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ABSTRACT

For a one-parameter deformation of an analytic complex function germ of several
variables, there is defined its monodromy zeta-function. We give a Varchenko
type formula for this zeta-function if the deformation is non-degenerate with
respect to its Newton diagram.
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1. Introduction

Let F be the germ of an analytic function on (C"*1,0), where C*"*! = C, x C?, o is
the coordinate on C, and z = (21, 22, ..., 2,) are the coordinates on C". The germ F
provides a deformation f, = F(o,-) of the function germ f = fy on (C™,0). We give
formulae for the monodromy zeta-functions of the deformations of the hypersurface
germs {f =0} N(C*)" and {f =0} at the origin in terms of the Newton diagram
of F. A reason to study deformations of hypersurface germs and their monodromy
zeta-functions was inspired by their connection with zeta-functions of deformations
of polynomials: [3].

Let A be the complement to an arbitrary analytic hypersurface Y in C": A =
C"\Y. Let V = {F=0}n(C, x A) N Be, where B. C C"*! is the closed ball of
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radius ¢ with the centre at the origin. Let D5 C C, be the punctured disk of radius
0 with the centre at the origin. For 0 < § < ¢ small enough the restriction to V' of
the projection C"*!' — C, onto the first factor provides a fibration over D} ([7]).
Denote by V. the fibre over the point ¢. Consider the monodromy transformation
hga: V. — V. of the above fibration restricted to the loop c¢-exp(2mit), t € [0, 1], |¢|
is small enough.

The zeta-function of an arbitrary transformation h: X — X of a topological space
X is the rational function (p(t) = [[;~(det(Id —th*|Hic(X;C)))(71)l, where HE(X;C)
is the i-th homology group with closed support.

Definition 1.1. The zeta-function of the monodromy transformation hr 4 will be
called the monodromy zeta-function of the deformation f, on A: (s, |, (t) = Cup 4 (1)

For a power series S = Y cyX, y* = y’fl ---ykm one defines its Newton diagram

as follows. Denote by Ry C R the set of non-negative real numbers. Denote by I''(.5)
the convex hull of the union Ue, +o(k + R'?*). The Newton diagram of the series S is
the union of compact faces of I'V(S). For a germ G on C™ at the origin, its Newton
diagram T'(G) is the Newton diagram of its Taylor series at the origin.

For a generic germ F on (C",0) with fixed Newton diagram I' € R*" the
zeta-functions (| .. n (t), Cf,jen (t) are also fixed. We provide explicit formulas for
these zeta-functions in terms of the Newton diagram I'.

2. The main result (a Varchenko type formula)

Let F be a germ of a function on (C"™10). Let k = (ko,k1,...,k,) be the
coordinates on R"*! corresponding to the variables o, 21, ..., 2, respectively. For
I C{0,1,...,n}, denote by R! and I'/(F) the sets {k | k; = 0,i ¢ I} C R""! and
['(F) NR! respectively.

An integer covector is called primitive if it is not a multiple of another integer
covector. Let P! be the set of primitive integer covectors in the dual space (R! )*
such that all their components are strictly positive. For o € P, let T'/ (F') be the
subset of the diagram I'' (F)) where a|pr(py reaches its minimal value: T'L(F) = {x €
M(F) | a(x) = min(a|rrpy)} (for TH(F) = 0 we assume T'L(F) = 0). Consider

kn

the Taylor series of the germ F at the origin: F = ZFkak"zfl ...zp". Denote:

_ ko Lk En
F, = Zkel—‘({lo,l ..... ny Fo™ 2t ooz

Definition 2.1. A germ F of a function on (C"*1,0) is called non-degenerate with
respect to its Newton diagram if for any a € P! the 1-form dF, does not vanish on
the germ {F, =0} N (C*)"*! at the origin (see [9]).

For I € {0,1,...,n} such that 0 € I, we denote:

¢ty =TT (-t

acP!

)

))<—1>’*1uvl<rg<F>>
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where | = || -1, 8%0 is the vector in R! with the single non-zero coordinate ko = 1,
and Vj(-) denotes the I-dimensional integer volume, i.e., the volume in a rational I-
dimensional affine hyperplane of R’ normalized in such a way that the volume of the
minimal parallelepiped with integer vertices is equal to 1. We assume that V(pt) =1

and for n > 0 one has V,,(0) = 0.

Theorem 2.2. Let F be non-degenerate with respect to its Newton diagram T'(F).
Then one has

Chaleoyn (8) = GV (1), (1)
G ®=0-tx [ . (2)

I:0e1c{0,1,...,n}

Remarks 2.3.

(i) The equation (1) implies the equation (2) because of the following multi-
plicative property of the zeta-function. Let h: X — X be a transformation of a
CW-complex X. Let ¥ C X be a subcomplex of X. Assume that h(Y) C Y,
h(X \ Y) C (X \ Y) Then Ch|X(t) = Ch|x\y (t) X Ch|y(t)

One can see that (g, |, (t) = (1 —1) x }O} (t). In fact, in the case T'{°} = one has

Chaly ) = (1 —1), (2 (t) = 1. Otherwise ¢y, (H) =1, () =1 —1)7".
éii) The zeta-function (y, |, (t) coincides with the monodromy zeta-function of the
germ of the function o: {F = 0} — C, at the origin. The main theorem of [8] provides
a formula for the zeta-functions of germs of functions on complete intersections in non-
degenerate cases. One can apply this formula to the germ o and verify that the formula
(2) agrees with the one of M. Oka. But (2) can not be deduced from the result of M.
Oka because the function o does not satisfy the condition of “convenience” ([8, page
17]).
Erample 2.4.

(i) Let F(o0,z) = f(z) — 0. The monodromy zeta-function of the deformation f,
coincides with the (ordinary) monodromy zeta-function (¢ (t) of the germ f on (C”,0)

(see, e.g., [9]). In this case the [-dimensional faces 'L (F) (where | = |I| —1 > 0) are
\{o} ).

cones of integer height 1 over the corresponding (I—1)-dimensional faces Fam 0
o=

One has:
VTL(E)) = Vi (PR (D) /1.

al{ky=0}
with «(9/0ko) = min(a|pnoy(s)). This means that in this case the equation (2)
coincides with the Varchenko formula ([9]).

(ii) For a deformation F(c,z) of the form fy(z) — of1(z), the fibre
({o} x {fo =0}) N B:

is the disjoint union of the sets

(o} x{fo/fr=0})N B
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and

({o} x{fo=fi=0})NB..

If fo(O) = fl(O) = 0, then Cfo‘IC" (t) = (1 — t) X C(fo/fl)\cn (t), otherwise gfa\cn (t) =
Clfo/f1)len (1) (the zeta-function of the meromorphic function fo/f1: [2]).

For I C {0,1,...,n} such that 0 € I, and for a covector & € P!, assume that the
face Tl (F) has dimension [, where [ = [I| —1 > 1. Then ', (F) is the convex hull of

the corresponding faces Af ; = {0} x I‘i}jfu}zo} (fo) and AL, = {1} x I‘i\ljsu}:m(fl),

which lie in the hyperplanes {ko = 0} and {ko = 1} respectively. It is not difficult to
show (see, e.g., [4, Lemma 1]) that V}(T'L(F)) = VI /I, where

VI=Vio(ALg, ... ALy + Vici(A]

a a,09

+...+ Vl_l(Afl’O,AgJ, .. .,Aiyl) + Vl_l(Ag’l, .. .,Aiyl).

AL Ail)

a,0

Here Vi_1 denotes the (I — 1)-dimensional Minkowski’s mixed volume: see, e.g., [8].
Moreover, a(d/0ko) = min(alpn o) (sy)) — min(alproy(s,)), thus (2) coincides with
the main result of [2].

3. A’Campo type formula

Proof of Theorem 2.2 uses an A’Campo type formula ([1]) written in terms of the
integration with respect to the Euler characteristic ([3]).

For a constructible function ® on a constructible set Z with values in a (multiplica-
tive) Abelian group G, its integral [ P ®9X with respect to the Euler characteristic y
is defined as ngG gX(¢71(9)) (see [10]). Further we consider G = C(t)" to be the
multiplicative group of non-zero rational functions in the variable t.

Let F be a germ of an analytic function on (C"*!,0) defined on a neighbourhood
U of the origin. Let Y be a hypersurface in C". Denote S = (C, x Y) U {o = 0}.
Consider a resolution 7: (X, D) — (U, 0) of the germ of the hypersurface {F = 0}US
at the origin, where D = 771(0) is the exceptional divisor.

Theorem 3.1. Assume 7 to be an isomorphism outside of 7=1(U N S). Then

Colenyy (B) = /an (Sl g2 (3)

where W is the proper preimage of {F = 0} (i.e., the closure of 7= 1(V), V =
({F=0}nU)\S)), 2 =0om, Z =71 (CoxY) and (). ,.(t) is the monodromy
zeta-function of the germ of the function ¥ on the set W\ Z at the point x € DNW.

Proof. The map 7 provides an isomorphism W\ (Z U {X = 0}) — V, which is also
an isomorphism of fibrations provided by the maps ¥ and o over sufficiently small
punctured neighbourhood of zero D5 C C,. Therefore the monodromy zeta-functions
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of this fibrations coincide, (y,|.n., (t) = Csyy ,(t) (the monodromy zeta-function of
the "global” function ¥ on W'\ Z).
Applying the localization principle ([3]) to ¥ we obtain:

Chtens = [ a0 0

The integration is multiplicative with respect to subdivision of its domain. One
has WN{Z =0} = (DNW)U((Wn{X=0})\ D). Thus the right hand side of (4)
is the product

UDQW CEIW\z,m(t)dX} .

The first factor coincide with the right hand side of (3); we prove that the second
factor equals 1.

For a point z € D, its neighbourhood U(z) C X with a coordinate system
U1, Uz, ..., Up+1 18 called convenient if each the of manifolds D, Z can be defined on
U(z) by an equation of type uX = 0 and each of the functions ¥, F = For has the
form auX, where a(0) # 0. One can assume that X is covered by a finite number of
convenient neighbourhoods.

For an arbitrary convenient neighbourhood Uy, choose an order of coordinates u;
on it such that D = {ujus - -u; = 0}.

()™

CE'W\Z1 x

/Wﬁ({E_O}\D)

Proposition 3.2. The zeta-function (s, ,, (t) at a point x € Ug\D is well-defined
by the coordinates wjy1,Uj42,...,Upt1 Of .

Proof. The germ of the manifold Z at the point x is defined by an equation

k1141 Eint1 _
(R i =0.
I iohb hood of h F”w - koupr  k2n Y — kit k3ni
n a neighbourhood of = one has F' = awu;}, w7 X = buyy u,

where a(z) # 0, b(z) # 0, ki; € {0,1}; ka5, k3 ; > 0. The zeta-function (g, ,, (?)
is well-defined by the numbers k; ;,¢ = 1,2,3,j =1+ 1,...,n 4+ 1, which do not
depend on wuq,...,u;. O

For a rational function Q(t), we define a set
Xo={z e WNn({E=0}\D)| (o ,,2(t) = QE)}-

It follows from the proposition above that for any convenient neighbourhood Uy we
have x(Uy N Xg) = 0. Thus for all Q(t) we have x(Xg) =0 and

/ CE|W\Z,I(t)dX = HQX(XQ) =1
WA({2=01\D) 9
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4. Proof of Theorem 2.2

Using the Newton diagram I'(F) of the germ F on (C**1,0), one can construct a uni-
modular simplicial subdivision A of the set of covectors with non-negative coordinates
(R™1)% (see, e.g., [9]). Consider the toroidal modification map

p: (XAvD) - (Cn+1’0)7

corresponding to A. Let U C C™*! be a small enough ball with the centre at the
origin, X = p~}(U), 7 = p|lx. Let Y = {z129---2, = 0} C C?. Then S =
(Y x C,) U{o = 0} is the union of the coordinate hyperplanes of C"*!. Since F'
is non-degenerate with respect to its Newton diagram I'(F), 7 is a resolution of the
germ S U {F = 0} (see, e.g., [8]). Finally, w is an isomorphism outside of S, so the
resolution (X, 7) satisfies the assumptions of Theorem 3.1.

Compute the right hand side of (3). Let 2 € D N W be a point of the torus T of
dimension n—1[+1, corresponding to an [-dimensional cone A € A. Let A be generated

by integer covectors ay, ..., a; and let A lie on the border of a cone X' € A generated
by a1,...,q, ... nq1. Let (u1, ..., unt1) be the coordinate system corresponding to
the set (a1, ..., an+1). There exists a coordinate system (w1, ..., U5, W41, ..., Wnt1)

in a neighbourhood U’ of the point = such that w;(z) = 0,7 =1+ 1,...,n+1
and F = For = au}fl’lugl’z ~~~uf” owZ:’_’{“ (where a(0) # 0). The zero level
set {E = 0} is a normal crossing divisor contained in {ujug---u; = 0}. Therefore

S=cgor=u>"ul>?. --uf”. One has: WNU' = {w,+1 = 0} and
(Zu{Z=0})NU" = {ujug---u = 0}.

Thus me\z,m(t) = Clu, 20, 1<1) (t), where g is the germ of the following function of n

. ka1 ko2 ka1
variables: g(u1, ..., up, Wig1,. .., Wp) = uy Uy w0
Assume that one of the exponents ko 1,k22...,ka; (say, ko.1) is equal to zero.

Then g does not depend on u;. We may assume that the monodromy transformation
of its Milnor fibre also does not depend on u;. Denote h = g[{y,—0}. The mon-
odromy transformations of the fibre of g|ry,us...u,203 and one of hlgy,u,..u 20y are
homgtqpy équivalent, SO Gyl sy 0} (t) = .gh‘{u?usmu#o} (t). On the other hand the
multiplicative property of the zeta-function implies that

Cgl{ui¢0,i§l)(t) x Chl{ugugw-ul¢0) (t) = Cg‘{uguaw-ul¢0) (t)7

and thus Cg‘{ui#’ig”(t) =1.
Now assume that all the exponents ks 1,k22 ..., ks, are positive. Then the non-
zero fibre of the function g does not intersect {uius...u =0}, 80 (g, o oy (1) =

Cg(t). In the case [ > 1 one has (,(t) = 1. In the case [ =1 one has: g = u,
Cyt) =1 — th2a,

We see that the integrand in (3) differs from 1 only at points x that lie in strata of
dimension n. From here on [ = 1. If all the components of o« = 1 are positive, then
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Ty C D. Otherwise, T\ N D = ). From here on a € P{®1"} (see the definitions
before Theorem 2.2).

Using the coordinates (ug,...,u,+1) on the torus Ty = {u; = 0} we obtain:
TxNW = {Qq4 = 0}, where for the power series F = 5 Fo* 28 ... 2F» we denote

Qo = Zker{o,m,n}(F) Fkugz(k)uga(k) . ~uf;f11(k). So T\ N'W is the zero level set of

the Laurent polynomial Q. Using results of [5,6] we obtain:
X(TxNW) = (=1)""'nl V,,(A(Qa)),

where A(-) denotes the Newton polyhedron. Since the polyhedra A(Q,) and T, =
F,&O’l’“""} (F) are isomorphic as subsets of integer lattices, their volumes are equal:
Vi(A(Qu)) = Va(Tyw). In a neighbourhood of a point & € T\ N W one has ¥ =
auf @) where a(x) # 0. Therefore (Sl 2,2 (t) = 1 = t*0/%%0) Thus one has:

[ Golana® = (= GBI )
T\NnW
Multiplying (5) for all strata Th C D of dimension n we get (1).
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