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MONODROMY GROUPS OF HYPERGEOMETRIC FUNCTIONS
SATISFYING ALGEBRAIC EQUATIONS

MITSUO KATO AND MASATOSHI NOUMI

(Received May 11, 2001, revised May 7, 2002)

Abstract. The solutions of the algebraic equationymn + xymp − 1 = 0 with n > p

andm ≥ 2 satisfy a generalized hypergeometric differential equation with imprimitive finite
irreducible monodromy group. Thanks to this fact, we can determine the monodromy group
and the Schwarz map of the differential equation.

1. Introduction. A generalized hypergeometric function

nFn−1(a0, a1, a2, . . . , an−1; b1, b2, . . . , bn−1; z) =
∞∑
k=0

n−1∏
j=0

(aj , k)

n−1∏
j=1

(bj , k)k!
zk ,

where(a, k) = Γ (a + k)/Γ (a) satisfies a Fuchsian differential equation

nEn−1(a0, a1, a2, . . . , an−1; b1, b2, . . . , bn−1)

of rankn with singularities atz = 0, 1 and∞. Beukers and Heckman [B-H] determined

nEn−1 with finite irreducible monodromy groups. In [Kt], for3E2 with finite irreducible
primitive monodromy groups, Schwarz maps ofP1 − {0,1,∞} to P2 defined by linearly
independent three solutions are studied. The images of Schwarz maps and their single-valued
inverse maps are determined.

1.1. As stated in Theorem 5.8 in [B-H], under some condition,nEn−1 with irreducible
imprimitive monodromy group is essentially given by

nEn−1

(−α
p
,
−α + 1

p
, . . . ,

−α + p − 1

p
,
α

q
,
α + 1

q
, . . . ,

α + q − 1

q
; 1

n
, . . . ,

n− 1

n

)
,

(1.1)

where(p, q) = 1 andn = p + q.
If we putz = (−p)pqqn−nxn, the generalized binomial function (see Section 2)

ψ(α,−p/n, x)(1.2)
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is (as a multi-valued function ofz) a solution of (1.1). We remark that (1.2) is a typical
example of quasi-hypergeometric function studied in [A-I]. Ifα = −1/(mn) with m ≥ 1,
then (1.2) is also a solution of the algebraic equation

ymn + xymp − 1 = 0 .(1.3)

These facts were found by Lambert (see [Brn, p. 307]), Mellin (see [Blr]) and others.
Let α = −1/(mn) with m ≥ 2. Then a set of linearly independentn solutions of (1.3)

form a fundamental system of solutions of (1.1). As a consequence, we have the following
results. The projective monodromy group of (1.1) is imprimitive and irreducible of order
mn−1n! (Corollary 4.6). The closure of the image of the Schwarz map of (1.1) defined by
the ratio of linearly independentn solutions is an irreducible algebraic curve projectively
isomorphic to

{[y0 : y1 : · · · : yn−1] ∈ Pn−1 | σk(ym0 , ym1 , . . . , ymn−1) = 0, 1 ≤ k ≤ n− 1, k �= n− p} ,
whereσk is the elementary symmetric function of degreek (Theorem 4.5).

1.2. As applications, we state several topics forn = 3 case in Section 5. We give
a proof of Cardano’s formula for a cubic equation, using properties of generalized binomial
functions. We also give a uniformization of3E2 by theta functions, that is, if we putz = J (τ),
the elliptic modular function, then the solutions of (1.1) withα = −1/12, p = 1, q = 2 turn
out to be single-valued functions ofτ and are expressed by the zero values of theta functions.

2. Generalized binomial function. In this section, we summarize several known re-
sults which can be found in [Brn], [Blr], etc.

For any complex numbersα ands, put

c0(α, s) = 1 ,

ck(α, s) = α(α + ks + 1, k − 1)/k! (k ≥ 1) ,
(2.1)

and define

ψ(α, s, x) =
∞∑
k=0

ck(α, s)x
k .(2.2)

We callψ(α, s, x) a generalized binomial function becauseψ(α,0, x) = (1 − x)−α.
We will prove some properties ofψ(α, s, x).

LEMMA 2.1.

ψ(α, s, x) = ψ(−α,−s − 1,−x) .(2.3)

PROOF.

(−1)kck(−α,−s − 1)

= (−1)k(−α)(−α − (s + 1)k + 1, k − 1)/k!
= α(α + sk + k − 1)(α + sk + k − 2) · · · (α + sk + 1)

= ck(α, s) .

�
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We note thatψ(α,−1, x) = (1 + x)α andψ(0, s, x) = 1.

PROPOSITION 2.2. If none of α, s, s + 1 is zero, then the radius of convergence of
ψ(α, s, x) is |ss/(s + 1)s+1|, where zz denotes the principal value.

PROOF. Put

c̃k(α, s) = (α + sk + 1, k − 1)/k! = Γ (α + (s + 1)k)

Γ (1 + k)Γ (α + 1 + sk)
.

Then the radius of convergence ofψ(α, s, x) is the reciprocal of the upper limit of|c̃k|1/k.
First assume thats is not a negative real number. Then, from the Stirling’s formula:

Γ (z) ∼ √
2πzz−1/2e−z as z → ∞ and |argz| < π − δ , δ > 0 ,

we have

|c̃k(α, s)|1/k ∼ |(α + (s + 1)k)s+1|
(1 + k)|(α + 1 + sk)s | ∼

∣∣∣∣α + (s + 1)k

1 + k

(
α + (s + 1)k

α + 1 + sk

)s∣∣∣∣
∼ |(s + 1)s+1/ss | .

This proves the proposition fors which is not a negative real number.
Assume−1< s < 0. For largek ∈ N, choosenk ∈ N andδk with 0 ≤ δk < 1 such that

Re(α)+ sk = −nk − δk.

Then

|c̃k(α, s)| = |(α + 1 + sk, k − 1)|/k!
= |(α + 1 + sk) · · · (α + 1 + sk + nk − 1)|

× |(α + 1 + sk + nk) · · · (α + (s + 1)k − 1)|/k!
= |(−α − sk − nk, nk)| · |(α + sk + nk + 1, k − 1 − nk)|/k!
= |Γ (−α − sk)| · |Γ (α + (s + 1)k)|

|Γ (1 + k)Γ (−α − sk − nk)Γ (α + sk + nk + 1)| .
If s is a rational number, then the setδ := {δk | k ∈ N} is finite, otherwiseδ is dense in the
open interval(0,1). In any case we have

lim sup
k→∞

|c̃k(α, s)|1/k = lim
k→∞

∣∣∣∣ (−α − sk)−s (α + (s + 1)k)s+1

1 + k

∣∣∣∣
= lim
k→∞

∣∣∣∣
(−α − sk

1 + k

)−s(
α + (s + 1)k

1 + k

)s+1∣∣∣∣
= |(−s)−s (s + 1)s+1| = |(s + 1)s+1/ss | .

This proves the proposition fors with −1 < s < 0. From Lemma 2.1, the proposition holds
for any negative real numbers which is not−1. This completes the proof. �

LEMMA 2.3.

ck(α, s) − ck(α − 1, s) = ck−1(α + s, s) , k ≥ 1 .(2.4)
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PROOF.

ck(α, s)− ck(α − 1, s)

= α(α + ks + 1, k − 1)− (α − 1)(α + ks, k − 1)

k!
= (α + s)(α + s + (k − 1)s + 1, k − 2)

(k − 1)! = ck−1(α + s, s) .

�

PROPOSITION 2.4. We have the following two equalities.

ψ(α, s, x) − ψ(α − 1, s, x) = xψ(α + s, s, x) ,(2.5)

ψ(α + β, s, x) = ψ(α, s, x)ψ(β, s, x) .(2.6)

PROOF. (2.5) follows immediately from (2.4).
Proof of (2.6). It is sufficient to prove

ck(α + β, s) =
∑
i+j=k

ci(α, s)cj (β, s) ,(2.7)

which is proved by induction fork. Consider

dk(β) = ck(α + β, s)−
∑
i+j=k

ci(α, s)cj (β, s)

as a polynomial ofβ (α being a parameter) of degree at mostk. From (2.4), we have

dk(β)− dk(β − 1) = dk−1(β + s) ,

which vanishes by induction. Hencedk(β)must be constantC. Sincecj (0, s) = 0 for j > 0,
we haceC = dk(0) = 0. This completes the proof of (2.7) whence of (2.6). �

COROLLARY 2.5. Let ψ ′(s, x) = ∂ψ/∂α(0, s, x). Then we have the following:
(1) ψ ′(s, x) is holomorphic in {x | |x| < |ss/(s + 1)s+1|} with ψ ′(s,0) = 0.
(2) ψ(α, s, x) = exp(αψ ′(s, x)).

PROOF. (1) holds becauseψ ′(s, x) = ∑
k≥1 c̃k(α, s)x

k , wherec̃k(α, s) = ck(α, s)/α

as in the proof of Proposition 2.2. (2) follows from (2.6). �

PROPOSITION 2.6. Let εk = e2πi/k. For positive integers p, q with n = p + q, the
equation (1.3) with m = 1

yn + xyp − 1 = 0(2.8)

has solutions

fj (x) := ε
j
nψ(−1/n,−p/n, εpjn x) , 0 ≤ j ≤ n− 1 ,(2.9)

in a neighborhood of x = 0,

ε
−j
p x−1/pψ

(
1/p, q/p,−(ε−jp x−1/p)n

)
, 0 ≤ j ≤ p − 1 ,(2.10)

ε
j
q(−x)1/qψ(−1/q, p/q,−(εjq (−x)1/q)−n) , 0 ≤ j ≤ q − 1 ,(2.11)
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in a neighborhood of x = ∞.

PROOF. Puts = −p/n andα = 0 in (2.5). Then we have

1 − ψ(−1, s, x) = xψ(−p/n, s, x) ,
which is equivalent to

ψ(−1/n, s, x)n + xψ(−1/n, s, x)p − 1 = 0 .(2.12)

If we replacex by εpjn x, we know that (2.9) are solutions of (2.8).
Puts = q/p andα = 1 in (2.5). Then we have

ψ(1/p, s, x)p − 1 = xψ(1/p, s, x)n ,

which is equivalent to

[(−x)1/nψ(1/p, s, x)]n + (−x)−p/n[(−x)1/nψ(1/p, s, x)]p − 1 = 0 .

Put x1 = (−x)−p/n, and writex instead ofx1. Then we know that functions in (2.10) are
solutions of (2.8).

Now, puts = p/q andα = −s in (2.5). Then we have

ψ(−1/q, s, x)n − ψ(−1/q, s, x)p + x = 0 .

Then, by the same way as above, we know that functions in (2.11) are solutions of (2.8). This
completes the proof. �

COROLLARY 2.7. If σk(y0, y1, . . . , yn−1) denotes the elementary symmetric function
of degree k, then we have

σk(f0(x), f1(x), . . . , fn−1(x)) = 0 , 1 ≤ k ≤ n− 2, k �= n− p ,(2.13)

σn−p(f0(x), f1(x), . . . , fn−1(x)) = (−1)n−px ,(2.14)

σn(f0(x), f1(x), . . . , fn−1(x)) = (−1)n−1 .(2.15)

For any positive integern, put

ϕj(α, s, x) = xj
∞∑
l=0

cj+ln(α, s)xln .(2.16)

Then we have

ψ(α, s, x) =
n−1∑
j=0

ϕj (α, s, x) .(2.17)
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PROPOSITION 2.8. Let s = −p/n and n = p + q . Then we have

ϕj (α, s, x) = cj (α, s)x
j

× nFn−1

(−α + µ

p
+ j

n
, 0 ≤ µ ≤ p − 1,

α + ν

q
+ j

n
, 0 ≤ ν ≤ q − 1;

j + 1

n
, . . . ,

n− 1

n
,
n+ 1

n
, . . . ,

n+ j

n
; (−1)pppqq

nn
xn

)
.

(2.18)

PROOF. If k = nl (l ≥ 1), then we have

ck(α, s) = 1

k!α(α − pl + 1, nl − 1) = 1

k!α(α − pl + 1, pl − 1)(α, ql)

= (−1)pl
(−α, pl)(α, ql)

(1, nl)

= (−1)pl

pplqql
p−1∏
µ=0

(−α/p + µ/p, l)

q−1∏
ν=0

(α/q + ν/q, l)

nnl
n−1∏
λ=0

(1/n+ λ/n, l)

.

If k = nl + j (1 ≤ j ≤ n− 1), then we have

ck(α, s)

= 1

k!α
(
α − p

n
(nl + j)+ 1, nl + j − 1

)

= 1

j !(j + 1, nl)
α

(
α − p

n
(nl + j)+ 1, pl

)(
α − pj

n
+ 1, j − 1

)(
α + qj

n
, ql

)

= α(α + qj/n− j + 1, j − 1)

j ! (−1)pl
(−α + pj/n, pl)(α + qj/n, ql)

(j + 1, nl)

= cj (α, s)(−1)pl

pplqql
p−1∏
µ=0

(−α/p + j/n+ µ/p, l)

q−1∏
ν=0

(α/q + j/n+ ν/q, l)

nnl
n−1∏
λ=0

((j + 1)/n+ λ/n, l)

.

This implies (2.18). �

COROLLARY 2.9. Let s = −p/n, n = p + q and εn = e2πi/n. Then ψ(α, s, εknx)
is, as a multi-valued function of z = (−p)pqqn−nxn, a solution of the differential equation
(1.1). If cj (α, s) �= 0 for 0 ≤ j ≤ n − 1, then ψ(α, s, εknx) 0 ≤ k ≤ n − 1 are linearly
independent.
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PROOF. From (2.18), we know thatϕj (α, s, x) is a solution of (1.1) (see the lemma
below). From (2.16) and (2.17), we have

ψ(α, s, εknx) =
n−1∑
j=0

ε
jk
n ϕj (α, s, x) ,(2.19)

which is thus a solution of (1.1). Ifcj (α, s) �= 0, thenϕj (α, s, x) �= 0 andψ(α, s, εknx),
0 ≤ k ≤ n− 1, are linearly independent from (2.19). �

The following lemma is well-known.

LEMMA 2.10. If b0 = 1, then the differential equation

nEn−1(a0, a1, a2, . . . , an−1; b1, b2, . . . , bn−1)

has solutions

z1−bj
nFn−1(a0 + 1 − bj , . . . , an−1 + 1 − bj ;
b0 + 1 − bj , . . . , ̂bj + 1 − bj , . . . , bn−1 + 1 − bj ; z); 0 ≤ j ≤ n− 1

at z = 0 and

z−aj nFn−1(aj + 1 − b0, . . . , aj + 1 − bn−1 ;
aj + 1 − a0, . . . , ̂aj + 1 − aj , . . . , aj + 1 − an−1; 1/z); 0 ≤ j ≤ n− 1

at z = ∞.

PROOF. nEn−1 is defined by[ n−1∏
j=0

(ϑ + bj − 1)− z

n−1∏
j=0

(ϑ + aj )

]
u = 0 ,(2.20)

whereϑ = z∂/∂z (see [Bly]). It is easily verified that functions in Lemma satisfy (2.20).�

REMARK 2.1. If s = p/q with n = p + q, then we have, for 0≤ j ≤ q − 1,

ϕj (α, s, x) = xj
∞∑
l=0

cj+lq (α, s)xlq

= cj (α, s)x
j
nFn−1

(
α

n
+ j

q
,
α + 1

n
+ j

q
, . . . ,

α + n− 1

n
+ j

q
;

α + 1

p
+ j

q
, . . . ,

α + p

p
+ j

q
,

1 + j

q
, . . . ,

q − 1

q
,
q + 1

q
, . . . ,

q + j

q
; nn

ppqq
xq

)
.

3. Global properties of solutions of yn + xyp − 1 = 0. Assumes(s + 1) �= 0.
Put∆(s) = {x | |x| < |ss/(s + 1)s+1|}. Thenψ(α, s, x) andψ ′(s, x) = ∂ψ/∂α(0, s, x) are
holomorphic in∆(s) (Proposition 2.2 and Corollary 2.5).
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LEMMA 3.1. Assume s ∈ R. Then we have | argψ(−1, s, x)| < π, or equivalently,
|Imψ ′(s, x)| < π in ∆(s).

PROOF. Assume|Imψ ′(s, x1)| = π for somex1 ∈ ∆(s). From (2.5) and (2) of Corol-
lary 2.5, we have

exp(−sψ ′(s, x1))(1 − exp(−ψ ′(s, x1))) = x1 .

This impliesθ := arg x1 = (±s + 2n)π for somen ∈ Z. Since Imψ ′(s,0) = 0, there exist a
positive numbert0 (≤ |x1|) such that

|Imψ ′(s, teiθ )| < π for 0< t < t0 and|Imψ ′(s, t0eiθ )| = π .

Putx0 = t0e
iθ andb0 = ψ(−1, s, x0) (< 0). Sincey = ψ(−1, s, x) defines an open map,

ψ(−1, s, eiθ t)maps some open interval(t0− δ, t0+ δ) onto some open interval(b0− δ′, b0 +
δ′′). This contradicts the choice oft0. �

We assume(p, q) = 1 and putn = p + q. Recall thatfj (x), 0 ≤ j ≤ n − 1 given by
(2.9) are the solutions of the equation (2.8). The equation (2.8) has multiple roots at

xj := e

(−p(1 + 2j)

2n

)
(p/n)−p/n(q/n)−q/n, 0 ≤ j ≤ n− 1 ,(3.1)

wheree(x) = e2πix and atx = ∞. Note thatx = xj are solutions of

(−p)pqqn−nxn = 1 .

LEMMA 3.2. At x = xj , the equation (2.8) has a double root

e((1 + 2j)/2n)(p/q)1/n(3.2)

and n− 2 simple roots.

PROOF. The double root of the equation (2.8) is uniquely determined by (2.8) and
nyn−1 + pxyp−1 = 0. �

We know thatfj (x) are holomorphic in∆ :=∆(−p/n)={x| |x|<(p/n)−p/n(q/n)−q/n}
and continuous in the closurē∆ of ∆.

Put

Dj = fj (∆̄) .(3.3)

Then we haveDj = e(j/n)D0 and putDn = D0.

LEMMA 3.3.(−1 + 2j

n

)
π ≤ argy ≤

(
1 + 2j

n

)
π for y ∈ Dj ,(3.4)

Dj ∩Dj+1 = {fj (xj )} = {fj+1(xj )} = {e((1 + 2j)/2n)(p/q)1/n} ,(3.5)

andDj ∩Dk = ∅ if j − k �= ±1.
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PROOF. The inequalities (3.4) follow from Lemma 3.1 and (2) of Corollary 2.5. These
inequalities imply thatDj ∩Dk = ∅ if j − k �= ±1. Since any element ofDj ∩Dj+1 is one
of (3.2), we have

Dj ∩Dj+1 = {e((1 + 2j)/2n)(p/q)1/n}
from (3.4). From Lemma 3.2, (3.5) follows. �

COROLLARY 3.4. Let γ0 be a loop starting and ending at the origin and once sur-
rounding x0. Let γj = e(−pj/n)γ0. Then, by the analytic continuation along γj , fj (x) and
fj+1(x) are interchanged and other fk(x) are unchanged.

PROOF. Assumeγ0 (hence anyγj ) acts trivially on{f0, . . . , fn−1}. Thenfj (x) are
entire functions. This contradicts Proposition 2.6. �

DEFINITION 3.1. LetE be a Fuchsian linear differential equation of rankn on P1.
LetZ = P1−{singular points ofE}. Fix a base pointzb ∈ Z, and letV be the set of germs of
holomorphic solutions ofE atzb. For anyγ ∈ π1(Z, zb) andf ∈ V , the analytic continuation
γ∗f of f alongγ is again inV . We considerγ∗ an element ofGL(V ) and call the setM(E)
of all γ∗ themonodromy group of E andM(E)/(its center) theprojective monodromy group
of E.

We say thatM(E) is (or E is) reducible if there exists a non trivial subspaceV1 of V
which is invariant under the action ofM(E) and sayM(E) is (or E is) irreducible if M(E)
is not reducible.

We say thatM(E) is (or E is) imprimitive if V has a direct sum decompositionV =
V1+V2+· · ·+Vk such that any element ofM(E) induces a permutation of{V1, V2, . . . , Vk}.

Choose a basisvj (z), 1 ≤ j ≤ n of V . Then we have a holomorphic map

v(z) = [v1(z) : v2(z) : · · · : vn(z)]
of a neighbourhood ofzb into Pn−1. By taking analytic continuations ofv, we have a multi-
valued map (again denoted by)v of Z into Pn−1 which we call aSchwarz map of E.

Remark 3.1. If the Schwarz map has a single-valued inverse mapπE , then the projec-
tive monodromy group ofE is isomorphic to the covering transformation group ofπE .

The map of∆ to Pn−1 defined by[f0(x) : f1(x) : · · · : fn−1(x)] is extended to a multi-
valued map ofC − {x0, . . . , xn−1} to Pn−1 by the analytic continuations. Take the closure of
its image inPn−1, which we denote byXn,p.

PROPOSITION 3.5. Let σk(y) = σk(y0, y1, . . . , yn−1) be the elementary symmetric
function of degree k. Then we have the equality

Xn,p = {[y0 : y1 : · · · : yn−1] ∈ Pn−1 | σk(y) = 0, 1 ≤ k ≤ n− 1, k �= q} .(3.6)

Put

πn,p([y0 : y1 : · · · : yn−1]) = (−1)n
ppqq

nn

(σq(y0, . . . , yn−1))
n

(σn(y0, . . . , yn−1))q
.(3.7)
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Then z = πn,p(y) defines an n! : 1 rational map of Xn,p to P1 satisfying

πn,p([f0(x) : f1(x) : · · · : fn−1(x)]) = (−p)pqqn−nxn .(3.8)

The branch points of this map are z = 0,1,∞ with the ramification indices n,2, pq , respec-
tively. The covering transformation group is isomorphic to the symmetric group Sn of order
n!.

PROOF. Denote byX̂n,p the set of common zeros ofσk, 0 ≤ k ≤ n− 2, k �= q. From
Bezout’s theorem,πn,p|X̂n,p is ann! : 1 map ofX̂n,p to P1. From Corollary 2.7, we have

Xn,p ⊂ X̂n,p, that is,Xn,p is an irreducible component of̂Xn,p . From Corollary 2.7, (3.8)
holds and from Corollary 3.4, we know thatSn acts on each fiber ofπn,p|Xn,p . Consequently,

we must havêXn,p = Xn,p .
The equality (3.8) implies that the ramification index isn at z = 0. From Corollary 3.4,

the index atz = 1 is 2. From Proposition 2.6, we know that the ramification index atz = ∞
is pq. This completes the proof. �

The statement (2) of the following corollary is proved in [B-H, Proposition 2.6].

COROLLARY 3.6. (1) If p < n − 1, then ψ(−1/n,−p/n, εknx), 0 ≤ k ≤ n − 1,
are solutions of a differential equation n−1En−2, the projective monodromy group of which
is isomorphic to the symmetric group Sn of order n!. Any n − 1 of the above solutions are
linearly independent.

(2) The projective monodromy group of

n−1En−2

(
1

n
,

2

n
, . . . ,

n− 1

n
; 1

p
, . . . ,

p − 1

p
,

1

q
, . . . ,

q − 1

q

)
(3.9)

is isomorphic to Sn.

PROOF. Proof of (1). Assumep < n − 1 or equivalentlyq > 1. Putα = −1/n and
s = −p/n. Let q∗ be the integer such that

1 ≤ q∗ ≤ n− 1 and qq∗ ≡ 1 modn .

Thenp∗ := n−q∗ also satisfiespp∗ ≡ 1 modn. Fork = p or q, putdk = (kk∗−1)/n. Note
q∗ > 1 anddq > 0 becauseq > 1. We easily havecq∗(α, s) = 0, and henceϕq∗(α, s, x) = 0
(see Proposition 2.8). Since

(−α + dp)/p = (α + q − dq)/q = p∗/n ,

we have

ϕ0(α, s, x)

= n−1Fn−2

(−α
p
, . . . ,

−α + p − 1

p
,
α

q
, . . . ,

̂α + q − dq

q
, . . . ,

α + q − 1

q
;

n− 1

n
, . . . ,

p̂∗
n
, . . . ,

1

n
; z

)
,
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wherez = (−1)pppqqn−nxn as before. By the same way, we know that
{ϕj | 0 ≤ j ≤ n− 1, j �= q∗} forms a system of fundamental solutions of

n−1En−2

(−α
p
, . . . ,

−α + p − 1

p
,
α

q
, . . . ,

̂α + q − dq

q
, . . . ,

α + q − 1

q
;

n− 1

n
, . . . ,

p̂∗
n
, . . . ,

1

n

)
.

(3.10)

The equalities (2.19) imply thatψ(−1/n,−p/n, εknx), 0 ≤ k ≤ n− 1, are solutions of (3.10)
and moreover anyn − 1 of them are linearly independent. Since the projective monodromy
group of (3.10) is isomorphic to the covering transformation group ofπn,p, which is isomor-
phic toSn from Proposition 3.5. This completes the proof of (1).

Proof of (2). In (3.9),p andq are symmetric so that we can remain the assumption of
p < n− 1. Putr = (−α + dp)/p = (α + q − dq)/q = p∗/n. Then, from Lemma 2.10, the
equation (3.10) has the special solution

z−rn−1Fn−2

(
r, r + 1

n
, . . . ,

̂
r + q∗

n
, . . . , r + n− 1

n
; 1 + dp

p
, . . . ,1 + 1

p
,

p − 1

p
, . . . ,

1 + dp

p
,1 + q − dq

q
, . . . ,1 + 1

q
,
q − 1

q
, . . . ,

q − dq − 1

q
; 1/z

)
.

Thus the projective monodromy groups of (3.9) and (3.10) are mutually isomorphic, proving
(2). This completes the proof. �

4. Schwarz map of a family of imprimitive nEn−1. Assume(p, q) = 1 and put

n = p + q , s = −p/n , z = (−p)pqqn−nxn , εk = e(1/k) = e2πi/k .

For an integerm ≥ 2, putα = −1/(mn) and define

f
(1/m)
j (x) = ε

j
mnψ(α, s, ε

pj
n x) 0 ≤ j ≤ n− 1 ,(4.1)

which is am-th root of fj (x). The following lemma is an immediate consequence of the

definition (4.1) off (1/m)j .

LEMMA 4.1. We have

f
(1/m)
j (e(p/n)x) = e(−1/(mn))f (1/m)j+1 (x), for 0 ≤ j ≤ n− 2 ,

f
(1/m)
n−1 (e(p/n)x) = e((n− 1)/(mn))f (1/m)0 (x) .

When we considerf (1/m)j (x) as a multi-valued function ofz, we denote it byf (1/m)j (z).

LEMMA 4.2. f
(1/m)
j (z), 0 ≤ j ≤ n− 1, are linearly independent solutions of differ-

ential equation (1.1).

PROOF. Sincecj (α, s) �= 0, for 0≤ j ≤ n− 1, Corollary 2.9 proves the lemma. �
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Similar to (3.3), we put

D
(1/m)
j = f

(1/m)
j (∆̄) .

Then we haveD(1/m)j = e(j/(mn))D
(1/m)
0 and can prove the following lemma and its corol-

lary from Lemma 3.3 and Corollary 3.4.

LEMMA 4.3.

D
(1/m)
j ∩D(1/m)j+1 = {f (1/m)j (xj )} = {f (1/m)j+1 (xj )}

= {e((1 + 2j)/(2mn))(p/q)1/n} , 0 ≤ j ≤ n− 2 ,

D
(1/m)
n−1 ∩ e(1/m)D(1/m)0 = {f (1/m)n−1 (xn−1)} = {e(1/m)f (1/m)0 (xn−1)}

= {e((2n− 1)/(2mn))(p/q)1/n} .

COROLLARY 4.4. Let γj be the loop defined in Corollary 3.4. For 0 ≤ j ≤ n − 2,

by the analytic continuation along γj , f
(1/m)
j (x) and f (1/m)j+1 (x) are interchanged and other

f
(1/m)
k (x) are unchanged; by that along γn−1, f

(1/m)
n−1 (x) and e(1/m)f (1/m)0 (x) are inter-

changed and other f (1/m)k (x) are unchanged.

From Lemma 4.2, a Schwarz map of (1.1) is given by

z ∈ P1 − {0,1,∞} �−→ [f (1/m)0 (z) : f (1/m)1 (z) : · · · : f (1/m)n−1 (z)] .(4.2)

We denote the closure of its image byX(1/m)n,p , which is an irreducible curve inPn−1.

THEOREM 4.5. Assume (p, q) = 1 and put n = p + q, s = −p/n and α =
−1/(mn), m ≥ 2. Then we have the equality

X
(1/m)
n,p

= {[y0 : y1 : · · · : yn−1] ∈ Pn−1 | σk(ym0 , ym1 , . . . , ymn−1) = 0,1 ≤ k ≤ n− 1, k �= q} ,

(4.3)

where σk is the elementary symmetric function of degree k. Put

π
(1/m)
n,p ([y0 : y1 : · · · : yn−1]) = (−1)n

ppqq

nn

(
σq(y

m
0 , y

m
1 , . . . , y

m
n−1)

)n(
σn(y

m
0 , y

m
1 , . . . , y

m
n−1)

)q .(4.4)

Then z = π
(1/m)
n,p (y) defines an mn−1n! : 1 rational map of X(1/m)n,p to P1 satisfying

π
(1/m)
n,p ([f (1/m)0 (x) : f (1/m)1 (x) : · · · : f (1/m)n−1 (x)]) = (−p)pqqn−nxn .(4.5)

The branch points of this map are z = 0,1,∞ with ramification indices n,2,mpq , respec-
tively.

PROOF. We denote the right hand side of (4.3) byX̂(1/m)n,p for the moment. Since

(f
(1/m)
j (x))m = fj (x) ,
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we have, from Proposition 3.5,X(1/m)n,p ⊂ X̂
(1/m)
n,p . By Bézout’s theorem,π(1/m)n,p is anmn−1n! :

1 map ofX̂(1/m)n,p to P1 and from (3.8) it satisfies (4.5). On the other hand,π
(1/m)
n,p restricted to

X
(1/m)
n,p hasmn−1n! points in any generic fiber because the covering transformation group of

X
(1/m)
n,p includesSn from Corollary 4.4 and multiplication ofe(1/m) to coordinateyn−1 from

Lemma 4.1. Hence we haveX(1/m)n,p = X̂
(1/m)
n,p . The ramification index atz = ∞ ismpq from

Proposition 2.6. This completes the proof. �

COROLLARY 4.6. Let α = −1/(mn), m ≥ 2, then the differential equation (1.1) has
imprimitive finite irreducible projective monodromy group of order mn−1n!.

PROOF. The order of the projective monodromy group of (1.1) is equal to the degree of
π
(1/m)
n,p , which ismn−1n! from the above theorem. LetΓ0 andΓ1 be loops once surrounding
z = 0 andz = 1, respectively. From Lemma 4.1 and Corollary 4.4, bothΓ0 andΓ1 induce
permutations on the set{〈f (1/m)j 〉| 0 ≤ j ≤ n − 1} of one dimensional subspaces〈f (1/m)j 〉.
Hence the monodromy group of (1.1) is imprimitive.

Since neither(−α+ k)/p− l/n nor(α+ k)/q − l/n is an integer for any integersk and
l, (1.1) is irreducible from Proposition 3.3 of [B-H]. �

COROLLARY 4.7. For any positive integer m,n and q satisfying 1 ≤ q ≤ n − 1 and
(n, q) = 1, the algebraic set

{[y0 : y1 : · · · : yn−1] ∈ Pn−1 | σk(ym0 , ym1 , . . . , ymn−1) = 0, 1 ≤ k ≤ n− 1, k �= q}

is irreducible.

PROOF. The statement is true form = 1 from Proposition 3.5 and form ≥ 2 from
Theorem 4.4. �

5. ψ(α,−1/3, x). In this section, we give several results concerning toψ(α,−1/3, x).

5.1. A proof of Cardano’s formula.

LEMMA 5.1.

ψ(−1/2,−1/2, x) = −x + √
x2 + 4

2
,(5.1)

ψ(−1,1, x) = 1 + √
1 − 4x

2
.(5.2)

PROOF. From (2.17) and (2.18), we have

ψ(−1/2,−1/2, x) = 2F1

(
1

2
,−1

2
; 1

2
; −1

4
x2

)
− 1

2
x 2F1

(
1,0; 3

2
; −1

4
x2

)
.

Since2F1(a, b; b; x)= (1 − x)−a , (5.1) is proved.
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If k ≥ 1, then we have

ck(−1,1) = −(k, k − 1)/k!
= −k(k + 1) · · · (2k − 2)/k! = −(2k − 2)!/(k!(k − 1)!)
= −1 · 3 · · · (2k − 3)2k−1/k! = −(1/2, k − 1)22k−2/k!
= (−1/2, k)4k/(2k!) .

Hence we have (5.2). �

LEMMA 5.2.
ψ(−1/3,−1/3, x)

=
(

1

2

(
1 + 4

27
x3

)1/2

+ 1

2

)1/3

− 1

3
x

(
1

2

(
1 + 4

27
x3

)1/2

+ 1

2

)−1/3

=
(

1

2

(
1 + 4

27
x3

)1/2

+ 1

2

)1/3

−
(

1

2

(
1 + 4

27
x3

)1/2

− 1

2

)1/3

,

(5.3)

where cube roots take positive values if x is a positive small number.

PROOF. From (2.17) and (2.18), we have

ψ(−1/3,−1/3, x)

= 3F2

(
1

3
,−1

6
,

1

3
; 2

3
,

1

3
; − 4

27
x3

)
− 1

3
x 3F2

(
2

3
,

1

6
,

2

3
; 4

3
,

2

3
; − 4

27
x3

)

= 2F1

(
− 1

6
,

1

3
; 2

3
; − 4

27
x3

)
− 1

3
x 2F1

(
1

6
,

2

3
; 4

3
; − 4

27
x3

)
,

which is equal to, from Remark 2.1,

ϕ0(−1/3,1/1; −x3/27)− 1/3x ϕ0(1/3,1/1; −x3/27)

=ψ(−1/3,1; −x3/27)− 1/3x ψ(1/3,1; −x3/27)

=[ψ(−1,1; −x3/27)]1/3 − 1/3x [ψ(−1,1; −x3/27)]−1/3

=
[

1 + √
1 + 4x3/27

2

]1/3

− 1

3
x

[
1 + √

1 + 4x3/27

2

]−1/3

due to (5.2). This proves the lemma. �

THEOREM 5.3 (Cardano). The equation

X3 + 3pX − 2q = 0

has roots

εm3
(
q + √

p3 + q2
)1/3 + ε2m

3

(
q − √

p3 + q2
)1/3

, 0 ≤ m ≤ 2 ,(5.4)

where ε3 = e2πi/3 and cube roots must be chosen such that(
q + √

p3 + q2
)1/3 (

q − √
p3 + q2

)1/3 = −p .(5.5)
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PROOF. Theorem follows from Lemma 5.2 and Proposition 2.6. �

5.2. A uniformization ofψ(−1/12,−1/3, x).

LEMMA 5.4. Let s = −p/n. Then for any α, we have

n−1∏
j=0

ψ(α, s, ε
j
nx) = 1 .(5.6)

PROOF. From (2.19), we have

ψ(α, s, ε
j
nx) =

n−1∑
k=0

ε
jk
n ϕk(α, s, x) .

First we note

ϕ0(0, s, x) = 1 ,
∂ϕ0

∂α
(0, s, x) = 0 and ϕk(0, s, x) = 0 for k ≥ 1 .

Putf (α) = ∏n−1
j=0ψ(α, s, ε

j
nx). Thenf (0) = 1 and

df

dα

∣∣∣∣
α=0

=
n−1∑
k=0

∂ψ

∂α
(α, s, εknx)

∏
j �=k

ψ(α, s, ε
j
nx)

∣∣∣∣
α=0

=
n−1∑
k=0

∂ψ

∂α
(α, s, εknx)

∣∣∣∣
α=0

=
n−1∑
k=0

n−1∑
j=0

ε
jk
n

∂ϕj

∂α

∣∣∣∣
α=0

=
(n−1∑
j=1

∂ϕj

∂α

∣∣∣∣
α=0

)( n−1∑
k=0

ε
jk
n

)

= 0.

Sincef (α + β) = f (α)f (β), we havef (α) = f (0) exp(α df (0)/dα). This proves (5.6).�

Let α = −1/(3m) and putyj = f
(1/m)
j (α,−1/3, x) for j = 0,1,2 (as forf (1/m)j , see

(4.1)). Then, from (4.3), (4.4) and (4.5), we have

ym0 + ym1 + ym2 = 0 , π
(1/m)
3,1 ([y0 : y1 : y2]) = (y2m

0 + y2m
1 + y2m

2 )3

54(y0y1y2)2m
= − 4

27
x3 .(5.7)

Let

J (τ) = 12−3h−2(1 + 744h2 + 196884h4 + 21493760h6 + · · · ) , h = eπiτ

be the elliptic modular function defined on the upper half plane.

LEMMA 5.5. On the upper half plane {τ | Im(τ ) > 0}, we have a single-valued func-
tion x = x(τ) so that J (τ) = −4x3/27and that x ≥ 0 for τ = e(1/3)+ ti with t ≥ 0.

PROOF. The assertion holds becauseJ (τ) ≤ 0 on the half lineτ = e(1/3) + ti with
t ≥ 0 and becauseJ (τ) has only triple zeros. �

Now we have the following theorem.
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THEOREM 5.6. Let m = 4, n = 3, p = 1 and α = −1/(mn), s = −p/n. Let
f
(1/m)
j (x), j = 0,1,2 be solutions of (1.3) defined by (4.1). Let x = x(τ) be the single-

valued function in the previous lemma. Then we have

f
(1/4)
0 (x(τ )) = Cϑ2(0, τ ) , f

(1/4)
1 (x(τ )) = Cϑ0(0, τ ) ,

f
(1/4)
2 (x(τ )) = e(1/8)Cϑ3(0, τ ) ,

(5.8)

where h = eπiτ , H0 = ∏∞
k=1(1 − h2k) and C = 2−1/3e(1/24)h−1/12H−1

0 .

PROOF. LetC4 = {[y0 : y1 : y2] ∈ P2 |y4
0 + y4

1 + y4
2 = 0}. Then

π
(1/4)
3,1 : C4 → P1

satisfies, from (5.7),

π
(1/4)
3,1 ([y0 : y1 : y2]) = (y8

0 + y8
1 + y8

2)
3

54(y0y1y2)8
.

It is well-known (see, for example [Akh]) that

π
(1/4)
3,1 ([ϑ2(0, τ ) : ϑ0(0, τ ) : e(1/8)ϑ3(0, τ )]) = J (τ) .(5.9)

This together with the equality (5.6) implies that both

[f (1/4)0 : f (1/4)1 : f (1/4)2 ] and [ϑ2(0, τ ) : ϑ0(0, τ ) : e(1/8)ϑ3(0, τ )]
belong to the same fiber(π(1/4)3,1 )−1(J (τ )). Hence for some fourth rootsε, ε′ of 1 and some
functionC′ = C′(τ ), we have

{f (1/4)0 , f
(1/4)
1 , f

(1/4)
2 } = {C′ϑ2(0, τ ), C′εϑ0(0, τ ), C′ε′e(1/8)ϑ3(0, τ )} .

If we put τ = (−1 + √
3i)/2 + ti and lett to +∞, thenz = J (τ) < 0 goes to−∞. Since,

from (5.3),

f
(1/4)
j = ε

j

122
−1/12((

√
1 − J (τ))+ 1)1/3 − ε

j

3(
√

1 − J (τ)− 1)1/3)1/4 ,

we have (5.8) for some functionC = C(τ) of τ . Sinceϑ2(0, τ )ϑ0(0, τ )ϑ3(0, τ ) = 2h1/4H 3
0

([Akh]), C takes the value in the statement of the theorem. �

REMARK 5.1. We dealt with the case ofm = 4 because we used the identity

ϑ4
0(0, τ )+ ϑ4

2(0, τ )− ϑ4
3(0, τ ) = 0

in the proof.

COROLLARY 5.7. Let a multi-valued function f (z) be a solution of

3E2(1/12,−1/24,11/24; 1/3,2/3) .

Then f (J (τ )) turns out to be single-valued and a linear combination of Cϑj (0, τ ), j =
0,2,3, where C is as in Theorem 5.6.



MONODROMY GROUPS OF HYPERGEOMETRIC FUNCTIONS 205

REFERENCES

[A-I] K. A OMOTO AND K. I GUCHI, On quasi-hypergeometric functions, Methods Appl. Anal. 6 (1999), 55–66.
[Akh] N. I. A KHIEZER, Elements of the Theory of Elliptic Functions, Transl. Math. Monogr. 79, American

Mathematical Society, Providence, RI, 1990.
[B-H] F. BEUKERS AND G. HECKMAN, Monodromy for the hypergeometric functionnFn−1, Invent. Math. 95

(1989), 325–354.
[Blr] G. B ELARDINELLI , Fonctions Hypergéométriques de Plusieurs Variables et Résolution Analytique des

Équations Algébriques Générales, Mémor. Sci. Math., Fasc. 145, Gauthiers Villars, Paris, 1960.
[Bly] W. N. B AILEY , Generalized Hypergeometric Series, Cambridge Tracts in Mathematics and Mathematical

Phisics No. 32, 1935.
[Brn] B. C. BERNDT, Ramanujan’s Notebooks Part I, Springer-Verlag, New York, 1985.
[Erd] A. ERDÉLYI (Editor), Higher transcendental functions, Vol. I, MacGraw Hill, New York, 1953.
[Kt] M. K ATO, Schwarz maps of3F2 with finite irreducible monodromy groups, Kyushu J. Math. 52 (1998),

475–495.

DEPARTMENT OFMATHEMATICS DEPARTMENT OFMATHEMATICS

COLLEGE OFEDUCATION GRADUATE SCHOOL OFSCIENCE AND TECHNOLOGY

UNIVERSITY OF THE RYUKYUS KOBE UNIVERSITY

NISHIHARA-CHO, OKINAWA 903–0213 ROKKO, KOBE 657–8501
JAPAN JAPAN

E-mail address: mkato@edu.u-ryukyu.ac.jp E-mail address: noumi@math.sci.kobe-u.ac.jp


