Tohoku Math. J. 55 (2003), 189–205

MONODROMY GROUPS OF HYPERGEOMETRIC FUNCTIONS SATISFYING ALGEBRAIC EQUATIONS

MITSUO KATO AND MASATOSHI NOUMI

(Received May 11, 2001, revised May 7, 2002)

Abstract. The solutions of the algebraic equation $y^{mn} + xy^{mp} - 1 = 0$ with n > p and $m \ge 2$ satisfy a generalized hypergeometric differential equation with imprimitive finite irreducible monodromy group. Thanks to this fact, we can determine the monodromy group and the Schwarz map of the differential equation.

1. Introduction. A generalized hypergeometric function

$$_{n}F_{n-1}(a_{0}, a_{1}, a_{2}, \dots, a_{n-1}; b_{1}, b_{2}, \dots, b_{n-1}; z) = \sum_{k=0}^{\infty} \frac{\prod_{j=0}^{n-1} (a_{j}, k)}{\prod_{j=1}^{n-1} (b_{j}, k)k!} z^{k},$$

n 1

where $(a, k) = \Gamma(a + k) / \Gamma(a)$ satisfies a Fuchsian differential equation

$$_{n}E_{n-1}(a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}; b_{1}, b_{2}, \ldots, b_{n-1})$$

of rank *n* with singularities at z = 0, 1 and ∞ . Beukers and Heckman [B-H] determined ${}_{n}E_{n-1}$ with finite irreducible monodromy groups. In [Kt], for ${}_{3}E_{2}$ with finite irreducible primitive monodromy groups, Schwarz maps of $P^{1} - \{0, 1, \infty\}$ to P^{2} defined by linearly independent three solutions are studied. The images of Schwarz maps and their single-valued inverse maps are determined.

1.1. As stated in Theorem 5.8 in [B-H], under some condition, ${}_{n}E_{n-1}$ with irreducible imprimitive monodromy group is essentially given by

$$_{n}E_{n-1}\left(\frac{-\alpha}{p},\frac{-\alpha+1}{p},\ldots,\frac{-\alpha+p-1}{p},\frac{\alpha}{q},\frac{\alpha+1}{q},\ldots,\frac{\alpha+q-1}{q};\frac{1}{n},\ldots,\frac{n-1}{n}\right),$$

where (p, q) = 1 and n = p + q.

If we put $z = (-p)^p q^q n^{-n} x^n$, the generalized binomial function (see Section 2)

(1.2)
$$\psi(\alpha, -p/n, x)$$

²⁰⁰⁰ Mathematics Subject Classification. Primary 33C20.

Key words and phrases. Hypergeometric function, generalized binomial function, monodromy group.

M. KATO AND M. NOUMI

is (as a multi-valued function of z) a solution of (1.1). We remark that (1.2) is a typical example of quasi-hypergeometric function studied in [A-I]. If $\alpha = -1/(mn)$ with $m \ge 1$, then (1.2) is also a solution of the algebraic equation

(1.3)
$$y^{mn} + xy^{mp} - 1 = 0$$

These facts were found by Lambert (see [Brn, p. 307]), Mellin (see [Blr]) and others.

Let $\alpha = -1/(mn)$ with $m \ge 2$. Then a set of linearly independent *n* solutions of (1.3) form a fundamental system of solutions of (1.1). As a consequence, we have the following results. The projective monodromy group of (1.1) is imprimitive and irreducible of order $m^{n-1}n!$ (Corollary 4.6). The closure of the image of the Schwarz map of (1.1) defined by the ratio of linearly independent *n* solutions is an irreducible algebraic curve projectively isomorphic to

$$\{[y_0: y_1: \dots: y_{n-1}] \in \mathbf{P}^{n-1} \mid \sigma_k(y_0^m, y_1^m, \dots, y_{n-1}^m) = 0, \ 1 \le k \le n-1, \ k \ne n-p\},\$$

where σ_k is the elementary symmetric function of degree *k* (Theorem 4.5).

1.2. As applications, we state several topics for n = 3 case in Section 5. We give a proof of Cardano's formula for a cubic equation, using properties of generalized binomial functions. We also give a uniformization of $_{3}E_{2}$ by theta functions, that is, if we put $z = J(\tau)$, the elliptic modular function, then the solutions of (1.1) with $\alpha = -1/12$, p = 1, q = 2 turn out to be single-valued functions of τ and are expressed by the zero values of theta functions.

2. Generalized binomial function. In this section, we summarize several known results which can be found in [Brn], [Blr], etc.

For any complex numbers α and s, put

(2.1)
$$c_0(\alpha, s) = 1, c_k(\alpha, s) = \alpha(\alpha + ks + 1, k - 1)/k! \quad (k \ge 1),$$

and define

(2.2)
$$\psi(\alpha, s, x) = \sum_{k=0}^{\infty} c_k(\alpha, s) x^k$$

We call $\psi(\alpha, s, x)$ a generalized binomial function because $\psi(\alpha, 0, x) = (1 - x)^{-\alpha}$. We will prove some properties of $\psi(\alpha, s, x)$.

Lemma 2.1.

(2.3)
$$\psi(\alpha, s, x) = \psi(-\alpha, -s - 1, -x).$$

PROOF.

$$(-1)^{k} c_{k}(-\alpha, -s - 1)$$

= $(-1)^{k} (-\alpha)(-\alpha - (s + 1)k + 1, k - 1)/k!$
= $\alpha(\alpha + sk + k - 1)(\alpha + sk + k - 2) \cdots (\alpha + sk + 1)$
= $c_{k}(\alpha, s)$.

We note that $\psi(\alpha, -1, x) = (1 + x)^{\alpha}$ and $\psi(0, s, x) = 1$.

PROPOSITION 2.2. If none of α , s, s + 1 is zero, then the radius of convergence of $\psi(\alpha, s, x)$ is $|s^s/(s+1)^{s+1}|$, where z^z denotes the principal value.

PROOF. Put

$$\tilde{c}_k(\alpha, s) = (\alpha + sk + 1, k - 1)/k! = \frac{\Gamma(\alpha + (s+1)k)}{\Gamma(1+k)\Gamma(\alpha + 1 + sk)}$$

Then the radius of convergence of $\psi(\alpha, s, x)$ is the reciprocal of the upper limit of $|\tilde{c}_k|^{1/k}$.

First assume that *s* is not a negative real number. Then, from the Stirling's formula:

$$\Gamma(z) \sim \sqrt{2\pi} z^{z-1/2} e^{-z}$$
 as $z \to \infty$ and $|\arg z| < \pi - \delta$, $\delta > 0$,

we have

$$|\tilde{c}_k(\alpha, s)|^{1/k} \sim \frac{|(\alpha + (s+1)k)^{s+1}|}{(1+k)|(\alpha + 1 + sk)^s|} \sim \left|\frac{\alpha + (s+1)k}{1+k} \left(\frac{\alpha + (s+1)k}{\alpha + 1 + sk}\right)^s\right|$$
$$\sim |(s+1)^{s+1}/s^s|.$$

This proves the proposition for *s* which is not a negative real number.

Assume -1 < s < 0. For large $k \in N$, choose $n_k \in N$ and δ_k with $0 \le \delta_k < 1$ such that

$$\operatorname{Re}(\alpha) + sk = -n_k - \delta_k.$$

Then

$$\begin{split} |\tilde{c}_k(\alpha, s)| &= |(\alpha + 1 + sk, k - 1)|/k! \\ &= |(\alpha + 1 + sk) \cdots (\alpha + 1 + sk + n_k - 1)| \\ &\times |(\alpha + 1 + sk + n_k) \cdots (\alpha + (s + 1)k - 1)|/k! \\ &= |(-\alpha - sk - n_k, n_k)| \cdot |(\alpha + sk + n_k + 1, k - 1 - n_k)|/k! \\ &= \frac{|\Gamma(-\alpha - sk)| \cdot |\Gamma(\alpha + (s + 1)k)|}{|\Gamma(1 + k)\Gamma(-\alpha - sk - n_k)\Gamma(\alpha + sk + n_k + 1)|}. \end{split}$$

If s is a rational number, then the set $\delta := \{\delta_k | k \in N\}$ is finite, otherwise δ is dense in the open interval (0, 1). In any case we have

$$\limsup_{k \to \infty} |\tilde{c}_k(\alpha, s)|^{1/k} = \lim_{k \to \infty} \left| \frac{(-\alpha - sk)^{-s} (\alpha + (s+1)k)^{s+1}}{1+k} \right|$$
$$= \lim_{k \to \infty} \left| \left(\frac{-\alpha - sk}{1+k} \right)^{-s} \left(\frac{\alpha + (s+1)k}{1+k} \right)^{s+1} \right|$$
$$= |(-s)^{-s} (s+1)^{s+1}| = |(s+1)^{s+1}/s^s|.$$

This proves the proposition for *s* with -1 < s < 0. From Lemma 2.1, the proposition holds for any negative real number *s* which is not -1. This completes the proof.

LEMMA 2.3.
(2.4)
$$c_k(\alpha, s) - c_k(\alpha - 1, s) = c_{k-1}(\alpha + s, s), \quad k \ge 1.$$

PROOF.

$$c_k(\alpha, s) - c_k(\alpha - 1, s) = \frac{\alpha(\alpha + ks + 1, k - 1) - (\alpha - 1)(\alpha + ks, k - 1)}{k!} = \frac{(\alpha + s)(\alpha + s + (k - 1)s + 1, k - 2)}{(k - 1)!} = c_{k-1}(\alpha + s, s).$$

PROPOSITION 2.4. We have the following two equalities.

(2.5)
$$\psi(\alpha, s, x) - \psi(\alpha - 1, s, x) = x\psi(\alpha + s, s, x),$$

(2.6)
$$\psi(\alpha + \beta, s, x) = \psi(\alpha, s, x)\psi(\beta, s, x).$$

PROOF. (2.5) follows immediately from (2.4).

Proof of (2.6). It is sufficient to prove

(2.7)
$$c_k(\alpha + \beta, s) = \sum_{i+j=k} c_i(\alpha, s) c_j(\beta, s),$$

which is proved by induction for k. Consider

$$d_k(\beta) = c_k(\alpha + \beta, s) - \sum_{i+j=k} c_i(\alpha, s)c_j(\beta, s)$$

as a polynomial of β (α being a parameter) of degree at most k. From (2.4), we have

$$d_k(\beta) - d_k(\beta - 1) = d_{k-1}(\beta + s),$$

which vanishes by induction. Hence $d_k(\beta)$ must be constant *C*. Since $c_i(0, s) = 0$ for j > 0, we have $C = d_k(0) = 0$. This completes the proof of (2.7) whence of (2.6).

- COROLLARY 2.5. Let $\psi'(s, x) = \partial \psi / \partial \alpha(0, s, x)$. Then we have the following:
- (1) $\psi'(s, x)$ is holomorphic in $\{x \mid |x| < |s^s/(s+1)^{s+1}|\}$ with $\psi'(s, 0) = 0$.
- (2) $\psi(\alpha, s, x) = \exp(\alpha \psi'(s, x)).$

PROOF. (1) holds because $\psi'(s, x) = \sum_{k \ge 1} \tilde{c}_k(\alpha, s) x^k$, where $\tilde{c}_k(\alpha, s) = c_k(\alpha, s)/\alpha$ as in the proof of Proposition 2.2. (2) follows from (2.6).

PROPOSITION 2.6. Let $\varepsilon_k = e^{2\pi i/k}$. For positive integers p, q with n = p + q, the equation (1.3) with m = 1

(2.8)
$$y^n + xy^p - 1 = 0$$

has solutions

(2.9)
$$f_j(x) := \varepsilon_n^j \psi(-1/n, -p/n, \varepsilon_n^{pj} x), \quad 0 \le j \le n-1,$$

in a neighborhood of x = 0,

(2.10)
$$\varepsilon_p^{-j} x^{-1/p} \psi \left(1/p, q/p, -(\varepsilon_p^{-j} x^{-1/p})^n \right), \quad 0 \le j \le p-1,$$

(2.11) $\varepsilon_p^{j} (-x)^{1/q} \psi (-1/q, p/q, -(\varepsilon_p^{j} (-x)^{1/q})^{-n}), \quad 0 \le j \le q-1,$

(2.11)
$$\varepsilon_q^j(-x)^{1/q}\psi(-1/q, p/q, -(\varepsilon_q^j(-x)^{1/q})^{-n}), \quad 0 \le j \le q-1,$$

in a neighborhood of $x = \infty$.

PROOF. Put s = -p/n and $\alpha = 0$ in (2.5). Then we have

$$1 - \psi(-1, s, x) = x \psi(-p/n, s, x),$$

which is equivalent to

(2.12)
$$\psi(-1/n, s, x)^n + x\psi(-1/n, s, x)^p - 1 = 0.$$

If we replace x by $\varepsilon_n^{pj} x$, we know that (2.9) are solutions of (2.8).

Put s = q/p and $\alpha = 1$ in (2.5). Then we have

$$\psi(1/p, s, x)^p - 1 = x\psi(1/p, s, x)^n$$
,

which is equivalent to

$$[(-x)^{1/n}\psi(1/p,s,x)]^n + (-x)^{-p/n}[(-x)^{1/n}\psi(1/p,s,x)]^p - 1 = 0.$$

Put $x_1 = (-x)^{-p/n}$, and write x instead of x_1 . Then we know that functions in (2.10) are solutions of (2.8).

Now, put s = p/q and $\alpha = -s$ in (2.5). Then we have

$$\psi(-1/q, s, x)^n - \psi(-1/q, s, x)^p + x = 0.$$

Then, by the same way as above, we know that functions in (2.11) are solutions of (2.8). This completes the proof. \Box

COROLLARY 2.7. If $\sigma_k(y_0, y_1, \dots, y_{n-1})$ denotes the elementary symmetric function of degree k, then we have

(2.13)
$$\sigma_k(f_0(x), f_1(x), \dots, f_{n-1}(x)) = 0, \quad 1 \le k \le n-2, \ k \ne n-p,$$

(2.14) $\sigma_{n-p}(f_0(x), f_1(x), \dots, f_{n-1}(x)) = (-1)^{n-p} x,$

(2.15)
$$\sigma_n(f_0(x), f_1(x), \dots, f_{n-1}(x)) = (-1)^{n-1}.$$

For any positive integer n, put

(2.16)
$$\varphi_j(\alpha, s, x) = x^j \sum_{l=0}^{\infty} c_{j+ln}(\alpha, s) x^{ln} \,.$$

Then we have

(2.17)
$$\psi(\alpha, s, x) = \sum_{j=0}^{n-1} \varphi_j(\alpha, s, x) \,.$$

PROPOSITION 2.8. Let s = -p/n and n = p + q. Then we have

(2.18)

$$\varphi_{j}(\alpha, s, x) = c_{j}(\alpha, s)x^{j} \times {}_{n}F_{n-1}\left(\frac{-\alpha + \mu}{p} + \frac{j}{n}, \ 0 \le \mu \le p - 1, \ \frac{\alpha + \nu}{q} + \frac{j}{n}, \ 0 \le \nu \le q - 1; \\ \frac{j+1}{n}, \dots, \frac{n-1}{n}, \frac{n+1}{n}, \dots, \frac{n+j}{n}; \ \frac{(-1)^{p}p^{p}q^{q}}{n^{n}}x^{n}\right).$$

PROOF. If k = nl $(l \ge 1)$, then we have

$$c_{k}(\alpha, s) = \frac{1}{k!} \alpha(\alpha - pl + 1, nl - 1) = \frac{1}{k!} \alpha(\alpha - pl + 1, pl - 1)(\alpha, ql)$$

= $(-1)^{pl} \frac{(-\alpha, pl)(\alpha, ql)}{(1, nl)}$
= $(-1)^{pl} \frac{p^{pl} q^{ql} \prod_{\mu=0}^{p-1} (-\alpha/p + \mu/p, l) \prod_{\nu=0}^{q-1} (\alpha/q + \nu/q, l)}{n^{nl} \prod_{\lambda=0}^{n-1} (1/n + \lambda/n, l)}$.

If k = nl + j $(1 \le j \le n - 1)$, then we have

$$\begin{split} c_k(\alpha, s) &= \frac{1}{k!} \alpha \left(\alpha - \frac{p}{n} (nl+j) + 1, nl+j - 1 \right) \\ &= \frac{1}{j!(j+1,nl)} \alpha \left(\alpha - \frac{p}{n} (nl+j) + 1, pl \right) \left(\alpha - \frac{pj}{n} + 1, j-1 \right) \left(\alpha + \frac{qj}{n}, ql \right) \\ &= \frac{\alpha (\alpha + qj/n - j + 1, j-1)}{j!} (-1)^{pl} \frac{(-\alpha + pj/n, pl)(\alpha + qj/n, ql)}{(j+1,nl)} \\ &= c_j(\alpha, s) (-1)^{pl} \frac{p^{pl} q^{ql} \prod_{\mu=0}^{p-1} (-\alpha/p + j/n + \mu/p, l) \prod_{\nu=0}^{q-1} (\alpha/q + j/n + \nu/q, l)}{n^{nl} \prod_{\lambda=0}^{n-1} ((j+1)/n + \lambda/n, l)} . \end{split}$$

This implies (2.18).

COROLLARY 2.9. Let s = -p/n, n = p + q and $\varepsilon_n = e^{2\pi i/n}$. Then $\psi(\alpha, s, \varepsilon_n^k x)$ is, as a multi-valued function of $z = (-p)^p q^q n^{-n} x^n$, a solution of the differential equation (1.1). If $c_j(\alpha, s) \neq 0$ for $0 \leq j \leq n - 1$, then $\psi(\alpha, s, \varepsilon_n^k x)$ $0 \leq k \leq n - 1$ are linearly independent.

PROOF. From (2.18), we know that $\varphi_j(\alpha, s, x)$ is a solution of (1.1) (see the lemma below). From (2.16) and (2.17), we have

(2.19)
$$\psi(\alpha, s, \varepsilon_n^k x) = \sum_{j=0}^{n-1} \varepsilon_n^{jk} \varphi_j(\alpha, s, x),$$

which is thus a solution of (1.1). If $c_j(\alpha, s) \neq 0$, then $\varphi_j(\alpha, s, x) \neq 0$ and $\psi(\alpha, s, \varepsilon_n^k x)$, $0 \leq k \leq n-1$, are linearly independent from (2.19).

The following lemma is well-known.

LEMMA 2.10. If $b_0 = 1$, then the differential equation

$$_{n}E_{n-1}(a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}; b_{1}, b_{2}, \ldots, b_{n-1})$$

has solutions

$$z^{1-b_j}{}_n F_{n-1}(a_0+1-b_j,\ldots,a_{n-1}+1-b_j;b_0+1-b_j,\ldots,b_j+1-b_j,\ldots,b_{n-1}+1-b_j;z); \ 0 \le j \le n-1$$

at z = 0 and

$$z^{-a_j}{}_n F_{n-1}(a_j+1-b_0,\ldots,a_j+1-b_{n-1};$$

$$a_j+1-a_0,\ldots,a_j+1-a_j,\ldots,a_j+1-a_{n-1};1/z); \ 0 \le j \le n-1$$

at $z = \infty$.

PROOF. $_{n}E_{n-1}$ is defined by

(2.20)
$$\left[\prod_{j=0}^{n-1}(\vartheta+b_j-1)-z\prod_{j=0}^{n-1}(\vartheta+a_j)\right]u=0,$$

where $\vartheta = z\partial/\partial z$ (see [Bly]). It is easily verified that functions in Lemma satisfy (2.20). \Box

REMARK 2.1. If s = p/q with n = p + q, then we have, for $0 \le j \le q - 1$,

$$\begin{split} \varphi_{j}(\alpha, s, x) &= x^{j} \sum_{l=0}^{\infty} c_{j+lq}(\alpha, s) x^{lq} \\ &= c_{j}(\alpha, s) x^{j} {}_{n} F_{n-1} \left(\frac{\alpha}{n} + \frac{j}{q}, \frac{\alpha+1}{n} + \frac{j}{q}, \dots, \frac{\alpha+n-1}{n} + \frac{j}{q}; \\ &\frac{\alpha+1}{p} + \frac{j}{q}, \dots, \frac{\alpha+p}{p} + \frac{j}{q}, \frac{1+j}{q}, \dots, \frac{q-1}{q}, \frac{q+1}{q}, \dots, \frac{q+j}{q}; \frac{n^{n}}{p^{p}q^{q}} x^{q} \right). \end{split}$$

3. Global properties of solutions of $y^n + xy^p - 1 = 0$. Assume $s(s + 1) \neq 0$. Put $\Delta(s) = \{x \mid |x| < |s^s/(s + 1)^{s+1}|\}$. Then $\psi(\alpha, s, x)$ and $\psi'(s, x) = \frac{\partial \psi}{\partial \alpha(0, s, x)}$ are holomorphic in $\Delta(s)$ (Proposition 2.2 and Corollary 2.5).

M. KATO AND M. NOUMI

LEMMA 3.1. Assume $s \in \mathbf{R}$. Then we have $|\arg \psi(-1, s, x)| < \pi$, or equivalently, $|\operatorname{Im} \psi'(s, x)| < \pi$ in $\Delta(s)$.

PROOF. Assume $|\text{Im }\psi'(s, x_1)| = \pi$ for some $x_1 \in \Delta(s)$. From (2.5) and (2) of Corollary 2.5, we have

$$\exp(-s\psi'(s, x_1))(1 - \exp(-\psi'(s, x_1))) = x_1$$

This implies $\theta := \arg x_1 = (\pm s + 2n)\pi$ for some $n \in \mathbb{Z}$. Since $\operatorname{Im} \psi'(s, 0) = 0$, there exist a positive number $t_0 (\leq |x_1|)$ such that

$$|\operatorname{Im} \psi'(s, te^{i\theta})| < \pi \text{ for } 0 < t < t_0 \text{ and } |\operatorname{Im} \psi'(s, t_0 e^{i\theta})| = \pi$$

Put $x_0 = t_0 e^{i\theta}$ and $b_0 = \psi(-1, s, x_0)$ (< 0). Since $y = \psi(-1, s, x)$ defines an open map, $\psi(-1, s, e^{i\theta}t)$ maps some open interval $(t_0 - \delta, t_0 + \delta)$ onto some open interval $(b_0 - \delta', b_0 + \delta'')$. This contradicts the choice of t_0 .

We assume (p, q) = 1 and put n = p + q. Recall that $f_j(x), 0 \le j \le n - 1$ given by (2.9) are the solutions of the equation (2.8). The equation (2.8) has multiple roots at

(3.1)
$$x_j := e\left(\frac{-p(1+2j)}{2n}\right)(p/n)^{-p/n}(q/n)^{-q/n}, \quad 0 \le j \le n-1,$$

where $e(x) = e^{2\pi i x}$ and at $x = \infty$. Note that $x = x_j$ are solutions of

$$(-p)^p q^q n^{-n} x^n = 1$$

LEMMA 3.2. At $x = x_i$, the equation (2.8) has a double root

(3.2)
$$e((1+2j)/2n)(p/q)^{1/n}$$

and n - 2 simple roots.

PROOF. The double root of the equation (2.8) is uniquely determined by (2.8) and $ny^{n-1} + pxy^{p-1} = 0.$

We know that $f_j(x)$ are holomorphic in $\Delta := \Delta(-p/n) = \{x \mid |x| < (p/n)^{-p/n}(q/n)^{-q/n}\}$ and continuous in the closure $\overline{\Delta}$ of Δ .

Put

$$(3.3) D_j = f_j(\bar{\Delta}).$$

Then we have $D_j = e(j/n)D_0$ and put $D_n = D_0$.

Lemma 3.3.

(3.4)
$$\left(\frac{-1+2j}{n}\right)\pi \le \arg y \le \left(\frac{1+2j}{n}\right)\pi \quad for \ y \in D_j,$$

(3.5)
$$D_j \cap D_{j+1} = \{f_j(x_j)\} = \{f_{j+1}(x_j)\} = \{e((1+2j)/2n)(p/q)^{1/n}\},$$

and $D_j \cap D_k = \emptyset$ if $j - k \neq \pm 1$.

PROOF. The inequalities (3.4) follow from Lemma 3.1 and (2) of Corollary 2.5. These inequalities imply that $D_j \cap D_k = \emptyset$ if $j - k \neq \pm 1$. Since any element of $D_j \cap D_{j+1}$ is one of (3.2), we have

$$D_j \cap D_{j+1} = \{e((1+2j)/2n)(p/q)^{1/n}\}$$

from (3.4). From Lemma 3.2, (3.5) follows.

COROLLARY 3.4. Let γ_0 be a loop starting and ending at the origin and once surrounding x_0 . Let $\gamma_j = e(-pj/n)\gamma_0$. Then, by the analytic continuation along γ_j , $f_j(x)$ and $f_{j+1}(x)$ are interchanged and other $f_k(x)$ are unchanged.

PROOF. Assume γ_0 (hence any γ_j) acts trivially on $\{f_0, \ldots, f_{n-1}\}$. Then $f_j(x)$ are entire functions. This contradicts Proposition 2.6.

DEFINITION 3.1. Let *E* be a Fuchsian linear differential equation of rank *n* on \mathbb{P}^1 . Let $Z = \mathbb{P}^1 - \{\text{singular points of } E\}$. Fix a base point $z_b \in Z$, and let *V* be the set of germs of holomorphic solutions of *E* at z_b . For any $\gamma \in \pi_1(Z, z_b)$ and $f \in V$, the analytic continuation $\gamma_* f$ of *f* along γ is again in *V*. We consider γ_* an element of GL(V) and call the set M(E) of all γ_* the *monodromy group* of *E* and M(E)/(its center) the *projective monodromy group* of *E*.

We say that M(E) is (or E is) *reducible* if there exists a non trivial subspace V_1 of V which is invariant under the action of M(E) and say M(E) is (or E is) *irreducible* if M(E) is not reducible.

We say that M(E) is (or *E* is) *imprimitive* if *V* has a direct sum decomposition $V = V_1 + V_2 + \cdots + V_k$ such that any element of M(E) induces a permutation of $\{V_1, V_2, \ldots, V_k\}$. Choose a basis $v_j(z)$, $1 \le j \le n$ of *V*. Then we have a holomorphic map

$$v(z) = [v_1(z) : v_2(z) : \dots : v_n(z)]$$

of a neighbourhood of z_b into \mathbf{P}^{n-1} . By taking analytic continuations of v, we have a multivalued map (again denoted by) v of Z into \mathbf{P}^{n-1} which we call a *Schwarz map* of E.

Remark 3.1. If the Schwarz map has a single-valued inverse map π_E , then the projective monodromy group of *E* is isomorphic to the covering transformation group of π_E .

The map of Δ to \mathbf{P}^{n-1} defined by $[f_0(x) : f_1(x) : \cdots : f_{n-1}(x)]$ is extended to a multivalued map of $\mathbf{C} - \{x_0, \ldots, x_{n-1}\}$ to \mathbf{P}^{n-1} by the analytic continuations. Take the closure of its image in \mathbf{P}^{n-1} , which we denote by $X_{n,p}$.

PROPOSITION 3.5. Let $\sigma_k(y) = \sigma_k(y_0, y_1, \dots, y_{n-1})$ be the elementary symmetric function of degree k. Then we have the equality

(3.6)
$$X_{n,p} = \{ [y_0 : y_1 : \dots : y_{n-1}] \in \mathbf{P}^{n-1} \mid \sigma_k(y) = 0, \ 1 \le k \le n-1, \ k \ne q \}.$$

Put

(3.7)
$$\pi_{n,p}([y_0:y_1:\cdots:y_{n-1}]) = (-1)^n \frac{p^p q^q}{n^n} \frac{(\sigma_q(y_0,\ldots,y_{n-1}))^n}{(\sigma_n(y_0,\ldots,y_{n-1}))^q}$$

M. KATO AND M. NOUMI

Then $z = \pi_{n,p}(y)$ defines an n! : 1 rational map of $X_{n,p}$ to P^1 satisfying

(3.8)
$$\pi_{n,p}([f_0(x):f_1(x):\cdots:f_{n-1}(x)]) = (-p)^p q^q n^{-n} x^n$$

The branch points of this map are $z = 0, 1, \infty$ with the ramification indices n, 2, pq, respectively. The covering transformation group is isomorphic to the symmetric group S_n of order n!.

PROOF. Denote by $\hat{X}_{n,p}$ the set of common zeros of σ_k , $0 \le k \le n-2$, $k \ne q$. From Bezout's theorem, $\pi_{n,p}|_{\hat{X}_{n,p}}$ is an n!: 1 map of $\hat{X}_{n,p}$ to P^1 . From Corollary 2.7, we have $X_{n,p} \subset \hat{X}_{n,p}$, that is, $X_{n,p}$ is an irreducible component of $\hat{X}_{n,p}$. From Corollary 2.7, (3.8) holds and from Corollary 3.4, we know that S_n acts on each fiber of $\pi_{n,p}|_{X_{n,p}}$. Consequently, we must have $\hat{X}_{n,p} = X_{n,p}$.

The equality (3.8) implies that the ramification index is *n* at z = 0. From Corollary 3.4, the index at z = 1 is 2. From Proposition 2.6, we know that the ramification index at $z = \infty$ is *pq*. This completes the proof.

The statement (2) of the following corollary is proved in [B-H, Proposition 2.6].

COROLLARY 3.6. (1) If p < n - 1, then $\psi(-1/n, -p/n, \varepsilon_n^k x)$, $0 \le k \le n - 1$, are solutions of a differential equation $_{n-1}E_{n-2}$, the projective monodromy group of which is isomorphic to the symmetric group S_n of order n!. Any n - 1 of the above solutions are linearly independent.

(2) The projective monodromy group of

(3.9)
$$n-1E_{n-2}\left(\frac{1}{n},\frac{2}{n},\ldots,\frac{n-1}{n};\frac{1}{p},\ldots,\frac{p-1}{p},\frac{1}{q},\ldots,\frac{q-1}{q}\right)$$

is isomorphic to S_n .

PROOF. Proof of (1). Assume p < n - 1 or equivalently q > 1. Put $\alpha = -1/n$ and s = -p/n. Let q^* be the integer such that

$$1 \le q^* \le n-1$$
 and $qq^* \equiv 1 \mod n$

Then $p^* := n - q^*$ also satisfies $pp^* \equiv 1 \mod n$. For k = p or q, put $d_k = (kk^* - 1)/n$. Note $q^* > 1$ and $d_q > 0$ because q > 1. We easily have $c_{q^*}(\alpha, s) = 0$, and hence $\varphi_{q^*}(\alpha, s, x) = 0$ (see Proposition 2.8). Since

$$(-\alpha + d_p)/p = (\alpha + q - d_q)/q = p^*/n,$$

we have

 $\varphi_0(\alpha, s, x)$

$$= {}_{n-1}F_{n-2}\left(\frac{-\alpha}{p}, \dots, \frac{-\alpha+p-1}{p}, \frac{\alpha}{q}, \dots, \frac{\alpha+q-d_q}{q}, \dots, \frac{\alpha+q-1}{q}; \frac{n-1}{n}, \dots, \frac{\widehat{p^*}}{n}, \dots, \frac{1}{n}; z\right),$$

where $z = (-1)^p p^p q^q n^{-n} x^n$ as before. By the same way, we know that $\{\varphi_j \mid 0 \le j \le n-1, j \ne q^*\}$ forms a system of fundamental solutions of

(3.10)
$$\frac{n-1}{p} E_{n-2}\left(\frac{-\alpha}{p}, \dots, \frac{-\alpha+p-1}{p}, \frac{\alpha}{q}, \dots, \frac{\alpha+q-d_q}{q}, \dots, \frac{\alpha+q-1}{q}; \frac{n-1}{n}, \dots, \frac{\widehat{p^*}}{n}, \dots, \frac{1}{n}\right).$$

The equalities (2.19) imply that $\psi(-1/n, -p/n, \varepsilon_n^k x)$, $0 \le k \le n-1$, are solutions of (3.10) and moreover any n-1 of them are linearly independent. Since the projective monodromy group of (3.10) is isomorphic to the covering transformation group of $\pi_{n,p}$, which is isomorphic to S_n from Proposition 3.5. This completes the proof of (1).

Proof of (2). In (3.9), p and q are symmetric so that we can remain the assumption of p < n - 1. Put $r = (-\alpha + d_p)/p = (\alpha + q - d_q)/q = p^*/n$. Then, from Lemma 2.10, the equation (3.10) has the special solution

$$z^{-r}{}_{n-1}F_{n-2}\left(r,r+\frac{1}{n},\ldots,r+\frac{q^{*}}{n},\ldots,r+\frac{n-1}{n};\ 1+\frac{d_{p}}{p},\ldots,1+\frac{1}{p},\frac{p-1}{p},\ldots,\frac{1+d_{p}}{p},1+\frac{q-d_{q}}{q},\ldots,1+\frac{1}{q},\frac{q-1}{q},\ldots,\frac{q-d_{q}-1}{q};1/z\right).$$

Thus the projective monodromy groups of (3.9) and (3.10) are mutually isomorphic, proving (2). This completes the proof.

4. Schwarz map of a family of imprimitive ${}_{n}E_{n-1}$. Assume (p,q) = 1 and put n = p + q, s = -p/n, $z = (-p)^{p}q^{q}n^{-n}x^{n}$, $\varepsilon_{k} = e(1/k) = e^{2\pi i/k}$.

For an integer $m \ge 2$, put $\alpha = -1/(mn)$ and define

(4.1)
$$f_j^{(1/m)}(x) = \varepsilon_{mn}^j \psi(\alpha, s, \varepsilon_n^{pj} x) \quad 0 \le j \le n-1$$

which is a *m*-th root of $f_j(x)$. The following lemma is an immediate consequence of the definition (4.1) of $f_j^{(1/m)}$.

LEMMA 4.1. We have

$$f_j^{(1/m)}(e(p/n)x) = e(-1/(mn))f_{j+1}^{(1/m)}(x), \text{ for } 0 \le j \le n-2,$$

$$f_{n-1}^{(1/m)}(e(p/n)x) = e((n-1)/(mn))f_0^{(1/m)}(x).$$

When we consider $f_j^{(1/m)}(x)$ as a multi-valued function of z, we denote it by $f_j^{(1/m)}(z)$.

LEMMA 4.2. $f_j^{(1/m)}(z), \ 0 \le j \le n-1$, are linearly independent solutions of differential equation (1.1).

PROOF. Since $c_i(\alpha, s) \neq 0$, for $0 \leq j \leq n - 1$, Corollary 2.9 proves the lemma. \Box

Similar to (3.3), we put

$$D_j^{(1/m)} = f_j^{(1/m)}(\bar{\Delta}) \,.$$

Then we have $D_j^{(1/m)} = e(j/(mn))D_0^{(1/m)}$ and can prove the following lemma and its corollary from Lemma 3.3 and Corollary 3.4.

Lemma 4.3.

$$D_{j}^{(1/m)} \cap D_{j+1}^{(1/m)} = \{f_{j}^{(1/m)}(x_{j})\} = \{f_{j+1}^{(1/m)}(x_{j})\}$$

= $\{e((1+2j)/(2mn))(p/q)^{1/n}\}, \ 0 \le j \le n-2,$
$$D_{n-1}^{(1/m)} \cap e(1/m)D_{0}^{(1/m)} = \{f_{n-1}^{(1/m)}(x_{n-1})\} = \{e(1/m)f_{0}^{(1/m)}(x_{n-1})\}$$

= $\{e((2n-1)/(2mn))(p/q)^{1/n}\}.$

COROLLARY 4.4. Let γ_j be the loop defined in Corollary 3.4. For $0 \le j \le n-2$, by the analytic continuation along γ_j , $f_j^{(1/m)}(x)$ and $f_{j+1}^{(1/m)}(x)$ are interchanged and other $f_k^{(1/m)}(x)$ are unchanged; by that along γ_{n-1} , $f_{n-1}^{(1/m)}(x)$ and $e(1/m)f_0^{(1/m)}(x)$ are interchanged and other $f_k^{(1/m)}(x)$ are unchanged.

From Lemma 4.2, a Schwarz map of (1.1) is given by

(4.2)
$$z \in \mathbf{P}^1 - \{0, 1, \infty\} \longmapsto [f_0^{(1/m)}(z) : f_1^{(1/m)}(z) : \cdots : f_{n-1}^{(1/m)}(z)].$$

We denote the closure of its image by $X_{n,p}^{(1/m)}$, which is an irreducible curve in \mathbf{P}^{n-1} .

THEOREM 4.5. Assume (p,q) = 1 and put n = p + q, s = -p/n and $\alpha = -1/(mn)$, $m \ge 2$. Then we have the equality

$$X_{n,p}^{(1/m)}$$

 $= \{ [y_0 : y_1 : \dots : y_{n-1}] \in \mathbf{P}^{n-1} \mid \sigma_k(y_0^m, y_1^m, \dots, y_{n-1}^m) = 0, 1 \le k \le n-1, \ k \ne q \},\$

where σ_k is the elementary symmetric function of degree k. Put

(4.4)
$$\pi_{n,p}^{(1/m)}([y_0:y_1:\cdots:y_{n-1}]) = (-1)^n \frac{p^p q^q}{n^n} \frac{\left(\sigma_q(y_0^m, y_1^m, \ldots, y_{n-1}^m)\right)^n}{\left(\sigma_n(y_0^m, y_1^m, \ldots, y_{n-1}^m)\right)^q}$$

Then $z = \pi_{n,p}^{(1/m)}(y)$ defines an $m^{n-1}n!$: 1 rational map of $X_{n,p}^{(1/m)}$ to \mathbf{P}^1 satisfying

(4.5)
$$\pi_{n,p}^{(1/m)}([f_0^{(1/m)}(x):f_1^{(1/m)}(x):\cdots:f_{n-1}^{(1/m)}(x)]) = (-p)^p q^q n^{-n} x^n$$

The branch points of this map are $z = 0, 1, \infty$ with ramification indices n, 2, mpq, respectively.

PROOF. We denote the right hand side of (4.3) by $\hat{X}_{n,p}^{(1/m)}$ for the moment. Since

$$(f_j^{(1/m)}(x))^m = f_j(x),$$

we have, from Proposition 3.5, $X_{n,p}^{(1/m)} \subset \hat{X}_{n,p}^{(1/m)}$. By Bézout's theorem, $\pi_{n,p}^{(1/m)}$ is an $m^{n-1}n!$: 1 map of $\hat{X}_{n,p}^{(1/m)}$ to P^1 and from (3.8) it satisfies (4.5). On the other hand, $\pi_{n,p}^{(1/m)}$ restricted to $X_{n,p}^{(1/m)}$ has $m^{n-1}n!$ points in any generic fiber because the covering transformation group of $X_{n,p}^{(1/m)}$ includes S_n from Corollary 4.4 and multiplication of e(1/m) to coordinate y_{n-1} from Lemma 4.1. Hence we have $X_{n,p}^{(1/m)} = \hat{X}_{n,p}^{(1/m)}$. The ramification index at $z = \infty$ is mpq from Proposition 2.6. This completes the proof.

COROLLARY 4.6. Let $\alpha = -1/(mn)$, $m \ge 2$, then the differential equation (1.1) has imprimitive finite irreducible projective monodromy group of order $m^{n-1}n!$.

PROOF. The order of the projective monodromy group of (1.1) is equal to the degree of $\pi_{n,p}^{(1/m)}$, which is $m^{n-1}n!$ from the above theorem. Let Γ_0 and Γ_1 be loops once surrounding z = 0 and z = 1, respectively. From Lemma 4.1 and Corollary 4.4, both Γ_0 and Γ_1 induce permutations on the set $\{\langle f_j^{(1/m)} \rangle | 0 \le j \le n-1\}$ of one dimensional subspaces $\langle f_j^{(1/m)} \rangle$. Hence the monodromy group of (1.1) is imprimitive.

Since neither $(-\alpha + k)/p - l/n$ nor $(\alpha + k)/q - l/n$ is an integer for any integers k and l, (1.1) is irreducible from Proposition 3.3 of [B-H].

COROLLARY 4.7. For any positive integer m, n and q satisfying $1 \le q \le n - 1$ and (n, q) = 1, the algebraic set

$$\{[y_0: y_1: \dots: y_{n-1}] \in \mathbf{P}^{n-1} \mid \sigma_k(y_0^m, y_1^m, \dots, y_{n-1}^m) = 0, \ 1 \le k \le n-1, \ k \ne q\}$$

is irreducible.

PROOF. The statement is true for m = 1 from Proposition 3.5 and for $m \ge 2$ from Theorem 4.4.

5. $\psi(\alpha, -1/3, x)$. In this section, we give several results concerning to $\psi(\alpha, -1/3, x)$.

5.1. A proof of Cardano's formula.

LEMMA 5.1.

(5.1)
$$\psi(-1/2, -1/2, x) = \frac{-x + \sqrt{x^2 + 4}}{2},$$

(5.2)
$$\psi(-1,1,x) = \frac{1+\sqrt{1-4x}}{2}.$$

PROOF. From (2.17) and (2.18), we have

$$\psi(-1/2, -1/2, x) = {}_{2}F_{1}\left(\frac{1}{2}, -\frac{1}{2}; \frac{1}{2}; -\frac{1}{4}x^{2}\right) - \frac{1}{2}x {}_{2}F_{1}\left(1, 0; \frac{3}{2}; -\frac{1}{4}x^{2}\right).$$

Since $_2F_1(a, b; b; x) = (1 - x)^{-a}$, (5.1) is proved.

If $k \ge 1$, then we have

$$c_k(-1, 1) = -(k, k - 1)/k!$$

= $-k(k + 1) \cdots (2k - 2)/k! = -(2k - 2)!/(k!(k - 1)!)$
= $-1 \cdot 3 \cdots (2k - 3)2^{k-1}/k! = -(1/2, k - 1)2^{2k-2}/k!$
= $(-1/2, k)4^k/(2k!)$.

Hence we have (5.2).

LEMMA 5.2.

$$\psi(-1/3, -1/3, x)$$
(5.3)
$$= \left(\frac{1}{2}\left(1 + \frac{4}{27}x^3\right)^{1/2} + \frac{1}{2}\right)^{1/3} - \frac{1}{3}x\left(\frac{1}{2}\left(1 + \frac{4}{27}x^3\right)^{1/2} + \frac{1}{2}\right)^{-1/3}$$

$$= \left(\frac{1}{2}\left(1 + \frac{4}{27}x^3\right)^{1/2} + \frac{1}{2}\right)^{1/3} - \left(\frac{1}{2}\left(1 + \frac{4}{27}x^3\right)^{1/2} - \frac{1}{2}\right)^{1/3},$$

where cube roots take positive values if x is a positive small number.

PROOF. From (2.17) and (2.18), we have

$$\begin{split} \psi(-1/3, -1/3, x) \\ &= {}_{3}F_{2}\left(\frac{1}{3}, -\frac{1}{6}, \frac{1}{3}; \frac{2}{3}, \frac{1}{3}; -\frac{4}{27}x^{3}\right) - \frac{1}{3}x {}_{3}F_{2}\left(\frac{2}{3}, \frac{1}{6}, \frac{2}{3}; \frac{4}{3}, \frac{2}{3}; -\frac{4}{27}x^{3}\right) \\ &= {}_{2}F_{1}\left(-\frac{1}{6}, \frac{1}{3}; \frac{2}{3}; -\frac{4}{27}x^{3}\right) - \frac{1}{3}x {}_{2}F_{1}\left(\frac{1}{6}, \frac{2}{3}; \frac{4}{3}; -\frac{4}{27}x^{3}\right), \end{split}$$

which is equal to, from Remark 2.1,

$$\varphi_{0}(-1/3, 1/1; -x^{3}/27) - 1/3 x \varphi_{0}(1/3, 1/1; -x^{3}/27)$$

$$= \psi(-1/3, 1; -x^{3}/27) - 1/3 x \psi(1/3, 1; -x^{3}/27)$$

$$= [\psi(-1, 1; -x^{3}/27)]^{1/3} - 1/3 x [\psi(-1, 1; -x^{3}/27)]^{-1/3}$$

$$= \left[\frac{1 + \sqrt{1 + 4x^{3}/27}}{2}\right]^{1/3} - \frac{1}{3}x \left[\frac{1 + \sqrt{1 + 4x^{3}/27}}{2}\right]^{-1/3}$$

due to (5.2). This proves the lemma.

THEOREM 5.3 (Cardano). The equation

$$X^3 + 3pX - 2q = 0$$

has roots

(5.4)
$$\varepsilon_3^m (q + \sqrt{p^3 + q^2})^{1/3} + \varepsilon_3^{2m} (q - \sqrt{p^3 + q^2})^{1/3}, \quad 0 \le m \le 2,$$

where $\varepsilon_3 = e^{2\pi i/3}$ and cube roots must be chosen such that
(5.5) $(q + \sqrt{p^3 + q^2})^{1/3} (q - \sqrt{p^3 + q^2})^{1/3} = -p.$

202

PROOF. Theorem follows from Lemma 5.2 and Proposition 2.6.

5.2. A uniformization of $\psi(-1/12, -1/3, x)$.

LEMMA 5.4. Let s = -p/n. Then for any α , we have

(5.6)
$$\prod_{j=0}^{n-1} \psi(\alpha, s, \varepsilon_n^j x) = 1$$

PROOF. From (2.19), we have

$$\psi(\alpha, s, \varepsilon_n^j x) = \sum_{k=0}^{n-1} \varepsilon_n^{jk} \varphi_k(\alpha, s, x) \, .$$

First we note

$$\varphi_0(0, s, x) = 1$$
, $\frac{\partial \varphi_0}{\partial \alpha}(0, s, x) = 0$ and $\varphi_k(0, s, x) = 0$ for $k \ge 1$

Put $f(\alpha) = \prod_{j=0}^{n-1} \psi(\alpha, s, \varepsilon_n^j x)$. Then f(0) = 1 and

$$\frac{df}{d\alpha}\Big|_{\alpha=0} = \sum_{k=0}^{n-1} \frac{\partial \psi}{\partial \alpha}(\alpha, s, \varepsilon_n^k x) \prod_{j \neq k} \psi(\alpha, s, \varepsilon_n^j x) \Big|_{\alpha=0} = \sum_{k=0}^{n-1} \frac{\partial \psi}{\partial \alpha}(\alpha, s, \varepsilon_n^k x) \Big|_{\alpha=0}$$
$$= \sum_{k=0}^{n-1} \sum_{j=0}^{n-1} \varepsilon_n^{jk} \frac{\partial \varphi_j}{\partial \alpha}\Big|_{\alpha=0} = \left(\sum_{j=1}^{n-1} \frac{\partial \varphi_j}{\partial \alpha}\Big|_{\alpha=0}\right) \left(\sum_{k=0}^{n-1} \varepsilon_n^{jk}\right)$$
$$= 0.$$

Since $f(\alpha + \beta) = f(\alpha)f(\beta)$, we have $f(\alpha) = f(0) \exp(\alpha df(0)/d\alpha)$. This proves (5.6). \Box Let $\alpha = -1/(3m)$ and put $y_i = f^{(1/m)}(\alpha - 1/3x)$ for i = 0, 1, 2 (as for $f^{(1/m)}$ see

Let $\alpha = -1/(3m)$ and put $y_j = f_j^{(1/m)}(\alpha, -1/3, x)$ for j = 0, 1, 2 (as for $f_j^{(1/m)}$, see (4.1)). Then, from (4.3), (4.4) and (4.5), we have

(5.7)
$$y_0^m + y_1^m + y_2^m = 0$$
, $\pi_{3,1}^{(1/m)}([y_0:y_1:y_2]) = \frac{(y_0^{2m} + y_1^{2m} + y_2^{2m})^3}{54(y_0y_1y_2)^{2m}} = -\frac{4}{27}x^3$.
Let

$$J(\tau) = 12^{-3}h^{-2}(1 + 744h^2 + 196884h^4 + 21493760h^6 + \cdots), \quad h = e^{\pi i \tau}$$

be the elliptic modular function defined on the upper half plane.

LEMMA 5.5. On the upper half plane { $\tau \mid \text{Im}(\tau) > 0$ }, we have a single-valued function $x = x(\tau)$ so that $J(\tau) = -4x^3/27$ and that $x \ge 0$ for $\tau = e(1/3) + ti$ with $t \ge 0$.

PROOF. The assertion holds because $J(\tau) \le 0$ on the half line $\tau = e(1/3) + ti$ with $t \ge 0$ and because $J(\tau)$ has only triple zeros. \Box

Now we have the following theorem.

THEOREM 5.6. Let m = 4, n = 3, p = 1 and $\alpha = -1/(mn), s = -p/n$. Let $f_j^{(1/m)}(x), j = 0, 1, 2$ be solutions of (1.3) defined by (4.1). Let $x = x(\tau)$ be the single-valued function in the previous lemma. Then we have

(5.8)
$$\begin{aligned} f_0^{(1/4)}(x(\tau)) &= C\vartheta_2(0,\tau) \,, \quad f_1^{(1/4)}(x(\tau)) = C\vartheta_0(0,\tau) \,, \\ f_2^{(1/4)}(x(\tau)) &= e(1/8)C\vartheta_3(0,\tau) \,, \end{aligned}$$

where $h = e^{\pi i \tau}$, $H_0 = \prod_{k=1}^{\infty} (1 - h^{2k})$ and $C = 2^{-1/3} e^{(1/24)} h^{-1/12} H_0^{-1}$.

PROOF. Let
$$C_4 = \{ [y_0 : y_1 : y_2] \in \mathbf{P}^2 | y_0^4 + y_1^4 + y_2^4 = 0 \}$$
. Then
 $\pi_{3,1}^{(1/4)} : C_4 \to \mathbf{P}^1$

satisfies, from (5.7),

$$\pi_{3,1}^{(1/4)}([y_0:y_1:y_2]) = \frac{(y_0^8 + y_1^8 + y_2^8)^3}{54(y_0y_1y_2)^8}.$$

It is well-known (see, for example [Akh]) that

(5.9)
$$\pi_{3,1}^{(1/4)}([\vartheta_2(0,\tau):\vartheta_0(0,\tau):e(1/8)\vartheta_3(0,\tau)]) = J(\tau) \,.$$

This together with the equality (5.6) implies that both

$$[f_0^{(1/4)}: f_1^{(1/4)}: f_2^{(1/4)}] \quad \text{and} \quad [\vartheta_2(0,\tau): \vartheta_0(0,\tau): e(1/8)\vartheta_3(0,\tau)]$$

belong to the same fiber $(\pi_{3,1}^{(1/4)})^{-1}(J(\tau))$. Hence for some fourth roots ε , ε' of 1 and some function $C' = C'(\tau)$, we have

$$\{f_0^{(1/4)}, f_1^{(1/4)}, f_2^{(1/4)}\} = \{C'\vartheta_2(0,\tau), C'\varepsilon\vartheta_0(0,\tau), C'\varepsilon' e(1/8)\vartheta_3(0,\tau)\}.$$

If we put $\tau = (-1 + \sqrt{3}i)/2 + ti$ and let t to $+\infty$, then $z = J(\tau) < 0$ goes to $-\infty$. Since, from (5.3),

$$f_j^{(1/4)} = \varepsilon_{12}^j 2^{-1/12} ((\sqrt{1 - J(\tau)}) + 1)^{1/3} - \varepsilon_3^j (\sqrt{1 - J(\tau)} - 1)^{1/3})^{1/4},$$

we have (5.8) for some function $C = C(\tau)$ of τ . Since $\vartheta_2(0, \tau)\vartheta_0(0, \tau)\vartheta_3(0, \tau) = 2h^{1/4}H_0^3$ ([Akh]), *C* takes the value in the statement of the theorem.

REMARK 5.1. We dealt with the case of m = 4 because we used the identity

$$\vartheta_0^4(0,\tau) + \vartheta_2^4(0,\tau) - \vartheta_3^4(0,\tau) = 0$$

in the proof.

COROLLARY 5.7. Let a multi-valued function
$$f(z)$$
 be a solution of

$$_{3}E_{2}(1/12, -1/24, 11/24; 1/3, 2/3).$$

Then $f(J(\tau))$ turns out to be single-valued and a linear combination of $C\vartheta_j(0,\tau)$, j = 0, 2, 3, where C is as in Theorem 5.6.

References

- [A-I] K. AOMOTO AND K. IGUCHI, On quasi-hypergeometric functions, Methods Appl. Anal. 6 (1999), 55-66.
- N. I. AKHIEZER, Elements of the Theory of Elliptic Functions, Transl. Math. Monogr. 79, American [Akh] Mathematical Society, Providence, RI, 1990.
- [B-H] F. BEUKERS AND G. HECKMAN, Monodromy for the hypergeometric function $_{n}F_{n-1}$, Invent. Math. 95 (1989), 325-354.
- G. BELARDINELLI, Fonctions Hypergéométriques de Plusieurs Variables et Résolution Analytique des [Blr] Équations Algébriques Générales, Mémor. Sci. Math., Fasc. 145, Gauthiers Villars, Paris, 1960.
- [Bly] W. N. BAILEY, Generalized Hypergeometric Series, Cambridge Tracts in Mathematics and Mathematical Phisics No. 32, 1935.
- [Brn] B. C. BERNDT, Ramanujan's Notebooks Part I, Springer-Verlag, New York, 1985.
- A. ERDÉLYI (Editor), Higher transcendental functions, Vol. I, MacGraw Hill, New York, 1953. [Erd]
- [Kt] M. KATO, Schwarz maps of $_3F_2$ with finite irreducible monodromy groups, Kyushu J. Math. 52 (1998), 475-495.

DEPARTMENT OF MATHEMATICS DEPARTMENT OF MATHEMATICS COLLEGE OF EDUCATION GRADUATE SCHOOL OF SCIENCE AND TECHNOLOGY UNIVERSITY OF THE RYUKYUS KOBE UNIVERSITY NISHIHARA-CHO, OKINAWA 903–0213 **Rokko**, **Kobe** 657–8501 JAPAN JAPAN E-mail address: noumi@math.sci.kobe-u.ac.jp

E-mail address: mkato@edu.u-ryukyu.ac.jp