hypergeometric equation involves only the Riemann 

sphere C and three regular singular points. 

In later sections of this paper, the situation becomes much more complicated and we 

will be forced to side-step problem A entirely. This will be done by working strictly with 

L.P. functions and their monodromy groups, letting the associated differential equations 

(such as (4.6)) fall where they may. 

As a matter of principle, then, we should t ry to calculate at least one example [airly 

explicitly (including both the group and the D.E.). To do so, we naturally use the hyper- 

geometric equation. 

Our basic reference for the hypergeometric equation will be t he  excellent book by 

Klein [35]. 

We begin by recalling the Riemann-Papperitz equation [35, pp. 26, 116]: 

d ~  ~- x - a § § x - b  ~ , -c  }dx  

+{~lo~2(a-b) (a -c )+f l l f l2 (b -a) (b -c )  y : y 2 ( c - a ) ( c - b ) l  u 
x - - a  x - b  ~ x-~c  j ( x - a ) ( x - b ) ( x - c )  O, 

(5.1) 

where ~1 ~- ~2 +~1 +f12 "~-Yl +72 = 1. This is the general second order equation of Fuchsian 

type on C with three regular singular points a, b, c. The roots of the respective indicial 

equations are ~1, az; ill, f12; and Yl, Y2- For simplicity, we assume that  none of the exponent 

differences a : - a~ ,  f l l - ~ ,  Y:-~2 is an integer. The quotient function z:u:(x)/ug.(x ) is 

readily seen to he locally schlicht for x =~a, b, c (since the Wronskian is easily calculated). 

Near x=a,  b, c, the function z(x) obviously behaves like ( x - a )  ~'-~', ( x -b )  ~'-[~*, ( x -c )  v'-r'. 

To obtain the classical hypergeometric equation requires two simple normalizations. 

We first apply an auxiliary L.F. mapping to assume that  (a, b, c)=(O, ~ ,  1). This yields 

[35, pp. 25-26]: 

(5.2) 

We then set u~x~'(1 -x)~'v to obtain the classical/orm o~ the hypergeometric equation [35, 

p. 4]: 

x(1 - x ) v  ~ + [c -  (a + b + 1)xJ v' -abv  = 0. (5.3) 

This transformation can be indicated more precisely using the Riemann P-function [35, 

pp. 119-120]: 
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0 ~ 1 a~) 

u = P  oq Px 7 t ;  , 

" ~  #2 7, )(0 1 ) 
v = P  0 ~x+f l t+? ' t  0 ; :~ = P  0 a 0 ," . 

~ - ~ 1  x1+/~2+7'1 7'2-7'1 1 - c  b e - a - b  

(5.4) 

The roots of the indicial equations are very clearly displayed in this way. We might also 

observe that  z(x)=-vl(x)/v~(x ). 

Suppose next  tha t  F is any compact Riemann surface whose branch points are situ- 

ated over 0, ~o, 1. The function z(x) clearly lifts to F.  To ensure that  z(x) is an L.P. function 

on F,  we must impose certain obvious conditions at the branch points (expressed in terms 

of the local coordinate t): 

= t  ~ =~ k(~ 1 - ~ ) E z  ] 

x = t-* ~ k(/~-/~) ~ Z l" 
x - l = t  ~ ~ k(?l-~,2)~Z 

(5.5) 

The conditions needed to guarantee that  z is locally schlicht everywhere on F are similar: 

x = t  ~ ~ k ( ~ l - ~ ) = + l  ] 

~=t-* ~ k ( ~ l - ~ ) = + l  l" 
x - l = t  ~ =~ k ( ? l - ? ~ ) = + l  

(5.6) 

Example. Consider the surface F: y5 = x ( x - 1 ) .  This surface has three branch points 

0, ~o, 1 with the respective local coordinates x =t 5, x = t  -5, x -  1 = t  5. By  the Riemann-Hur- 

witz formula w = 2 n  + 2 g - 2 ,  the surface F has genus g =2.  

We are interested in the L.P. functions z(x) on F obtained by lifting equation (5.3). 

There are two cases of exceptional interest: 

(A) (A~, a/~, A?) = (2/5, 2/5, 2/5); 

(B) (a~, A~, At) = (4/5, 1/5, 1/5). 

According to [35, pp. 261-262], the monodromy group in these two cases will be ]inite. 

This should prove interesting, since the finite groups of L.F. transformations are completely 

tabulated: [15, p. 133], [31, p. 115], [35, p. 257]. 

We le~ the corresponding L.P. functions be z 1 and z2, respectively. The behavior of 

z 1 and z~ at the branch points 0, ~ ,  1 is (up to L.F. mapping): 
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0 ~ 1 

~ t  ~ z . , ~  -~ z l ~ t  z 

z 2 ~ t  4 z 2 ~ t  -I  z z ~ t  

At non-branch points, z 1 and z2 are locally schlicht. We thus see tha t  zl has multiplicity 2 

at  each branch point, but  is locally schlicht elsewhere. Similarly, z~ has multiplicity 4 a t  

the branch point over x =0,  but  is locally schlicht everywhere else. 

By  virtue of [35, pp. 261-262], the monodromy groups m l  and m~ of z 1 and z~ must  

be subgroups of icosahedral groups mA and m s .  Observe here tha t  z 1 and z2 are being 

considered on F, not on C. Furthermore, as is well-known, mA ~ m s  ~ alternating group 

A 5 of order 60 [31, pp. 16-19]. 

We want  to calculate mx and m2. To do so, let F 0 be the portion of F over 

- {0, 1, ~ } = T. F 0 is then a topological covering surface of T and the usual properties 

now apply [2, 29]. We let p: F 0-~ T be the obvious projection map and write P(~0)= x0. I t  is 

not difficult to check tha t  p[zl(F0, t0)] =N is a normal subgroup of ~I(T,  x0) and tha t  the 

quotient group ~I(T, Xo)/N is a cyclic group of order 5. 

Consider, for example, the L.P. function z 1 on T. There is certainly a natural  homo- 

morphism Z: ~1( T, x0)-~mA corresponding to the monodromy group of z i (on C). The 

mapping Z is onto [35, pp. 261-262]. We must  calculate ml=Z(_N). 

First of all, we claim tha t  the order I m l  I >~ 12. This is immediately seen by  applying 

g to a coset decomposition ~ ( T ) = ~ 5 =  1 ~V~i. 

Secondly, we claim tha t  m l  is a normal subgroup of mA. This can be checked quite 

readily, by  using the fact tha t  N is a normal subgroup of ~I(T) and tha t  g is onto. 

Now for the trick! Since A 5 ~- m~ is a simple group [31, p. 18], we conclude tha t  m l  = 

mA. A similar argument shows tha t  m2 = roB. We have thus proved the curious fact tha t  

7~1 and 7 ~  are both icosahedral groups: 

m l =  m 2 ~ A s .  

The actual monodromy coefficients can now be calculated by  labelling the sheets of 

F,  determining a canonical homotopy basis, and substituting into the formulas of [7, pp. 

93-95]. The detailed computations are somewhat tedious and will therefore be omitted. 

In  addition to various trigonometric expressions, gamma factors such as 

F(~) ~ 

will appear. 

The L.P. functions z 1 and z2 have points of ramification (branch points), as noted 

above. To obtain an example of a locally schlicht L.P. function, it will suffice to take 
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(Ag, A/~, h 7 ) =  (1/5, 1/5, 1/5). The monodromy group in this case will necessarily be in- 

finite (see Theorem C in section 7) and will involve gamma factors such as 

r ( t ) '  �9 

r(~)r()) 

R e m a r k  1. The idea of "lifting" monodromy groups is a trick which we shall use 

repeatedly in later sections. I t  appears here in its simplest form. See also [47, section 

XVI]. 

R e m a r k  2. The gamma factors cited above give some inkling into the "level of transcen- 

dence" of arbitrary monodromy groups. See [37, p. 31]. 

6. Marked mono4romy groups and the vector bundle TQ 

We now turn our attention more towards problem B and, in particular, toward the 

problem of Schiller and Hawley mentioned in section 1. We shall be concerned only with 

locally schlicht L.P. functions (until we reach section 11). According to Lemma 2 of section 

4, it makes little difference whether we s tudy such L.P. functions directly or do so using the 

associated D.E. 

d2u 
{z, x} = 2R(x, y), ~ + R(x, y) u ~ 0; 

(6.1) 
d~ u 

{z, t} = 2q(t), ~-f f  + q(t) u = O. 

We remark that  the above two Schwarzian D.E. are related quite simply via 

{z, x } d x  ~ + {x, t }d t  ~ = {z, t }d t  ~. (6.2) 

We need to investigate the situation in which both the quadratic differential and the 

surface can vary. For this reason, it seems most convenient to work with marked Riemann 

surfaces and Teichmiiller space T~. 

We shall therefore assume a certain familiarity with modern Teichmiiller theory. A 

very good survey can be found in [13]. 

We recall a few important facts in this connection. First of all, we had better assume 

that: 

the genus g >~ 2 i s / i x e d  once a n d / o r  all. 

Consider then any marked surface IF, (~4k, B~}]. Thus {~4k, Bk}~-i is a canonical dissection 

for F.  The loops will have a common base point O, the appropriate intersection numbers, 

and will satisfy the commutator relation 
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CA1, B1)(A,, B2)... (A,, Bg) = I (6.3) 

in ~I(F, 0).  

Suppose next  that  (U, re) is a universal covering surface for F. We choose toe U so 

that  re(t0) = O. As was already noted in section 4, there will then exist a natural isomorphism 

between gl(F,  O) and the automorphic group 6, where F = U/6.  (This isomorphism de- 

pends upon to. ) Because rel(F, O) =~ 6, the marking on F induces a marking on 6- There 

will thus be a distinguished set of generators for 6: 

Observe too that  

6 = [A1 ..... Ag; B 1 ..... Bo]. (6.4) 

(Aj, B1)(A~, B~) .,. (Ag, Ba) = I .  (6.5) 

Equations (6.4) and (6.5) display 6 as a marked Fuchsian group. 

This representation for 6 has two obvious sources of ambiguity, since neither (U, re) 

nor the choice of t o is unique. I t  is simple to see that  this ambiguity affects things by at 

most an inner automorphism. 

To avoid these ambiguities, we use the fact that  one can construct a single-valued 

mapping v-~ 6~ carrying Tg into the space of marked Fuchsian groups. This is done  by 

properly normMizing the fixpoints of A 1 and B 1. Note here that  the fixpoints of A 1 and B 1 

are mutually distinct, since otherwise (A1, B1) would be parabolic. We shall write: 

,Q~ = [Al(z ) .... , Aq(v); Bl(V ) ..... Bo(v)]. (6.6) 

This mapping can be used to prove that  Tg m R 6g-8. See, for example, [8], [9, pp. 112-118], 

and [63]. 

Suppose now that  we are given a locally schlicht L.P. function on the marked Riemann 

surface F. By  representing F as U/6~, we obtain a meromorphie function z(t) on U which 

transforms according to 

z(Lt)=Lz(t) ,  L e 6 ~ ,  LeLF (2 ,  C). (6.7) 

The mapping L-~L is simply the monodromy homomorphism. We define the marked mono- 

dromy group ~[z ]  via 

~tl[z] = [~I(T) ..... Jg(z); BI(~) ..... Bg(~)]. (6.8) 

The marked monodromy group is uniquely determined by the initial element of z and by F. 

(It is not taken modulo inner automorphisms.) I t  is also clear tha t  

(~1, B1)(~2,  J~2) ... (Xg, Be) = I,  (6.9) 

and that  ~[z]  can be regarded as an element of ZF(2, C) ~g. 
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Le t  R be the  conglomerat ion of all ma rked  m o n o d r o m y  groups ~ [ z ]  over  all possible 

z and  F .  Define: 

N = { (X,  . . . . .  Xg; Y, . . . . .  Yg) 6LF(2 ,  C)2g: (X 1, Yl) ... (Xg, Yg) = I};  

N 0 = { ( X ~ ;  Yp)eN:  T X ~ = X ~ T ,  T Y p =  Y p T  for Tes I (2 ,  C)r T = 0 } ;  

N 1 = {(X~; Yp) 6No: the  X~ and Yp have  no common  fixpoint}.  

The  t e rm  s/(2, C) is defined in section 2 and  the  subscripts  ~, fl are t a k e n  over  all 1 < ~ < g ,  

1 ~<fl~<g. Using Theorems A-C  of section 7, we easily check t h a t  R=_N r See also [5, pp. 

55-64]. I t  follows t h a t  

R = N I c No N LF(2,  C) 2~ 
m =LF-~, C)-LF-~, C)-LF-~, C)-c LF(2, C) -c LF(2, C) ~" (6.10) 

The quot ient  spaces are t aken  here wi th  respect  to the  equivalence relat ion defined b y  

(X=; Yp)~(WX~W-1;  W Y p W  -1) for W6LF(2,  C), 

and  are assumed to  car ry  the  obvious topologies. 

Gunning  [19, 20] has s tudied some of the  propert ies  of the  last  three  te rms  in (6.10). 

I n  so doing, he has carefully analyzed the  r ank  of the  J acob ian  ma t r ix  of the  c o m m u t a t o r  

funct ion (X1, Y1) ... (Xo, Yg) along N.  I t  tu rns  out  tha t :  (i) the  subvar i e ty  N has definite 

singularities; (ii) N O is open and  dense in N; (iii) the  subvar ie ty  N O is a non-singular locus 

of dimension 6 g -  3. 

Discussion of the  quot ient  spaces is somewhat  more  complicated.  

Fact: the  quot ient  space No/LF is no t  Hausdorff .  

Proo/. For  simplicity,  t ake  g =2 .  We define: 

A l : W - l - , ~  z - 1  A w - 2  z - 2 .  
w z ' ~ : - w - = ~  z ' 

-41. w - 10 ~ z - 10 .~ . w -- 10 z - 10 

w - 3  z - 3 '  2. w - 4  =/z  z - - 4 ;  

l Onz + 1 
Hn(z)=  nz + l ' 

2 1 
H,(a,) = 3, Hn(bn) = 4, an = 7n ' b, = 2n; 

A(ln>: w - 1 ;t z - 1 A(o~). w - 2 z -  2 
w - a ,  z-a----~n' " w - b ,  t~ ~-bn; 

i<I< oo, I<#< oo. 

An e lementa ry  calculation shows t h a t  A(I")-->A1, A(2n)-+Ag. in LF(2, C). Observe, however ,  

tha t :  
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H,A(ln) H~I: w -  Hn(1) = 2 z - H,(1). 
w - 3  z - 3  ' 

H. A(~ ")//~i. w - / / . (2)  = 2 z - / / ~ ( 2 )  

�9 w - 4  z - 4  ' 

(n) -1_> and that  lim~_~ H,(1) = lim~_~o//,(2) = 10. Therefore, HnA(I")H~ I-~.~1, HnA2 H,  .~  

in LF(2, C). 

The points (A1, A2; A1, A~), (~1, ~2; ~1' ~2), (A(1 ~), A(2"); A(1 n), A(~ ")) axe easily seen to 

lie in N 0 (by studying the fixpoints). A similar analysis shows that  (A1, A2; As, A2) 

(~1, X~; ~1, ~2) rood LF(2, C). 

The projection map P: No-~No/LF is continuous (by definition). We can therefore 

apply P to the convergent sequences (A(1 "), A(2~); A(1 ~), A(~ ~) and ,A(n) //.~.'~1 , A(~'~; Ai  ~, A(2 "~) 

�9 H~ 1 to deduce that  No/LF is non-Hausdorff. See [30, pp. 67, 98]. �9 

Because of this fact, we have introduced the space N 1 above. The following properties 

are rather easily checked using [30] and simple compactness axgumenr for L.F. maps: (a) 

N 1 is a dense, open subset of No; (b) the projection P: NI~N1/LF is both open and continu- 

ous; (c) the quotient space N1/LF is Hausdorff; (d) N1/LF is locally compact, separable, 

and metrizable. But, most importantly, by adapting methods found in [19, pp. 186-196] 

and [20, pp. 50-53], one can prove tha t  NI/LF is actually a complex analytic manifold of 

dimension 6g - 6  and that  the projection P defines an analytic fibre bundle. We remark tha t  

similar methods were already used by Teichmiiller in [63, pp. 5-16]. 

We now return to monodromy groups. We want to define the monodromy mapping 

p: TQ-~ ~ .  Informally, the construction is as follows. Suppose that  ~ET o is any marked 

surface and that  q(t)dt 2 is any regular quadratic differential on Ulna. The Schwarzian D.E. 

{z, t} = 2q(t) does not have a unique solution; the corresponding marked monodromy group 

will therefore be determined only up to an inner automorphism. The monodromy mapping 

p is accordingly defined by p: (v, q)-~)~i[z]mod LF(2, C). 

To make matters more precise, we must carefully define the space whose elements are 

the (~, q). This is done in three steps: (I) to each vE T0, we associate the complex vector 

space Q[T] of regular quadratic differentials on Ulna: dim Q[T] = 3g-3 ;  (II) we observe that  

locally the spaces Q[~] can be supplied with a basis {q~(t; ~1~sa-a which varies real-analyti- 

cally with v; and (III) we paste the local situations together to construct a real-analytic 

vector bundle TQ over T o. TQ is simply the vector bundle of regular quadratic differentials 

over Ta. 

To avoid getting side-tracked, we shall give additional information about steps (II) 

and (III) in an appendix. 

2-752905 Acta mathematica 135. Imprim~ le 19 D6ceebre 1975 
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The monodromy malwping is now defined rigorously as follows: 

la: TQ-~ ~ ,  ! (6.11) 
p: (% q)-~ ~[z ]  mod LF(2, C). J 

Our main goal is to understand the topological properties of the mapping p: TQ~ ~ and 

the imbedding 7~-~ NJLF. The motivation for this comes from [5, pp. 272-379], [47], [48], 

and [53]. 

The vector bundle TQ obviously has dimension 6 g -  6 and one would certainly expect 

7n to have the same dimension. The simplest possibility is for p to be a homeomorphism. 

Some remarks to this effect can, in fact, be found in Poincard [47, section IV]. His remarks 

are not very rigorous, however, and several authors have criticized them [5, pp. 310-311, 

335-337], [27, p. 518]. Getting closer to the bottom of this question is our most immediate 

aim. 

Appendix .  I t  remains to fill in certain details in the construction of TQ. Assume, 

to begin with, that  T u carries the usual Teichmiiller topology and that  the normalized 

Fuchsian groups 0~ are identified with points of R 6g-~ (in an obvious way). As shown by 

Bers [9, pp. 112-118] and TeichmiiUer [63], the correspondence 3- ,  0~ is actually a homeo- 

morphism. We supply Tg with an obvious real-analytic structure ~ by means of this homeo- 

morphism. 

We shall indicate how to establish step (II) in terms of the structure 7~0. This can be 

done in two ways, both of which involve Poincar~ series • H(Tz) T'(z) ~. 

The first way uses a well-known completness result [10, 11, 46, 48], applicable when 

H(t) is a polynomial. One simply expresses the basis {qk(t; 30))~] a in terms of such Poincar~ 

series and then perturbs the point 3~-* ~ (leaving the associated polynomials Hk(t) fixed). 

t 3g-3 For 3 ~v0, this process will clearly yield the required sort of basis (qk( ; v)}kffil �9 

The second method uses a local form of simultaneous uniformization. Poincar~ series 

(with H rational) can be used to represent the points 3 ~30 as algebraic Riemann surfaces 

P(x, y; 3) =0 which are uniformized by functions x =~(t; 3), y =U(t; 3) such that: 

(a) P(x, y; 3) is an irreducible polynomial in (x, y) whose coefficients depend real- 

analytically on 3; 

(b) the functions ~(t; 3) and ~(t; 3) are meromorphic in t (rE U) and real-analytic in 3; 

(e) t-~(~(t; 3), ~(t; 3)) is the normalized universal covering map for T. 

The basis {qk(t; 3)) is then obtained by  working directly on the algebraic Riemann surface 

P(x, y; 3) =0 using (a)=(c). Further details about this method can be found in [5, pp. 268- 

270] and [23]. 
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Step (III) is now established by using the basic properties of vector bundles [61, 66]. 

Locally, of course, TQ is just T o • C 3g-~. Because Tg is contractible, we actually have 

TQ ~ Tg • C 3g-a [61, p. 53]. 

7. Some known results 

In this brief section, we collect a number of the known results about locally schlicht 

L.P. functions. 

THEOREM A. (Poincard). Suppose that z(t) and w(t) are two linearly polymorphic 

/unctions on the same Teichmiiller point T E Tg. Suppose/urther that )~[z]--~[w]. Then, 

z(t) =- w(t). 

Proo/. See, for example, [5, p. 310] and [53, p. 212]. One may also refer to Theorem 15 

below. �9 

THEOREM B. (Picard). Let z(t) be a linearly polymorphic /unction. I t  is impossible, 

then,/or all the elements o/ ~[z] to have a common fixpoint. 

Proo]. See [5, pp. 297, 305] and [44, p. 300]. �9 

THEOREM C. Let z(t) be a linearly polymorphic /unction. Then, not all o/the elements of 

)~[z] can be elliptic. In  particular, the marked monodromy group 7~[z] must be infinite. 

Proo/. We refer to [5, pp. 62, 305]. �9 

TH~ORV.M D. The ]ollowing statements are equivalent/or a linearly polymorphic /unc- 

tion z(t): 

(i) z(U) =~ C; 

(ii) z: U~z(U) is a topological covering map; 

(iii) the action o / ~ [ z ]  on z(U) is properly discontinuous. 

Proof. See [18], [36], and also [5, pp. 306-310, 317-320]. �9 

COROLLARY. Suppose that the conditions (i)-(iii) ho/d. Then, ~[z]  can be properly 

discontinuous in no domain strictly larger than z( U). 

Proo/. See [36, p. 543]. �9 
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We end this section by  remarking tha t  a useful table of invariant  differential operators 

for various monodromy groups can be found in [33, p. 148] and [35, pp. 280-281]. Know- 

ledge of this table can be used to motivate the proofs of Theorems B and C. 

8. Statement of the main theorem8 

The main results in this paper  involve, as promised, the monodromy mapping 

p: TQ-+ ~ for locally schlicht L.P. functions. 

We recall from section 6 tha t  the vector bundle TQ can be supplied with a very natural  

real-analytic structure, and tha t  the space ~ / i s  contained in the complex-analytic mani- 

fold N1/LF: 

'm = .R c N ~  c ~ c LF(2, C) ~~ (8.1) 
L$'(2, C -  LF(2, C) - L$'(2, C) - L.F(2, C) " 

THEOREM 1. The space Til is actually a subdomain of N1/LF, and the mapping 

p: TQ-~ ~ is a local dilleomorphism. 

A much weaker version of this theorem can be found in [5, pp. 335-337]. 

THEOREM 2. Suppose that z(t) and w(s) are linearly polym~phio functions (on Teich- 

miiller ponts v~ and vs) such that 7~[z] = ~[w] .  Then, z( U) N w( U) is non-empty. 

This result is most important  as a tool to be used in studying the fibres of the mapping p. 

I t  enables one, for example, to get a reasonable hold on the fundamental  membranes of 

z and w. This particular situation will he described more precisely in section 9. Additional 

information about  Theorem 2 can be found in [22, pp. 251-252]. 

In  the next  four theorems, we assume tha t  the marked Fuchsian and Schot tky groups 

referred to arise from compact Riemann surfaces of genus g. 

THEOREM 3. Let z(t) be a linearly polymorphic ]unction such that ~[z ]  is a mar/c~d 

Fuchsian group element-wise. I f  z(U)=~C, then z(t) must reduce to a linear fractional trans- 

/ormation. 

THEOREM 4. Explicit counterexamples can be con~,ruded to show that the preceding 

theorem is ]al~e witho~ the restriction z( U) ~C. 

THEOREM 5. Let z(t) be a linearly polymorphic /unction such that 7~[z]/8 a marked 

Schottky group element-wise. I] z( U) 4:C, then z(t) reduces to a SchoUlcy uni/ormization. 
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THEOREM 6. The preceding theorem is/alse without the restriction z(U) . C .  

The counterexamples alluded to in Theorems 4 and 6 show that  the classicaI accessory 

parameter problems in uniformization theory have unique solutions only i / t h e  functions 

involved are properly restricted. Compare [13, pp. 278-279] and [47, p. 201 (problem 2)]. 

We conclude this section with some theorems which shed new light on the questions 

raised at  the end of section 6. 

THEOREM 7. There exist linearly polymorphic /unctions z(t) and w(s) on TeichmiiUer 

points ~t and vs such that: (i) ~ [z ]  = ~[w];  (ii) vt and vs are con/ormaUy inequivalent as un- 

marked sur/aess. 

Consequently, the individuaI fibres of p are not very well behaved. 

Since p fails to be 1 - 1, the following two results will be of interest. The first of these 

is actually somewhat surprising. 

THEOREM 8. The mapping p: TQ--> ~ is not a topological covering map over ~ ,  since 

there exist paths in the base space 7~ which cannot be lifted to TQ. 

THEOREM 9. The mapping p: TQ-~ ~ is, however, a topological covering over the por- 

tion o / ~  which corresponds to marked quasi-Fucheian groups o] genus g. 

Our last theorem gives important  information about the size of ~ .  

THEOREM 10. Let (L 1 . . . . .  Lg) be any point o/ LF(2,  C) g such that: (i)Ll(Z)f21z, 

1 < ]211 < cr (ii) L 2 ..... Lg are hyperbolic or loxodromic ; (iii) neither 0 nor co is a/ixtmint o/ 

any L~, 2 <~ ]~ <. g. There then exists a linearly polymorphic /unction z(t) on some Tsichmi~ller 

point v E Tg such that ~[z]  = [L 1 ..... Lo; I ..... I]. 

COROLLARY. There exist monodromy groups ~[z]  wh~h are situated arbitrarily close 

to the identity group [I ..... I;  I ..... I]. 

The corollary should be contrasted with [5, pp. 337-341]. 

Professor Schiffer has suggested that  ~ shou/d actually be dense in N1/LF. Theorem 

10 and its corollary certainly support this view. 

Finally, we remark that  Theorems 1-10 were announced in [22]. 

9. Proofs of the main theorems 

Before we can begin the proofs, a number of preliminary comments are necessary. 

We will be dealing with locally schlicht L.P. functions z(t), where tE U/~ and v4 -*~  as 
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in section 6. The geometr/c approach to such functions is based on an important  equivalence, 

relating L.P. functions z(t) to fundamental membranes (in the sense of Klein). Both Klein 

and Poincar~ used this equivalence in their work on monodromy groups. A glance through 

some of their work [32, 33, 34, 35, 47] may prove enlightening here (see also [5, 27]). 

There are two sides to any equivalence. We take the easy side first. Let  ~ be a funda- 

mental polygon for the marked Fuchsian ~ .  Therefore O~=o:~fl+acffl{ ... o~-~o:~f lg ,  

where the labelling corresponds to a canonical dissection {~4e, Bk}~-i for the marked sur- 

face TE T o. The sides of ~ will then be identified in pairs: 

L~+~: ~;--~flL 1 <]r ." (9.D 

I t  is well-known that  [5, 15, 60]: 

(i) the mappings indicated in (9.1) are orientation-reversing; 

(ii) the sum of the vertex angles is 2~; 

(iii) ~ = [L~ ..... L~g]; 

(iv) the commutator relation (6.5) translates into 

I~ (Lk, L~+~k) = I .  (9.2) 
k-1  

I t  is not difficult to express the L~ in terms of the A s and Bk, and vice versa. 

The/undamental membrane ~ of z(t) is simply the Riemannian image z(:~). The mem- 

brane ~ is thus situated over the Riemann sphere C and may very well be multi-sheeted. 

We note in particular that: 

(a) ~z is simply-connected and has no points of ramification; 

(b) any sufficiently fine triangulation of :~ yields a piecewise sehllcht triangulation 

of ~ ;  

(c) the ~[z ]  analogues of (i)-(iv) are valid; 

(d) deformations of :~ induce obvious deformations of ~z. 

We now turn to the more difficult side of the equivalence. Let  ~ be any simply- 

connected, unramified membrane situated over C. Suppose that  ~}~ can be written in the 

form Ai ~Bi ~Ai-Bi- + + - �9 .. A o B o A o B~ so that  the analogues of (i)-(iv) hold for appropriate 

L.F. maps Tk, To+e. (Note that  the orientation on C clearly lifts to ~.) We claim that  

is actually a fundamental membrane ~ .  

We examine the topological side of the question first. Choose any  ~ E T a and form the 

corresponding fundamental polygon ~. We can clearly construct an orientation-preserving 

local homeomorphism/:  ~.-~ ~ which preserves the L.P. identifications along 0~ and 0 ~. 
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The Fuehsian group ~ = [L z .. . .  , L j  is freely generated by  the Lj modulo the commuta- 

tor relation (9.2). We can therefore define a homomorphism •: Q~-~[T x ..... T~g] by setting: 

Z(Lj) = Tj, 1 < j ~< 2g. (9.3) 

By means of Z, we can now extend ] to all of U: 

/(L~) =g(L)[/(t)] for LE ~ ,  te:~. (9.4) 

I t  is not difficult to check that  / is unambiguously defined and that  (9.4) actually holds 

for all t E U. To prove that  / is a local homeomorphism on U, we simply piece together the 

various Riemannian images/[L(:~)] using the analogue of (ii). This involves only a simple 

computation. I t  follows that  the membranes z(L) ~ can be welded together consistently, 

which ensures tha t  ~ = ~s for a continuous locally schlicht L.P. function/(t).  

The analytic side of the question is now easy. We simply identify the various sides of 

~ to obtain a topological surface F of genus g. We then supply F with a conformal struc- 

ture by lifting the obvious one on C up to ~. The identifications along ~ ~ cause only minor 

complications (since we know already that  ~ = Rr)- We will thus obtain a marked compact 

Riemann surface [F, (,~k, Bk}]. Let  :r: U ~ F  be the normalized universal covering map 

for the marked surface F and let ~: ~ C  be the obvious projection. I t  is apparent tha t  we 

can take v = F  and ](t)=z(t)=~7[~r(t)] in the previous two paragraphs. The function z(t) 

will then be meromorphic on :~. By (9.4) and a classical theorem of Riemann, the extended 

function z(t) will be meromorphic on all of U. I t  follows then that  ~ = ~z, as required. 

We have thus proved an equivalence between fundamental membranes ~z and properly- 

ident!/ied membranes ~. Recollection of (6.1) yields: 

D . E . ~ z ( t ) ~  ~. (9.5) 

The beauty of this three-way equivalence is tha t  R is purely geometric. 

There is, however, one catch: the sides of the membrane R must be identified under 

appropriate L.F. maps. Getting a hold of such membranes, especially the multi-sheeted 

ones, can be quite tricky. Furthermore, since ~ is always subject to admissible deforma- 

tions (as in (d) above), a purely analytic description of the situation seems out of the 

question. Compare [34, p. 39]. 

Armed with this preliminary irfformation, we now turn to the proofs of Theorems 1-10. 

Proo] (Theorem 1). We treat  the topological part  of the proof first. We begin by  prov- 

ing that  i~: TQ-~ ~ is continuous at  any point (r0, co)E Tg • C sa-s. The/ocal  identification 

TQ~--, T o • C 8g-8 used here is simply: 

(~,,q)~ T, Y. c~qk(t;~) ~(T,c), (9.6) 
k - 1  
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in the notation of section 6. By working locally, we can choose fundamental polygons :~  

for the marked Fuchsian groups ~ ,  which vary  continuously with r and which are all 

pinned down at  the same base point to E U. Let  z(t; r; c) be the unique solution of (z, t) = 

2q(t) with normalization: 

z(t; T; c) = t -  to + O(t - to )  s. (9.7) 

We can clearly factor the monodromy mapping p into p - -P  o~?, where 

(% c) ~ ?~/[z(t; T; c)] P , 7~/[z(~; r; c)] mod LF(2, C). (9.8) 

The continuity of i0 now follows from that  of ~ and P. Note here tha t  the smoothness of 

q~(t; T) is used in proving that  ~ is continuous. 

We next  claim that  :p is locally 1 - 1. In fact, suppose that  P(~r, cr) =P(~r, dr) where 

(T~, cr)*(~r, 4r) and l i m ~ C r ~ ,  c~) = l im~_~(~, dD = (T0, c0). Let HJn[z( t ;  ~ ;  c ~ ) ] H ~  ~ = 

7~[z(s; ~ ;  dr)]. By  passing to a possible subsequence, we may assume that  either Hn~H 

in LF(2, C) or else tha t  lim~_~ Hr (z )=a  for all z=~b. In the second case, we immediately 

see that  all elements of ~/[z(e; T0; co)] must have fixpoint a. This contradicts theorem B. 

The first case therefore holds and, by  Theorem A, we see that  H = I .  

A simple normal families argument shows tha t  there must exist some 0 ~0  such that  

the functions z($; Tr; or) and z(8; ~ ;  dr) are all schlieht on any non-Euclidean disk of radius 

J. The l~iemannian images z(:~v,; rr; c,,) and ~(:~,,; a~; d~) will therefore tend nicely to that  

of z(:~T0; T0; co) as n-~ ~ .  The same is true for w(:~vn; Tr; cn), where w(t; vr; c~) =Hn[z(t; Tr; cr)]. 

Since 7~[w($; T~; cr)] -- ~[z(s; an; dr)], we can distort : ~ ,  very slightly into :~r, to ensure 

tha t  w[~r~;T~;c,]--z[:~a~;u,; dr]. By virtue of our preliminary comments (e.g. (9.5)), 

there will now exist an obvious eonformal mapping between :~Tr and ~ar  which preserves 

boundary identifications. By extending this map under the group action, we obtain a con- 

formal homeomorphism between ~r and ~r (as marked surfaces). Therefore T r e a t  and 

cr =dr  (by Theorem A). This is a contradiction. Hence p is locally 1 - i .  

As n o t ~  in section 6, the ambient space NI/LF is a complex-analytic manifold. By  

applying the Brouwer theorem on invariance of domain [4, p. 156], the mapping :p is seen 

to be a local homeomorphism. The fact tha t  7~ is a subdomain of ~ ] L F  is now obvious. 

I t  remains to show that  p: TQ-* ~ is actually a local diffeomorphism. We recall tha t  

the spaces TQ and N 1 were supplied with appropriate real and complex analytic structures, 

respectively, in section 6. We also recall tha t  P: N~-~N~]LF is an analytic fibre bundle 

[20]. By applying (9.6)-(9.8), we immediately deduce that  p is real-analytic, 

To complete the proof, i t  will be sufficient (by the implicit function theorem) to prove 

that  the local inverse function :p-~ is C a. In  doing so, we may assume WLOG that  the local 

situation reduces to that  of (9.6)-(9.8). 
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We form the membrane8 z(:~o; v0; co) and z(U; T0; Co), and consider points [X~; Yp] E N 1 

very close to 7~/[z(t; T0; Co) ]. I t  is geometrically obvious that  one can continuously deform 

the membrane z(:~o; T0; co) within the ambient surface z(U; T0; Co) to obtain a new membrane 

~, whose boundary identifications correspond to [X~; Yp]. A simple continuity argument 

shows that  the analogues of (i)-(iv) are valid for ~ (as in the prelimiuary comments). 

We now exploit the basic geometric equivalence (9.5). By  repeating the construction 

given near (9.3)-(9.5), we easily obtain a commutative diagram 

0 

z 1 I w (9.9) 

such that: 

(a) z=z(t)=z(t; T0; Co) and }~o=Z(:~~ 

(b) w =w(s) is a locally schlicht L.P. function on T such that  ~ - -  ~w; 

(c) both w=~(z) and s =O(t) are orientation-preserving homeomorphisms which pre- 

serve boundary identifications; 

(d) the corresponding marked Fuchsian groups ~T~ ~ are normalized. 

Under the group action, s = 0(t) clearly extends to a homeomorphism U rood ~0-* U rood ~ .  

By being more careful in the construction of R, we can certainly ensure that  the 

mapping ~ =~(z; X~; Yp) is several times continuously differentiable in (z; X~; Yp). Compare 

[63, pp. 27-34]. The same will therefore be true for the Beltrami coefficient: 

r  ~[z(t)] ~(0 (9.10) 

Because s =O(t) has the fixpoint normalization of condition (d), the classical theory of the 

Beltrami equation ~ = /~ t  guarantees that  s=O($; X~; YB) is at least C u in (t; X:; YD) 

[1, 3]. 

By putting this fact together with the equation w =~2 oz o0 -1, we see that  w(s; X~; Yp) 

corresponds to a point of TQ having a C 1 dependence on [X~; Yp]. Since P: NI~N1/LF is 

an analytic fibre bundle and [X~; Yp] EIV 1 is quite arbitrary, we conclude that  p-1 is C 1. 

I t  follows that  p is a real-analytic, local diffeomorphism. �9 

Proo] (Theorem 2). A complete proof has already been given in [22]. For the sake of 

completeness, we briefly recall the main ideas. One simply assumes that  z(U) N w(U) is 

empty and constructs the function 

[w(s) -z (O]  ~ 

E(O = w'(s) z'(O ~ (0 '  
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where s=r  is any orientation-preserving diffeomorphism taking U/~t onto U/~s. We 

then check that: (a) E(t)=~0, oo; (b) E(t) is differentiable; (c) E(Lt)=E(t)L'(t) ~ for LE ~t; 

(d) E(t) is preserved under auxiliary L.F. mappings (z, w)-+(Mz, Mw). Conditions (a)-(c) 

guarantee, however, tha t  D(t)= V-E(t) induces a singularity-free vector field on either ~t 

or an appropriate two-sheeted covering thereof (since D(Lt) = • D(t)L'(t)). This contradicts 

the classical Hopf-Poineard index theorem [62, p. 244]. �9 

Under the hypotheses of Theorem 2, we m a y  assume W-LOG that  the vertices of z(~t) 

and w(9:,) have the same respective coordinates. This is accomplished by  deforming the 

polygons 3:t and ~s. Informally expressed, the membranes z(~t) and w(~'s) can then differ 

only in the way their sides are wrapped around. 

Proo/ (Theorem 3). We may clearly apply Theorem 2 with z=z(t) and (WLOG)w= 

w(s) = s to deduce that  z(U) N U > r Observe, however, tha t  ~[z]  = ~ [w]  has region of dis- 

continuity @-~U. By the Corollary to Theorem D, we see that  z(U) must therefore coin- 

cide with U. An application of Theorem D (ii) now shows that  z(t) is schlieht and hence 

L.F. �9 

Proo/(Theorem 4). By virtue of the geometric equivalence (9.5), we need only construct 

an appropriate membrane ~. 

To do so, let :~ be the 4g-sided regular N.E. polygon having center at the origin, first 

vertex along the positive real axis, and vertex angle ~t/2g. By a classical theorem of Poin- 

card [60, p. 84], ~ will be the canonical polygon of some marked surface F E Tg. 

Let  ~:~=~fl~o~fl~ ... o ~ f l ~ f l ~ ,  so that  (9.1) applies. We claim that  the geodesics 

determined by the various a~ are well-separated. In fact, if the a~ geodesics are not well- 

separated, they will clearly determine a 2g-sided regular 57.E. polygon ~ which contains 

~. Using the Gauss-Bonnet theorem [60, 62], we see that  (4g - 4) ~ = A (:~) ~< A (0 )  ~< (2g - 2) g, 

which is a contradiction. 

We now take c z and c2 to be the centers of the circles determined by  g~ and ~ ,  and 

let W 0 be the planar surface defined by w~=(z-cz)(z-c~). The Riemann surface W 0 is a 

two-sheeted ramified covering of @. 

By means of the geodesics ak, fl~ we may now define a simply-connected subregion W 

of W 0 as depicted in figure 1 (for g = 2). Because W _~ W 0, it  certainly makes sense to write 
- b  - -  - -  

~W and to set ~W=A + B~ A~ B~ ... A + Bg Ag B~. Corresponding to (9.1), we now have 

Lk: A;~A'~ ,  Lg+k: B;-~B-~. 

I t  is clear tha t  the membrane W is properly-identified in the sense of (9.5). 

One may therefore repeat the construction given near (9.3)-(9.5) to obtain a locally 
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branch line 

+ 

F i g .  1. , T o p  s h e e t ;  ~ ~ ,  b o t t o m  s h e e t .  

schlicht L.P. function z(t), defined on some ~ E T~, such tha t  z ( :~ )=  W considered as mem- 

branes. 

Let  Q be the (improperly normalized) marked Fuehsian group associated with 

[L 1 ... . .  L j  and marked surface F. We recall (9.2). I t  is obvious, by  construction, tha t  

~ [z ]  = Q. This completes the proof of Theorem 4, since the function z(t) is clearly non- 

sehlieht. �9 

Several comments are called for here. First, the remark given after the proof of Theo- 

rem 2 is illustrated quite well by  the membranes :~ and W used above. Secondly, i t  is very 

easy to check directly tha t  z(U)=(3. And, finally, a similar example was discussed (in- 

dependently) by  Maskit [39, pp. 6-7]. His approach is much less geometric than  ours. 

Proo] (Theorem 5). Assume tha t  we are given locally schlicht L.P. functions z and w 

on marked surfaces F and H such that:  (a) 7/tEz] = :~t/[w]; (b) w(U)#6;  (c) z: U~z(U)  is a 

Schottky uniformization. We m a y  thus assume tha t  the marked surface [F, {A~, Bk}] has 

Schottky data (D~, $~, T 1 ..... Tg): 

~ [z ]  = IT  1 ... . .  Tg; I ,  ..., I ] ,  tz = IT1 .... .  Tg], 

z ( v )  = D~, F = D~/S~. 

The Sehottky group $~ has region of discontinuity D~. Since w(U)=t=fJ and ~/[z] = ~t[w], 

the corollary to Theorem D shows tha t  w(U) = D~. 

Let  ~]: U--,'D w be any  Schottky uniformization for H. Set H=Dw/$w.  Using the fact 

tha t  ~ [ w ]  = ~[z] ,  we easily see tha t  the function W = w o~ -x is a single-valued, locally 

schlicht L.P. function on D~. More precisely, 

W[K~s] = T= W(s), (9.11) 
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where 1 ~ g ,  S ~ = [ K  x, ..., Kg], and sED=. By means of Theorem D, it is not  difficult to 

prove that  W: Dw-~ ])~ is a topological covering. 

Let  ~w be a compact fundamental region for D~o/$~. Then W(~)~) is a compact sub- 

region of Dz. By repeated application of (9.11), it  follows that  W(8)~Dz as 8-~aDw. 

Hence W: D~-~ D~ is actually an n-shceted covering (n < ~ ) .  

By an auxiliary L.F. mapping, we may clearly assume tha t  ~ED~,  ~ ED~. Recall, 

however, that  the singular set Ew=C-Dw is an AD null-set [2, chapter 4]. I t  follows at  

once that  W(8) remains analytic across E~. In other words, W(s) is simply a rational func- 

tion of order n. 

W(s) can therefore have at  most finitely many ramification points, and these must all 

lie in E~. Choose any compact subset M of D~. By  examining appropriat~ K E $~ and using 

W(Ks) = ]'[W(8)], it is not difficult to prove that  W(8) is actually schlicht on K(M) and, 

hence, on M. Thus n = 1 and W(s) is L.F. 

As a consequence, w(t)-~ W[~(t)] is simply a Schottky uniformization. This completes 

the proof of Theorem 5. Caution: it  need not be true that  F = H in ]'~. �9 

Before we begin the proof of Theorem 6, it will be convenient to formulate an analogue 

of (9.5) for Schottky-type L.P. functions. 

Suppose that  z(t) is a locally sehlicht L.P. function on~ E T 0 such that  7~/[z] = [T 1 ..... To; 

? ..... I].  Let  ~:  U-->D 3 be a Schottky uniformization for the marked surface~, and le t  

$3 = ILl ..... Lg] be the corresponding marked Schottky group. The function Z- -z  o ~  -1 is 

easily seen to be a single-valued, locally schlicht L.P. function on D3: 

Z[L~8] = TkZ(8 ), 1 ~ k ~ g. (9.12) 

Let  ~) be any fundamental polygon for $3 which is bounded by 2g d/sjo/nt loops ~ ,  fl{ ..... 

/~ ,  ~ ;  such that  

L ~ : ~ ,  l~<k~<g. (9.13) 

The mappings indicated in (9.13) must then be orientation-reversing. The membrane Z(~)) 

has several important  properties: 

(i) Z(7)) is planar and has connectivity 2g; 

(ii) Z(~)) is unrsmified; 

(iii) the sides of Z(~)) are identified under orientation-reversing Tk. 

We write ~Z(~)) = B + U B~ U ... U B + U B~ in an obvious notation. 

To obtain the other side of the proposed equivalence, one must now mimic the argu- 

ments used near (9.3)-(9.5). We begin, of course, with a membrane R which satisfies the 

analogues of (i)-(iii). 
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The topological par t  of the argument  shows tha t  R =/(~)) for some continuous locally 

schlicht L.P. function/(s)  on D r (where v is arbitrary). The [T  1 ... . .  To] images of ~ can 

thus be welded together consistently to yield an unramffied membrane/(D~) .  We let 7: 

/(D~)-~C be the obvious projection. 

By identifying the sides of 0 n  and lifting the conformal structure of C up to R, we 

clearly obtain a Riemann surface F with a distinguished set of di~oin$ ]3k loops. The uni- 

versal covering map for iv factors into 

U , Dr  ~ F,  (9.14) 

where :t is the obvious Schottky covering and (I) is (what we have called) a Schottky uni- 

formization map. I t  is easy to see tha t  one can find a fundamental  polygon ~)p for Dr/St 

such tha t  ~ ( 0 r )  = ~ as a membrane.  As is now apparent,  Z(iOr) = R for the locally schlicht 

L.P. functions z =~/og o(I), Z =7  o:t. 

The loops ]~ on F can be deformed in many  ways [23] to become par t  of a canonical 

dissection (A~, ~k}~c=l for ~-v. Elementary considerations show that,  by  proper normaliza- 

tion of (I), one can always assume tha t  ~ [z ]  = [ T  1 ..... Tg; I . . . . .  I ]  for [F, {Ak, B~}]. 

We have thus proved the following Schottky-analogue of (9.5): 

D.E.*~ [z(t), Z(s)]*~ R, (9.15) 

where the D.E. term corresponds to (6.1), and R satisfies (i)-(iii) above. 

As we shall soon see, the geometric equivalence (9.15) is much easier to handle than  (9.5). 

Proo/(Theorem 6). Because of the geometric equivalence (9.15), it will suffice to exhibit 

an appropriate membrane ~. To do this, we shall exploit the same trick we used in Theorem 

4. Simply take any Schottky group defined by  2g circles C~, C~ .... .  C~, G;  which are iden- 

tified pairwise under T 1 ..... T o. To be more precise, let cI={l l =3}, c; ={ =1}, 

Tl(z ) =3z, and take the other C~ to be small circles near z =2.  The ambient  surface W 0 in 

this case will correspond to {w ~ = z}. Let  D~ denote the closed disk determined by  C~. 

The membrane W_c W0 is then defined as follows: 

g 

W = (W 0 restricted to 1 < [ z I < 3} - (J {D~ in the top sheet}. 
k ~ 2  

We write ~ W = B~ U B~ U ... U B + tJ B~ and observe tha t  the identification TI: B~ -~ B~ can 

be hooked up in two ways, since B~ and B~ are two-sheeted circles. In  any case, the mem- 

brane W can obviously be used as ~. See figure 2. 

Since W is multi-sheeted, the corresponding L.P. function z(t) cannot possibly be a 

Sehottky uniformization. Nevertheless, ~ [ z ] = [ T  1 . . . . .  Ta; I . . . . .  1] "looks" just  like a 

Schottky group. �9 
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Fig. 2. , Top sheet; - - - - ,  bottom sheet. 

As might be expected, it is very easy to check directly that  z(U) = C. 

Proof (Theorem 7). One is naturally tempted to use the example of either Theorem 4 

or Theorem 6 in proving Theorem 7. For, in both cases, we can clearly find L.P. functions 

z and w which are quite different, yet  satisfy ~ [z ]  = ~[w] .  Unfortunately,  it is not clear 

tha t  the associated Teichmfiller points T~ and vw are conformally inequivalent as unmarked 

surfaces .  

To overcome this difficulty, one might very well t ry  to make small perturbations in 

the monodromy group (based on Theorem 1). This, however, suggests an even simpler 

proof. 

The proof presupposes some familiarity with the theory of Schottky uniformization, 

as in [23]. To keep matters  brief, we shall be slightly informal. 

Let  (I): Tg-~Sg be the mapping which associates to each TETg the corresponding 

normalized Sehottky group Sr = [W1 .... .  W~]. The normalization means that:  Wl(z)=]tlz, 

0 <  [21[ <1; W~(z) has at tract ive fixpoint z = l .  By using the fixpoints and multipliers of 

the Wk, we can obviously regard S a as a subset of C ag-a. 

We now recall that:  (a) Tg is the universal covering of the Schottky space Sg; (b) if 

To E Tg has no nontrivial eonformal self-maps, then the points near T o are all conformally 

inequivalent as unmarked surfaces. 

Choose any  T 1 = [F, {Ak, Ek}] as in (b) and apply a simple Dehn twist to get T~ = 

[F, {Ak, Ek}] with ~1 = A1 El, 81 = El,  ~ = Ak, ~k = Ek for 2 ~< k ~< g. The marked surfacesv 1 

and T2 have identical Schottky uniformizations: (I)(T1)= (I)@2) = [W 1 .. . .  , Wg]. 
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We now define B~(z)=2z for 2 ~ 1 and consider the locus M of normalized points 

[A1 ..... Ag; Ba, I ..... I] ELF(2, C) ~g with A k ~ W k. I t  is easy to see tha t  M _ N 1. Moreover, 

since P: N I ~ N 1 / L F  is an analyt ic  fibre bundle and the points are all normahzed, the loci 

M and P(M) are biholomorphicaliy equivalent. We may  therefore identify these two loci. 

We observe that ,  since Ak ~ Wk and 2 ~ 1, Theorem I guarantees tha t  M _ ~ .  There is also 

an obvious stratification M = U M~ with dim (M~) = 3 g - 3 .  

Let  N(~j) _ To be a small neighborhood of zj. By  virtue of Theorem 1, we can define a 

mapping %: M~-+N(zj) as follows: 

p-1 obvious } 
~vj: M~ " TQ - " Tg �9 (9.16) 

~1:[A1 . . . . .  Ag; Ba, I . . . . .  I ]  ; z , ( A  1 . . . . .  Ao; 2) 

The mappings ~o 1 and ~0~ will surely be differentiable. 

We want  to compare the mappings ~0~ and O. According to s tatement  (a), the mapping 

�9 is a local homeomorphism. We maintain tha t  (I) is actually a local di//eomorphism. This 

can be proved by  constructing a commutat ive diagram (9.9) relating the fundamental  poly- 

gons of marked Fuchsian and Schottky groups. To prove tha t  �9 -1 is differentiable, one 

constructs a sufficiently smooth deformation ~0[z; X 1 ..... Xg] and reasons, as before, with 

(9.10). On the other hand, to establish tha t  �9 is differentiable, one must  begin with a 

sufficiently smooth deformation O[t; X 1, .... Xg; Y1 ..... Yg]" In  both eases, the groups are 

normalized and the classical theory of the Beltrami equation applies. 

I t  should perhaps be remarked tha t  b y  considering S o as a subset of ~ and applying 

Theorem 1, one can prove tha t  0 -1 (and hence O) is real-analytic. 

We are now in a position to s tudy the di//erentiable mappings ~0j oO. For 2 = 1, ~0j o(I) 

reduces to the identity. The mappings ~0j o(I) and ~0j will therefore be local diffeomorphisms 

as 2-~1. 

Suppose, however, tha t  zl(A 1 ..... Ag; 2) and z2(A 1 ... . .  Ag; 2) are always conformally 

equivalent as unmarked surfaces. A standard normal families argument  [using (b)] shows 

tha t  WLOG these Teiehmiiller points differ only by  the simple Dehn twist cited above. 

Consider now the obvious L.P. function z x associated with ~1(A1 .... .  Ag; 2). I t  is easy 

to check (using continuity) that ,  when looked at  on z~(A 1 ..... Ag; 2), t h e m o n o d r o m y  group 

of z 1 is simply [A1B~, A S ..... Ag; B~, I ..... I ] .  This group certainly lies in Ma. Therefore 

vg2[A1Ba, A~I .... Ao; Ba, I ..... I ]  = ~ 0 ~ [ A  1 . . . . .  Ag; B~, I ..... I] =v2(A1 ..... Ao; 2 ). 

Since ~0~ is a local diffeomorphism, we obtain the contradiction A1Ba = A  1 by  taking 2 =~1. 

Theorem 7, with ~l[z] = 7~/[w] = [A1 .... .  Ag; B~, I ,  ..., I ] ,  follows at  once. �9 

Proo/(Theorem 8). A proof valid for g>~3 was sketched in [22]. Unfortunately, the 
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role of geometric equivalence (9.15) was not made very clear there. We shall therefore re- 

examine the situation here in somewhat greater detail. 

Suppose at first that  g>~3. For  simplicity, one may assume that  g=3 .  We define a 

circular domain D(r) for 0 < r < l  as shown in figure 3. We take C~=~]z[ =1}, C~=  

{ Iz [=3) ,  Cg(r)=(Iz§  [=r}, C~(r )={ I z -2  [=r), Cg={]z -a[=O) ,  C ~ = { [ z - b  [=~), 

and set 

Tl(z ) ~- 3z, T2(r) (z) = 2 - z + 2' T3(z) = b + - -  z~a" 

The region D(r) obviously defines a Schottky group [T 1, T2(r ), Ts]. Using (9.15) and Theo- 

rem 1, we will clearly obtain a family of L.P. functions zr such that: (a) ~[zr]  = [T1, T2(r), 

Ts; I ,  I ,  I]; (b) zr is a Schottky uniformization; (c) the corresponding points of TQ vary 

continuously with r. 

Let  T(r) be the point of Tg which corresponds to z~. We maintain that  ~;(r)-~Tg as 

r-~ 1. If not, we could then find rn ~ 1 such that  v(rn)-+v0 in Tg. Recall, however, the univer- 

sal covering map r  Tg~Sg used in Theorem 7 (proof). Surely lim~_~o r =r 

But, modulo a well.behaved normalization, ~[~(rn) ] = [T1, T~(rn), T3]. I t  follows therefore 

tha t  [TI, T2(1), Ts] must be a well-defined Schottky group. This is a contradiction, since 

the commutator (T1, T2(1)) is parabolic. 

We now construct an analogous circular subregion O(r) on the planar surface We: 

w 5 = (z - a)2(z- b) 3. The boundary components B~, B~, B~ (r), B~ (r) are situated over C~, C~, 

C~ (r), C,~(r), respectively, and are placed in separate sheets. The components Bff and B~ 

are situated over C~ and C+2, and revolve around the branch points z = a, z = b in an obvious 

way. See figure 4. 

As in [22], we identify the various components of O~(r) under T1, T~(r), T 3. Since the 

ambient surface W 0 is planar, the subregion ~(r) can clearly be used as a membrane }~ 
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~---- ~)(r) 

b 

Fig .  4 

in (9.15). By  means of Theorem 1 and (9.15), we will thus generate a family of L.P. func- 

tions w r such that: (a) ~/[wr] --[T1, T2(r), T3; I, I, I]; (b) wr is not a Schottky uniformiza- 

tion; (c) the corresponding points of TQ vary  continuously with r. 

Observe, however, that  the membrane ~(r) and the construction of wr both remain 

perfectly well-defined for r slightly larger than 1. The path in ~ corresponding to [Tx, 

T~(r), Ts; I ,  I ,  I ]  for 1-0~<r~<l +0 can therefore be used to prove Theorem 8 when g=3 ,  

as is seen by comparing the properties of Zr and w r. The case g/>4 is handled by  adding 

more circles. 

To handle the case g =2, one uses the circles C~, C~, C~(r), C~(r) to define D(r). The 

region D(r) is then taken on the Riemann surface w ~- =z  very  much like before, except tha t  

B ;  and Bi ~ must be bent as shown in figure 5. [] 

Proo[ (Theorem 9). We begin by  considering those T fi Tg and q(t;T)EQ[T] such that  

{z, t} =2q(t; v) defines a quasi-Fuehsian uniformization. In  this context, see [12, pp. 575- 

581, 588], [13, pp. 277-279, 294]. The corresponding subset B of TQ will have fibres B(v) 

which are identifiable with Tg. Since the fibres of B(~) are contractible, so is B [61, pp. 53, 

90]. The quasi-Fuchsian part  of ~ is naturally defined to be the domain 7/~a =p[B].  

By a simple extension of the proof to Theorem 3, one may check that  p: B-~ ~ is 

a homeomorphism. There is only one small complication. If  ]~/[z] = ]Ol[w] for quasi-Fuehsian 

uniformizations z and w, then we must now show that  the fundamental membranes ~z and 

Rw can actually be taken identical. In  view of the remarks following Theorem 2 (proof), 

this'is not  difficult. See also [23, sections 4 and 5]. 

We want to show that  j0 is a topological covering over ~q.  Since p: TQ-+ 7It is a loca 

homeomorphism, it will suffice to prove the path-lifting property. We therefore let ? = 

3 -752905  Acta mathematica 135. Imprim6 le 19 D~cembre 1975 
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i 
Fig. 5. 

B~ 

, T o p  s h e e t ;  - - - - ,  b o t t o m  s h e e t .  

{M(~): 0 < ~ < 1 ,  ~ 7  } be any continuous path in ~a .  WLOG p-l(y)___B is well-inside a 

coordinate patch for TQ: p-l[M(~)] = [z(~), c(~)] e T o • C 8g-s. 

T o can be thought of as the set of deformations [F, ]] of a fixed reference surface 

[F0, {Ak, Bk}], where/:  Fo-+F. See [13]. We shall therefore write z(~) =[lYe, ]r The map ], 

lifts to ~r U-~ U. Because ]r is determined only up to isotopy and M(~) is continuous, WLOG 

~(t)  is continuous on U x [0, 1]. The corresponding normalized Fuchsian group will then 

be ~ = [A1.r ..... Ba.,] with fundamental polygon :~ :~ ( :~ ) .  

We now consider the Schwarzian D.E. 

3 g - 3  

{z, t} = 2 ~ ~(~) q~[t; ~(~)]. 
k ~ l  

This D.E. obviously defines a normalized quasi-Fuchsian function z=z~(t) such that  

z=t§ As usual then [12, pp. 588-589]: (i) z~(t) extends to a QC self-mapping of {~; 

(if) z~oAk.~=Xk.~oz~, z~oB~.~=Bk.~oz~; (iii) ~[z~]=[~l.~ ..... /~g,~] is continuous in 

and pro]ects onto M(~); (iv) z~(t) is continuous on C x [0,1]. See also [13, section 2.5]. 

Define y~ = ~  egg ~. This function satisfies ~2~ ~0Y~ ~ = ~ and is continuous on U x 

[0,1]. By reflection, ~ extends to a QC self-map of C. By adjusting the [~ and using the 

Beltrami equation, we easily see that  y~(t) is continuous on C x [0,1]. 

Suppose now that  ~ [ w ] = [ ~ L 0  ..... Bg.o]. We must t ry  to lift the path Y through w. 

Certainly, by the above-mentioned extension of Theorem 3, one may assume WLOG that  

w(U)=C. We let w=w(s) correspond to [G, h]eT  o with normalized Fuchsian data [~, :~, 

A~, B~]. By Theorem 2, we may assume that  the vertices of w(:~) and zo(:~0) have identical 

coordinates. 
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The mapping" (I)~ = Z ~ ) $ ~  1 is a QC self-mapping of C taking zo(U ) onto z~(U). The ~r 

are certainly continuous in ~ and will satisfy 

The trick is to s tudy the Riemannian images r for 0~<~<I. The case ~=0  is 

obvious, since r = I.  Observe, however, that  r is a non.analytic locally schlicht L.P. 

function: 

r =~/k.~or162 r  /~k.~or 

Therefore (I)~w(:~) defines a fundamental membrane for some locally schlicht L.P. func- 

tion having monodromy group [-~1. ~ ..... Bg. ~]. We recall (9.5) here. By using Theorem 1 

and the continuity in ~, we immediately obtain the required lifting of ~. This completes the 

proof. �9 

Proo/(Theorem 10). I t  will be convenient to break up this proof into a series of steps. 

The proof is essentially a "packing" problem with L.F. identifications. 

(I) Let  L be any loxodromic or hyperbolic L.F. map such that  L(0):~0, L ( ~ ) = ~ .  

One can then find two Jordan regions R 1 and R~ such thati (i) R1 _ C - (0, oo}; (ii) R 2 ___ C - 

(0, ~ ;  (iii) L[int  R1] = ext R 2. We do not assert that  R 1 and R~ are disjoint. 

Proo/. Let a, b be the attractive, repulsive fixpoints of L: a, b =~0, o% Consider the cyc- 

lic group [L] acting on D = C -  (a, b}. The action is properly discontinuous [15, pp. 52-54, 

146-147]. As usual, F = D/[L] is a compact Riemann surface of genus 1 and the projection 

~: D-~F is simply the Schottky covering map. 

We can therefore choose two disjoint Jordan curves C 1 and C 2 whose exterior is a 

fundamental region for D/[L]. WLOG bE int C1, aE in t  C2. The curves C 1 and C~ can of 

course be subjected to small deformations. 

There are three cases to consider: (i) 0 E int C1; (ii) 0 E int C~; (iii) 0 E (exp C1) N (ext C2). 

The analysis for (iii) is obvious. 

Consider case (i). We can continuously deform C 1 into a Jordan curve C'I with 0 ~ ext C~ 

by means of an isotopy on D which avoids L-~(0) and L - I (~ ) .  Applying L, we obtain 

an isotopy of C~ into C~ on D which avoids 0 and c~. Therefore, 0 ~ e x t  C~. Obviously, 

then, R 1 = i n t  G~, R~ = int C~ will work. 

Case (ii) is handled similarly via L-L �9 

(II) Let  ~o > 0. We claim that  there exist arbitrarily large integers N such that  the 

fractional part  of N~o/2g is either 0 or else very close to 1. 

Proo/. When eo/2g is rational, the result is trivial. For irrational eo/2~, one simply 

uses the classical uniform distribution theorem of H. Weyl. �9 
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( I I I )  We now recall the no ta t ion  used in s tat ing Theorem 10. We shall write 21 = Re t', 

where R =  1211 > 1  and 2Mg~<~o<(2M+2)~ .  M is unders tood to  be a large integer, de- 

pendent  only on g, which will be specified later. We shall also choose ~ near to  1 so t h a t  

0 < R - I < ~ < I .  

We  must  now construct  the  following two sequences rood N, where N is any  large 

integer. 

2 

N - 1  

Ca dn 

1 
(nR) I 

1 

: 

1 /q 1 
(,R) N-1 [cn+l =Ra.  

1~/< I 1 
N 1 [~R > 1 

c N I n  an  obvious way,  ( n}n=0 determines a polygonal  funct ion y = c(x) on 0 ~< x ~< N. 

Consider now any  a: N<~a<N+~i. We define c(x) on [0,a] via  

c(x), O<~x~N, 

and then  extend c(x) to  all x b y  periodicity. Clearly y = c(x) is a polygonal  function; i t  is 

also easily seen t h a t  c(x) >~ R. 

We next  define 

c(x+ l) 
d(x) B 

Obviously d(x) is polygonal,  has period a, and satisfies d(x) >~ 1. 

(IV) We claim t h a t  c(x) >d(x) for all x. 

Proo/. W L O G  0 ~<x < ~. Moreover, since c(x) and d(x) are piecewise-linear, we need 

only  check the vertices: x =0 ,  1, 2, ..., N - 1, a -  I ,  N,  ~. The computa t ions  called for are all 

quite easy. �9 
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(V) From now on, we restrict our attention t~ very large iV which satisfy 

1 
N e ~  K E Z ,  0~< ~<  10 
2~r 

For these N, we put ~ =2~rK/eo. (Recall eo in step I I I . )  I t  is simple to check that  

1 1 
0 < ~ - N < I ~ < I -  ~. 

(VI) Let us temporarily fix any such N and consider the compact Riemann surface Po 

defined by w K= z. The branch line is taken to be the positive real axis and the sheets are 

labelled cyclically: 1, 2 .... , K. F 0 is seen to be planar. 

We then lift the following two curves to F0: 

z = c(x) e ~'':, z = d(x) e ~'x, 0 < x < o~. 

Both lifts are started in sheet 1. Since 1 <d(x)<c(x) ,  we clearly trace out an annulus E 1 

on F 0 (eoo~=2~rK by construction). 

This annulus F~ has some very important properties. In  particular, consider the lifts 

for 0 ~<x ~< �89 We easily check that:  

~ ( ~ R ) N < c ( x ) < ~ ( ~ R )  ~, l~<d(x)~<nR, 0<x~<l /2 .  

Thus d(x) is relatively small, while c(x) is enormous (N large). 

The part of the annulus F 1 which corresponds to 0 ~<x ~< 112 subtends an angle ~io): 

M~ ~< lo~ < ( M +  1)g. 

The number M can now be chosen: we shall set 

M = 100g. 

The portion of F 1 due to 0 ~<x ~< �89 thus lies in at least the sheets 1, 2 ..... 50g. And, of course, 

F 1 is very wide here. 

(VII) We must now apply step I to the L.F. maps L~ ..... L o separately. We thus ob- 

tain Jordan regions R '  R ~ ..., ' 2, 2, Re, 4 .  Let h > 0 satisfy 

g 

{ I �9 ] < N [(ext n (ext 
k~2 

Of course, h is determined solely by the initial data and is independent of N. 

I t  is now necessary to shrink F 1 by a certain factor G < 1 chosen so that  C~ R < h; we 

obtain the annulus F~ = CF  r 

Since JV is very large and Gd(x) ~ G~ R < h on 0 ~ x  ~ ~, we can now make the following 

deletions from F~: 
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R~ from sheets 1 and 2; 

R~ from sheets 3 and 4; 

R'g from sheets 2g - 3  and 2g - 2; 

/~  from sheets 2 g -  1 and 2(/. 

In this way we obtain a planar surface F 3_~ F 0 of connectivity 2g: 

~F3--~; u ~  u ... u~;  u~;. 

The shores fl; and fl+ for k >~ 2 are clearly identified under L k. 

The shores of 8F 1 are identified under Ll(z ) =21z as follows: 

d(x )  e t ~  - ~  c(z + I )e ~ + ~>. 

This correspondence holds for all x. There is obviously a similar correspondence for 8F~ = 

~ u ~;. 

(VIII) Taken with these identifications, F s clearly defines an admissible membrane 

R in the geometric equivalence (9.15). There will thus exist an L.P. function z on some 

E Tg so that  

~ [ z ]  = [L~ . . . . .  Lo; I . . . . .  I ] .  

This completes the proof. �9 �9 

Theorem l0 is clearly a first step in determining the exact size of )~t. I ts proof was re- 

duced, in essence, to a packing problem by virtue of (9.15): we merely had to construct an 

appropriate membrane ~. The construction given above was relatively transparent, be- 

cause one needed to pack only the B~ components and, then, only in a more-or-less in- 

dependent fashion (recall steps I, VII). 

In the general case, however, 7~[z] = [X 1 . . . . .  Xo; Y1 . . . . .  Yg] and one is forced to use 

(9.5). The problem is thereby reduced to constructing an appropriate simply-connected 

membrane ~. The construction of ~ in this case is much less obvious than before. There 

are two major difficulties: 

(a) the components A t  and B~ will, in general, be interlocked nontrivially. For this 

reason, they must be packed into ~ simultaneously. 

(b) the A~ and B~ can wiggle very severely. This makes it  difficult to choose the 

correct ambient surface W o in advance. 

I t  is precisely these geometric difficulties which stand in the way of proving, for 

example, that  ~ is dense in N1/L$'.  
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10 .  S o m e  fur ther  re su l t s  

In  this section, we take up several results which are closely related to those given in 

sections 7-9. 

THEOREM 11. On any marked sur/ace vE Tg, there exist locally schlicht L.P. /unctions 

z(t) whose monodromy group ~[z ]  contains in/initesimal elements. 

Proo/. Observe that ,  in the notat ion of (4.6) and (6.8), Tr2(Bz) is an entire function of 

the accessory parameters  2z ... . .  2ag-a. This function is surely non-constant, as is seen by  

using the Fuchsian and Schottky uniformizations. We can therefore apply the classical 

Picard theorem (for entire functions) to ensure tha t  Bz is frequently an elliptic element of 

infinite order. This suffices to prove the theorem. See also [5, p. 319 (top)], [36, p: 545]. 

Explicit examples can easily be constructed along the lines of figure 2 in Theorem 6. 

The circles G~ and G~ are taken to be isometric circles corresponding to an elliptic element 

T 2 and are placed in opposite sheets [15, p. 27]. �9 

Suppose next  tha t  z(t) and w(t) are locally schlicht L.P. functions (on the same ~ E To) 

such tha t  ~ [z ]  = [A z ..... Ag; B z ..... Bg] and )*/l[w] = [Cz .... .  Cg; B z ... . .  Bg]. We want  to 

investigate the relation between z and w. The global situation is definitely not  immediate; 

e.g. consider (B 1 ..... B~) = ( I  .. . . .  I ) ,  z( t )=Schot tky  uniformization, and w(t)=the function 

developed for Theorem 6. 

Observe, however, tha t  the monodromy space ~ ( v )  (which corresponds to L.P. func- 

tions on v) is a 3g - 3 dimensional submanifold of :P/I. Suppose, for a moment ,  tha t  (B z ..... Bg) 

were normalized to exclude the trivial case w = T z ,  TELF(2 ,  C). Such (B z . . . . .  Bg) 

depend upon 3 9 - 3  parameters.  By  counting the constants, one would therefore expect 

that'~locally we could assert tha t  z(t) = w(t). The corresponding assertion for unnormalized 

Bk would be tha t  w = Tz. 

The following result may  therefore be of some interest. 

THEOREM 12. Let the situation o/theprevious discussion apply. I / z ( t )  is the classical 

Schottky uni/ormization map with 711[z]=[A z ..... Ag; I ..... I], and if w(t) is suHiciently 

close to z(t) in TQ, then w(t)= T[z(t)] /or some TELF(2 ,  C). 

Proo]. Let {z, t} =q(t) and {w, t} fir(t), so that q(t)~r(t). Let z(t; h) be the solution of 

{z, t} = (1 - h)q(t) + hr(t), 0 <~h <<. 1, normalized via z =t + O(t3). The fundamental  membrane  

zC~; h) varies continuously. Since q(t)~r(t), we immediately deduce tha t  the Rieman- 

nian paths z ( ~ ;  1) are actually Jordan  curves situated very close to z ( ~ ;  0). Here  0~  =- 

+ + - - ... =g ~o =g ~o, as in (9.1). Elementary  use ~r ~z ~z ~z + + - - of the argument  principle will now 



show that the Riemannian image z (:~; 1) is actually scldicht and that it is, in fact, a funda- 

mental region for a Schottky group. By using the group action and elementary uniqueness 

properties for Schottky uniformization, we conclude that z(t; 0)=z(t; 1), whence 

w(O = ~'[z(O]. [] 

The third result to be considered concerns the behavior of locally schlicht L.P. func- 

tions with respect to a regular (or nornud) topological covering ~: 15-~F with sheet number 

n [2, 29]. The universal covering map ~: U ~ F  now factors into ~z=~o~, where ~: U-~15. 

The corresponding automorphic groups ~F and ~ will satisfy ~ ~ ~ (normal subgroup) 

with [ ~ :  ~ ]  =n. The Euler characteristics will satisfy Z(15)=~Z(F) so that 

~ = 1 +n(!/--1), g~>2. 

In an obvious way, then, any L.P. function z($) on (U, ~, ~p) becomes an L.P. function on 

(U, ~, ~ ) .  Because of complications in the topology, that is, in the actual canonical dis- 

sections, there seems to be no simple formula relating ~p[z] and ~ [ z ] .  

Let us now fix the L.P. function z =z(t) and introduce the usual monodromy homo- 

morphism L - ~  taking ~f*LF(2 ,  C). If y is any closed path on F, then the (U, ~z) lifts 

of y are all equivalent mod ~p. To be precise, let some choice of y start at 1~ and terminate 

at Nt 1. We can then legitimately define 

M ( r )  -- ~ rood ~F[z] .  

The rood ~F[z] refers to inner automorphisms. The quantity M(y) is clearly invariant under 

continuous deformation (flee homotopy) of Y. 

We claim that by choosing z, F, 15 appropriately, one can construct some very inter- 

esting monodromy groups. 

For example, assume that g - 3  and start off with the situation depicted in figure 6. 

Fig. 6 

a stack of four 
circles [ z -  al = 
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AS in section 9, one can then construct F and z so that  

7n[z] -- [T1, T~, T3; I, I, I], 

T I ( w  ) = R w ,  R > 1; T2(w ) = T s ( w  ) = a + -----a '  
w -  

I n  what follows, we must distinguish between a canonical dissection {~4~, Bk}~=l and 

a canonical homology basis {gk, flk}~=l. In a dissection, the various cuts all pass through 

the same base point O. In a homology basis, however, the pa i r s  of conjugate cuts are well- 

separated from each other. Of course, by adding simple paths cj from O to a~ fl fli we can 

deform {gk, fl~}~=l into a canonical dissection {,4k, Bk}~-a- 

Consider the character Z on ~I(F, O) defined by 

z(A~)= +1, z(A~) = - 1 ,  Z ( A s ) = - I ,  

Z(BI) = +1, Z(]~2)= + l ,  Z(]~3)= +1. 

By the usual theory of covering surfaces [2, 29], Z determines a two-sheeted covering _P 

of Y having genus ~ = 5. The following three figures illustrate the situation. 

In figure 7, {ak,/3k}~-1 is a canonical homology basis. Figure 8 shows the 2-sheeted 

covering _P. And, in figure 9, we readily cheek that  {~k, flk}~-~ is a canonical homology 

basis for _P. (The ~k,/~k are non-dividing cycles with the correct intersection numbers.) 

Recall [2, p. 71] and [60, p. 123]. 

We want to calculate ~ [ z ] .  To do so, we shall deform {~k, flk}~-i into a canonical 

dissection {Ak, Bk}~-i using the paths cj mentioned above. Then, using a minor abbrevia- 

tion, 

= [ s  ..... . . . . .  

Since the curves ~ ,  ~ and ~ ,  ~ are freely homotopic, we obtain 

ME~(A~)] = M[~(~)], ME~(B~)] = M[#(/~)]. 

Fig. 7 Fig. 8. ~1 and ~2 are the branch lines. 
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Fig. 9. ~x and  ~ are the  b ranch  lines. ", Top sheet; . . . .  , b o t t o m  sheet.  The "back  s ide"  is 
no t  shown.  

By inspection of figures 7-9, we deduce that  

~[~(~1) ]  = M[A1];  M [ ~ ( ~ ) ]  = M[A1]; 

M [ ~ ( ~ ) ]  = M[A~];  M[~(~,) ]  = M[A2];  

M[~(~s) ] : M[AsA~-I]; 

M[~(#~)] = M[B, ] ;  M[~(#, ) ]  = M[B~]; 

M[~(~5) ] = M[(~43, ~s)]. 

These computations are all made by noting the appropriate free homotopies. 

Using the definition of z, we now obtain: 

~[~(~)] = ml; M[~(~, ) ]  = T~; 

M[~(~n)] = T~2 = I;  M[~(~,)] = T~s = I rood 7~lv[z]; 

M[~(as)] = T3 T ;  1 = I;  

M[~ (#0 ]  = z;  M[~(#~)] = z;  

M [ ~ ( # 3 ) ]  = Z; M [ ~ ( # , ) ]  = z rood 7~v[z] ;  

M[~: (#~) ]  = z .  

I t  follows at once that  

~/~[z] = [W~, W~, I,  I ,  I ;  I ,  I ,  Z, Z, Z], 

where W1 ~ :T1 - W~ mod ~F[z]. 

In  order to state the corresponding theorem, we let Eg be the set of all ~ E Tg which 

support locally schlicht L.P. functions z having )~/[z] of the form [Wx, W2, i ,  ..., I],  that  

is, with 2 g - 2  I entries. 
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THv.OR-V.M 13. The exceptional set E o has measure zero in Tg provided tha$ g >~3. In  

general, however, E o is non-empty. 

Proo]. We have just seen that  E 5 is non-empty. A similar (though easier) construction 

works for E a. One expects, of course, tha t  all Eo, g>~3, are nonvoid. 

To prove that  E 0 has measure zero in To, we simply lift the locus [ W 1, W~, I ..... I]  

m o d L F  up to TQ by using the local diffeomorphism 10: TQ~ ~ countably many times. 

The corresponding locus in TQ is therefore a countable union of local pieces, each having 

complex dimension ~< 3. Since 3 < 3 g - 3 ,  an application of the obvious projection TQ~ Tg 

shows tha t  E o has measure zero. �9 

Remark. Needless to say, ~ [z ]  = [W1, I ..... I ]  is impossible by  Theorem B. 

The last result we want to discuss here concerns the Nevanlinna characteristic func- 

tion T(r) of a locally schlicht L.P. function z(t). This sort of Nevanlinna theory can be 

found, for example, in [64, chapter 11] in the context of Fuchsian groups. We recall that  

T(r) = 1_ f '  A(X) dx, 
~JT~ x 

where A(x) is the spherical area of the Riemannian image z(]t] <~ x}. 

TttEOREM 14. Let the previous notation apply. There are then exactly two possibilities: 

(a) i / z (U) .C ,  then T(r) is bounded; 

(b) /] z(U)=C, then the order o/growth o/T(r) is precisely In 1/(1 - r ) .  

Proo]. To handle case (a), we use Theorem D. The action of ~l[z] on z(U) is thus 

properly discontinuous. Using theorems like B and C, we readily check that  the comple- 

ment E of z(U) contains at least three points. See also [5, pp. 305-307], [36, p. 542]. The 

Kleinian group ~[z ]  is therefore non-elementary, so a well-known result of P. J. Myrberg 

[40] guarantees that  Cap (E)>0 .  The classical Nevanlinna-Frostman theorem [41, p. 272] 

then shows that  T(r) is bounded. 

In  case (b), we proceed as follows. Let  :~ be the customary fundamental polygon for 

the automorphic group. Set: Pl(r) =th e  number of polygons L(:~) contained entirely with- 

in {It[ <r}; P2( r )= the  number of polygons L(:~) which have nonvoid intersection with 

{ I tl < r}. Since :~ is compact, elementary considerations show that  

ca <~px(r)<<.p2(r)<< l ~  r r ~  l. 
1 r 

A similar estimate clearly holds when :~ is replaced by  a finite union D =Lx(:~ ) U ... U LN(:~). 
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Using the upper bound on P~(r), and the fact tha t  z(t) is a locally schlicht L.P. function, 

we easily see that  T(r) <~ c a In 1/(1 - r ) .  To get a lower bound on T(r), simply choose O so 

that  z(O)=C. (This is easily seen to be possible.) The lower bound on Pz(r) can then  be 

used to show that  T(r) >1 c a In 1](1 - r ) .  �9 

Corresponding results for the second main theorem (in Nevaulinna theory) would be of 

definite interest [41, p. 272], [64, p. 554]. 

11. Linearly polymorphic functions with ramification 

In  this next  to the last section, we would like to indicate very briefly how one can obtain 

information about locally schlieht L.P. functions by  studying, instead, L.P. functions with 

points of ramification (critical points). 

The results we obtain are all based on a certain geometric method whose main ideas 

seem sufficiently rigorous to be presented here. The method itself has not yet  been fully 

developed, so that  a more detailed exposition must (unfortunately) be postponed. As will 

be seen, the method is quite widely applicable and fits in very naturally among the tech- 

niques of section 9. 

The first step is to develop two results, Theorems 15 and 16, which will serve as 

substitutes for Theorems A and 2, respectively. 

We let ~ETg be any marked compact Riemann surface of genus g~>2 and let (U, ~) 

be its universal covering. Recall tha t  an L.P. function is, by definition, simply a mero- 

morph/c function z(0 on (U, ~z) which transforms linear fractionally z (L t )=~( t )  under the 

automorphic group ~. The marked monodromy group ~ [z ]  can then be defined in the 

usual way. We observe that  the Riemannian image z(:~) will be a simply-connected mem- 

brane, except tha t  there may  be points of ramification. We shall let O[z] =th e  total rami- 

fication of the membrane z(:~). 

One naturally tries to extend the previous developments to the present general case 

(ramified or not). For  example, let R k be the conglomeration of all marked monodromy 

groups ~ [z ]  with O[z]=k. Similarly, let Rk(~ ) arise from those z on a fixed surface ~fiTg. 

I t  would be of great interest to completely describe R k and Rk(T). (One should also recall 

here Lemma 1 of section 4.) 

We remark that  the spaces R~ for 0 ~ k < 2 g - 2  are definitely proper subsets of N, 

since Theorem B still applies. This fact can be seen by  a simple adaptation of [5, pp. 297- 

300]: il ~ [w]  contains only linear maps az +b, then the divisor o/the (local) di]lerential dw 

must have degree 2 g - 2 .  
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R We should also note tha t  by  taking n-~c~ in [Jk-0 k(v), one is led to the classical 

Riemann problem cited in the introduction (section 1). 

After these preliminary remarks, we can now state the analogues of Theorems A and 2. 

THEOREM 15. Let z=z(t) and w=w(t) be L.P. /unctions on the same sur/ace vETg. 

Assume that ~[z]  = ~i[w] and O[z] +0[w] < 4 g - 4 .  Then z(t) =- w(t). 

THEOREM 16. Let z =z(t), w=w(s) be two L.P./unctions on the respective sur[aces vt, v~ 

in T o. Assume that ~l[z]= ~/[w] and O[z] § Then z(U) f~ w(U) is non-empty. 

Proo] (Theorem 15). Suppose that  z(t)~ w(t). As in the proof of Theorem 2, define 

E(t) [w(t)-z(t)]~ 
w'(t)z'(t) ' t e  U. 

We easily check that  E(Lt) = E(t)L'(t) 2 for/5 e ~ and that  E(t) is left unchanged under an 

auxiliary L.F. mapping (z, w)~(Mz ,  Mw). To study the local behavior of E(t), it will 

suffice to examine two cases: (a) z(t) = t m + o(tm+l), w(t) =ct" + O(tn+l); (b) z(t) =tm + o(tm+l), 

W(t)=l§ Here c=~0 and n>~m>~l. Case (a) gives E(t)NClt~m+at T M  with 

~>0,  while case (b) gives E(t),,,c~t T M .  The quadratic differential E(t)-ldt 2 must there- 

fore have 

O[z] § O[w] - ~ [2m + (~] = 4g - 4. (11.1) 
(a) 

This yields a contradiction. �9 

Proo] (Theorem 16). This proof will be based on that  of Theorem 2. We introduce the 

usual orientation-preserving diffeomorphisms ~? =/(~), s=r to connect Tt and Ts, and 

assume that  the ramification points of z(t) and w[r are contained in the set (t I ..... tN} 

mod ~t (N even). Introduce points s~, ~, ~ and multiplicities mt, n~ in the obvious way: 

N N 

O[z] = ~. (m,-- 1), O[w] = ~ (n~- 1). 
i = l  t= l  

Using the diffeomorphism/,  we now form 2-sheeted ramified coverings of ~ and % 

with branch points ~1 ..... ~N and ~71 ..... ~7~. These coverings are constructed so as to have 

branch lines ~k-l~k,  ~72k--l~2k for 1 <.k<~N/2. In  this way, we obtain marked surfaces ~t 

and ~s connected by the obvious homeomorphism/.  The main point here is tha t  the L.P. 

functions z and w lift to ~t and ~s in an obvious fashion. The resulting L.P. functions ~ and 
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are then locally schlicht except a t  the branch points, where their respective multiplici- 

ties are 2m~, 2n~. 

We readily check that:  (i) the genus of ~t is G = 2 g - I + � 8 9  [41, p. 324]; (ii) 0[z]= 

20[z]§ O[~]=20[w]+N; (iii) 0[~]+0[~]~4G-4. A moment ' s  thought  shows tha t  

7~[z] = 7//[~], ~(U) fl ~(U) =z(U) t) w(U). Hence, WLOG, we m a y  assume from the very 

s tar t  tha t  m s + n~ --- 0 (mod 2). 

Suppose tha t  z(U) f) w(U) were empty.  We then form E(t) as in the proof of Theorem 2 

and must  clearly s tudy the behavior of E(t) at  the (possible) critical points t 1, ..., tN. We 

quickly see tha t  E(t) behaves like (t -t~)l-'~[~(t) -r l-re. Since s =~(t) is an orientation- 

preserving diffeomorphism and m~+n~-O (rood 2), i t  is easily checked tha t  D( t )=  ~fE(t) 

is well-defined for t ~ t t rood ~t. 

Therefore, as in Theorem 2, D(Lt)=:~(L)D(t)L'(t) for a unique homomorpliism Z with 

z(L) = -!-_ 1, and so D($) defines a vector field with singularities on the appropriate unrami- 

fled 2-sheeted covering ~t(g) of yr. An application of the Hopf-Poincar4 index theorem 

forces us to conclude tha t  O[z] t0 [w]  = 4 9 - 4 .  This is a contradiction. �9 

Remark, 1. Equat ion (11.1) clearly shows tha t  Theorem 15 can be improved somewhat. 

Nevertheless, the example w(t)=z(t)+ C, where C 4 0  and z(t) is an Abelian integral of the 

first kind, should be noted. 

Remark 2. Theorem 15 and a previous remark (about az +b) show tha t  Rk----N1 for 

0 ~< k  ̀< 2 g -  2. See also [5, pp. 55-64]. 

Remark` 3. For further information about  Rk(v) and Theorem 15, one m a y  wish to 

refer to [38]. Cf. also [87]. 

Remark 4. The remark following the proof of Theorem 2 is applicable to Theorem 16 

as well. 

We can now turn to the second stage of the investigation. As we have seen in section 8, 

the space R o contains groups arbitrarily close to the ident i ty group [ I  . . . . .  I ] .  Motivated by 

[5, pp. 337-341], we ask whether there can exist spaces R0(~ ) with the same property. 

There are of course similar questions for any of the excluded cases given in section 7. 

Using the spaces Rk(T ) and Theorem 15, we are able to provide evidence in support  of 

the following conjectures: 

(A) R0(v ) is bounded away from any given translation group [U 1 ... . .  Vg] for every 

~ETg; 

(AI) R0(T ) is bounded away from [ I  ... . .  I ]  for every v 6 Tg. 

A translation group [U 1 ... . .  Ua; V1 .... .  Vo] =[U;  V] is simply one in which the Uk, Vk are 
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all translations. As will be seen, our evidence for (A~) is much more convincing than tha t  

for (A). 

The method we use to get these results is probably of greater interest than the conjec- 

tures themselves. Its underlying idea is quite simple, Suppose that  w is an L.P, function on 

ToETg with k simple branch points, 3 g < k < 4 9 - 4 .  Choose any group [U; V ] E N  close to 

~[w].  We can then deform the fundamental membrane w(:~) slightly to obtain a membrane 

~) having [U; V] identifications. (We recall here (9.1)-(9.5).) The membrane D will clearly 

have k simple branch points, but  will not in general correspond to  T 0 E T a. However, by a 

slight perturbation of exactly 3 g - 3  of the branch points, one can presumably obtain a 

[U; V] membrane which does correspond to T0; see, for example, [17] and [49]. The fixed 

branch points serve to rule out auxiliary L.F. mappings. An application of Theorem 15 

now shows that  [U; V]~R0@ ). 

Due to limitations of space, we shall proceed somewhat in]ormally. We begin with 

case (A~). A general point T E Tg can be represented as a marked surface F = F(a 1 .. . . .  aw) 

over the sphere ~ so that: (a) F has sheet number n=[(g+3)/2];  (b) the branch points 

a I ..... a w of F are all simple and have distinct projections; (c) (a 1 ..... aw) E C w, (aw_~, aw-1, aw) = 

(0, 1, 2). This can be seen intuitively using the Riemann-Hurwitz formula w = 2n + 29 - 2 :  

w = I 3g, 9 even 

t 39 + 1, g odd 

See also [14], [26, p. 532], [59, p. 380]. 

For normalized points (b I ..... bw) ~ (al ..... aw), we may define the marked surfaces 

F(bl ..... bw) in an obvious way. The surfaces iV(b) can all be given the same canonical 

dissection. We let/0: $' (b)~C be the obvious projection. Now, it is very plausible that  the 

mapping 

�9 : (bl . . . .  , bw) ~ F(bl .. . . .  bw) ~ Tg 

is locally biholomorphic provided that: (i) bw_j=aw_j, 0 < j  <2, g even; (ii) bw_j =aw_j, 

0 < j ~< 3, g odd. We shall therefore assume (i) and (ii) to exclude auxiliary L.F. mappings. 

Note that  we are using here the fact that  Tg is a complex analytic manifold [8, 13]. 

Consider points [U; V] EN near [I; I]  and points b ~a .  We form the simply-connected 

membrane associated with the L.P. function/b and the fixed canonical dissection of F(b). 

This membrane has [I; I]  identifications and branch points b 1 ..... bw. We readily distort 

the membrane near its boundary t o  obtain a new membrane with the same branch points 

for [U; V]. Let  the corresponding Teichmiiller point be T(b; U; V). Define 

c(b; U; V)=(I)- l[T(b;  U; V)]. 
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The mapping c(b; U; V) is essentially a mapping CS~ 8~ for each (U; V). Also observe 

that  c(b; I;  I ) = b .  

We would certainly expect tha t  c(b; U; V) is complex-anMytic in b and continuous 

(say) in (U; V). The b-partials of c(b; U; V) near a can be calculated using the Cauehy 

integral formula. For that  reason, we then have 

�89 H <. Ilc(b'; U; V)-c(b"; U; V)l I ~< 2llb'-b"ll 

locally. From this, we immediately deduce the local solvability of c(b; U; V)=a for all 

[U; V] close enough to [I; I].  

Theorem 15 will now show that  [U; V]~Ro(v) provided that  w < 4 g - 4 .  This will 

certainly be the case for g >/6. 

This is our evidence for the t ru th  of (AI) when g~>6. Of course, if (AI) holds for g>~6, 

then it  also holds for 2~<g~<5, as can be seen by passing to an appropriate N-sheeted 

covering of ~. 

We now turn to conjecture (A). Fix T E Tg and consider the Abelian integral 

U=Co§247 § § § d~'"dm ~=O. (11.2) 

The u~ and Y~ are normalized Abelian integrals of the first and second kinds [42, pp. 392- 

398]. In the general case, one would expect that  u has m simple poles and 2m §  

simple, non-overlapping branch points. The monodromy group of u is a translation group 

IV0; v0]. 
The fundamental membrane u(:~) will have branch points a 1 ..... a2m+2o_ 2. Consider 

[U; V] EN near [Uo; V0] and points b ~a.  By distorting u(a:~) slightly and pushing a to b, 

we obtain a new membrane D(b; U; V). We obviously want to normalize things so that  the 

mapping 

(I): (b) -~ ~(b; Uo; Vo) -~ To 

is locally biholomorphic. 

To do so, we may assume tha t  [Uo; Vo] 4 [ I ;  I ]  since the case (AI) has already been 

studied. I t  follows that  T[U0; Vo]T-x=[Uo; Vo] with TELF(2, C) iff T is a translation. 

For this reason, one may expect tha t  (I)will be locally biholomorphic provided that  

2g + 2m - 2/> 3 g -  2 and bj = aj for ~" >/3g-  2. (We need only rule out auxiliary translations 

this time.) We therefore assmne that  m >~ �89 

The argument now proceeds as before. Let  T(b; U; V) be the Teichmiiller point corre- 

sponding to D(b; U; V) and define 

c(b; U; V)=~P-~[T(b; U; V)]. 

We may expect tha t  c(b; U; V) is complex-analytic in b and continuous in [U; V]. As in 
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case (A~), it follows that  the equation c(b; U; V ) = a  is solvable whenever [U; V] is close 

enough to [Uo; Vo]. Theorem 15 implies that  [U; V]~R0(T ) provided that  2 m + 2 g - 2 <  

4# -4 ,  i.e. for r e < g - 1 .  

I t  remains to determine which translation groups [Uo; Vo] can be realized in this way 

under the restriction 

�89 <~m < g - 1 .  

In the notation of [42, pp. 360, 366, 397] the Abelian integral u has periods: 

V~(z) f z + c~; 

g m ( 1 1 . 3 )  
V~(z) = z + ~ cj ~ ,~ -  2:~i ~ dj r 

1=1 J= l  

Suppose that  ve T o is general. We can then take ~ = F ( a  1 ..... aw) as in ease (AI) and 

let ]: F(a)-+(~ be the usual function. Therefore 

/ = Co+all Y~,(t) + ... + d .  Y~.(0, 

with n=[(g+3) /2] ,  d 1 ... d,4~O, and {~1 .... .  ~,} distinct rood Q. Since ] is single-valued, 

the period relations yield 

~ djO~(~j)--0, l~<e<g .  
iffil 

We shall consider points (x; ~]) EC ~-" near (d; ~) such tha t  (x,; z],) ffi (d~; ~,) for g even, 

and (Xn-1, xn; ~]~) = (dn-1, d,; ~ )  for g odd. In each ease, the number of free variables is g. 

The corresponding local analytic mapping 

is of interest. Suppose, for example, that  ~(x; ~1) = (0). The function/1 =co +xl  Y,,(t) + ... + 

x ,  Y,7~(t) will then yield an n-sheeted representation of �9 which approximates that  of ]. 

Since ~ is general and ]1 ~/ ,  we conclude that  ~1 = T / f o r  TELF(2, C) [26, p. 552], [59, 

p. 380]. By the (x; ~]) normalization, we deduce that  T (~ )  = ~ ,  and then that  Tis  simply a 

translation. Hence (x; ~]) = (d; ~). 

According to a general theorem of Osgood [42, p. 139], one should now expect that  

maps onto a complete neighborhood of (0). Incidentally, it  is an elementary exer- 

cise to check that  the Jacobian of ~ does not vanish identically [42, p. 417]. The system 

xlO~(~h)+ .,. +x,O=(~],)=y~ (l<~a<g) will therefore be solvable with x 1... x,=~0 and 

~ ] ~  for any yEC g. Using (11.3) and the f ac t  that  det (vj~)ee0, we now see tha t  

c l u l §  ... + % u g + x  1 Y,,(t) + ... + x ,  Y,~(t) can have an,arbitrary set of periods [U0; Fo]. 

For non-exceptional groups [U0; V0], the corresponding function E ceu~ + Z x~ Y,~ will 

certainly have n simple poles and 2n + 2 g - 2  simple, n0n-overlapping branch points. 

4 - - 7 5 2 9 0 5  Acta mathematica 135. I m p r i m 6  le 19 D 6 c e m b r e  1975 
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The previous development will then apply with m = n, provided that  

~g~< < g - l ,  

that  is, for g >~ 6. 

This completes our evidence in support of conjecture (A) for g/>6. The case 2 ~<g ~<5 

is again handled by means of an appropriate N-sheeted covering of ~. 

Remark. The techniques used above can obviously be generalized quite a bit. The 

general method is, however, amply illustrated by means of the two cases (A), (AI) that  we 

have considered. 

12. Concluding remarks  

We shall close with a part/al list of open problems and directions for further research. 

(1) As mentioned in sections 1 and 6, our main goal has been to obtain a better under- 

standing of the mapping p: TQ-~ ~ and of the subdomain ~ _  NI/LF. Most of our success 

has been with the former. In this regard, we naturally ask for a better  description of the 

obstructions to the path-lifting property for p. I t  seems likely that  such obstructions reflect 

algebraic degeneracies in the monodromy groups. For example, in our proof of Theorem 8, 

there was a cusp (so-to-speak). 

(2) Thus far we have obtained very little insight into the nature of the spaces ~ 

N1/LF ~ N/LF and R _~ N 1___ N. As mentioned after Theorem 10, Professor Schiffer has sug- 

gested that  7~ and R may well be dense. If tha t  be the case, it would be very interesting 

to describe their complements. See also the remarks following Theorem 10 (proof). 

(3) Further s tudy of the submanifolds ~(T)  and R(T), associated with L.P. functions 

on a fixed surface ~ E To, would definitely be useful. Ideally one should be able to say what 

~(~)  and R(T) actually look like. There are already certain indications in section 11. We 

ask, for example, whether the submanifolds ~ ( T ) -  N1/LF, R(~)~_ N 1 are closed. And: 

whether the mapping Q[~]-~ (A ..... -4a) rood LF is locally 1 - 1. We recall here (6.8), (6.11), 

and Theorem 12. 

(4) I t  seems clear tha t  the methods of section 11 can be carried much further. Questions 

for 7~, R, ~(T), R(T) have obvious analogues for ~k ,  Rk, 7ilk(T), Rk(T). We might point 

out that  by "at taching" surfaces like w n =zn-l(z- 1) to the fundamental membranes, one 

can prove that  R k _~ l~k+2m for m ~ 1. 

(5) What does Rk(~) look like ? A geometric argument (as in section 11) or an analytic one 

(based on Lemma 1) seems to show that  dim Rk(T ) = rain [3(/+ k, 6 g -  3]. There are obvious 

connections here with the classical Riemann problem (i. e.when R~(~) =N).  
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(6) To what  extent  can l~evanlinna theory  be used to describe the mapping  properties 

of L.P.  functions? Recall Theorem 14. See also [21]. 

(7) As is apparent ,  we have made no real a t t empt  to  develop an existence theory  for 

monodromy  groups in this paper. Deeper invest igation of this area is definitely called for. 

See, for example, [47], [48], [51], [55], and [65]. 

(8) The s tudy  of problem A in section 1 along the lines of a variat ional  theory  quickly 

leads one to some fascinating connections with Eichler cohomology, Eichler integrals, and 

P r y m  differentials. These relations certainly deserve closer investigation. See [19], [20], 

[24], [25]. 

(9) Fur ther  s tudy  of finite m o n o d r o m y  groups m a y  be interesting. Some references for 

this are [16, pp. 174-218], [27, pp. 524-529]. 

(10) Monodromy groups in higher dimensions (i.e. for higher-order D.E.) would cer- 

ta in ly  appear  to deserve fur ther  s tudy.  See [16, pp. 191-218], [27], [47], [54, pp. 180-199], 

and [81]. One should also recall the general remarks  of section 3. 

(11) Finally, for some number- theoret ic  problems related to  zeta-Fuchsian series and 

m o n o d r o m y  groups, we m a y  refer to [43], [58], and [65]. 
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