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Abstract: Parkinson’s disease may be caused by a single pathogenic variant (monogenic) in 5–10%
of cases, but investigation of these disorders provides valuable pathophysiological insights. In this
review, we discuss each genetic form with a focus on genotype, phenotype, pathophysiology, and the
geographic and ethnic distribution. Well-established Parkinson’s disease genes include autosomal
dominant forms (SNCA, LRRK2, and VPS35) and autosomal recessive forms (PRKN, PINK1 and
DJ1). Furthermore, mutations in the GBA gene are a key risk factor for Parkinson’s disease, and
there have been major developments for X-linked dystonia parkinsonism. Moreover, atypical or
complex parkinsonism may be due to mutations in genes such as ATP13A2, DCTN1, DNAJC6, FBXO7,
PLA2G6, and SYNJ1. Furthermore, numerous genes have recently been implicated in Parkinson’s
disease, such as CHCHD2, LRP10, TMEM230, UQCRC1, and VPS13C. Additionally, we discuss
the role of heterozygous mutations in autosomal recessive genes, the effect of having mutations
in two Parkinson’s disease genes, the outcome of deep brain stimulation, and the role of genetic
testing. We highlight that monogenic Parkinson’s disease is influenced by ethnicity and geographical
differences, reinforcing the need for global efforts to pool large numbers of patients and identify
novel candidate genes.

Keywords: monogenic; Parkinson’s disease; genomics; genetic testing; deep brain stimulation

1. Introduction

Parkinson’s disease (PD) is a common neurodegenerative disorder in which we have
an incomplete understanding of the molecular and cellular disease basis and no currently
available disease-modifying therapy. A key strategy to understanding the pathogenesis
of PD is to investigate the underlying genetic basis. Approximately 5–10% of PD can be
attributed to monogenic forms. Other causes are related to a combination of complex
genetic susceptibility and environmental factors. For the monogenic forms, there are sev-
eral well-established genes, with autosomal dominant (SNCA, LRRK2, and VPS35) and
autosomal recessive (PRKN, PINK1, DJ1) modes of inheritance. Additionally, there is X-
linked inheritance (X-linked dystonia-parkinsonism) and atypical or complex parkinsonian
phenotypes due to mutations in the ATP13A2, DCTN1, DNAJC6, FBXO7, PLA2G6, and
SYNJ1 genes. Moreover, there are numerous recently reported genes, including CHCHD2,
LRP10, TMEM230, UQCRC1, and VPS13C. In some cases, the same gene can be linked with
Mendelian forms of PD as well as increased susceptibility (such as SNCA and LRRK2). Fur-
thermore, mutations in genes such as glucocerebrosidase (GBA) fall between a monogenic
cause and a genetic susceptibility factor [1]. Further recent discoveries have focused on
the clinicogenetic and pathological findings, which will be discussed. Pathophysiological
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insights will be discussed briefly (for a more detailed discussion, see elsewhere [2]), and a
discussion of novel therapeutic candidates can be found elsewhere [3,4]. Recent hot topics
include the understanding of the effect of heterozygous variants in recessive PD genes,
outcomes in individuals who co-inherit mutations in both GBA and LRRK2, the effect of
the underlying genetic form on outcomes from deep brain stimulation, and regional and
ethnic differences for mutations in PD genes. In this review, we provide a concise summary
of the monogenic origin of PD with a focus on these recent developments.

2. Autosomal Dominant Forms
2.1. SNCA
2.1.1. Genotype-Phenotype

SNCA mutations cause autosomal dominant PD and can be due to different mutation
types, including missense variants and multiplications (Table 1). So far, there have been
eight missense variants identified as causing autosomal dominant PD: p.A30G, p.A30P,
p.E46K, p.H50Q, p.G51D, p.A53E, p.A53T, and p.A53V. An MDSGene review identified
phenotypic differences between some of these missense variants, with the most common
mutation p.A53T having an early age at onset compared to p.A30P and p.E46K [5]. How-
ever, these findings are uncertain given that the number of cases for SNCA missense
variants other than p.A53T is small [5]. Of note, there is evidence that the p.H50Q variant
is not enriched in cases versus controls and thus may not have sufficient evidence to be
considered pathogenic [6]. The most recently reported mutation, p.A30G, was found in
five affected individuals from three Greek families [7]. The phenotype results in a widely
ranging age at onset, an initial good response to medication (Table 2), prominent motor
fluctuations, and a range of non-motor manifestations such as orthostatic hypotension,
REM-behavior sleep disorder, cognitive impairment, and psychiatric manifestations [7].

Duplications and triplications of the SNCA gene can also cause PD. SNCA duplications
cause a phenotype resembling idiopathic PD, whereas SNCA triplications cause rapidly
progressive PD with earlier onset and extensive Lewy Body pathology. A recent study
highlighted the correlation between SNCA dosage and age at onset, with copy number 3
(heterozygous SNCA duplication) associated with a mean age at onset of 46.9 ± 10.5 years
versus copy number 4 (homozygous SNCA duplication, or SNCA triplication) associated
with a mean age at onset of 34.5 ± 7.4 [8].

Overall, duplications are more common than missense mutations or triplications [5].
The different mutation types can be stratified according to the age at onset, with early,
intermediate, and late onset for triplications, missense mutations, and duplications, respec-
tively [5].
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Table 1. Genotype-phenotype summary for monogenic forms of Parkinson’s disease.

Gene Mode of
Inheritance Frequency

Ethnic
Population

Distribution

Types of
Mutations

Clinical
Phenotype

Response to PD
Medication Response to DBS Pathological

Findings

SNCA AD

Rare, with a
frequency from

0.045% to 1.1% in
recent studies [9]

Majority
European, then

Asians and
Hispanics [5]

Missense,
duplications, and

triplications

Range of age at
onset, prominent

motor fluctuations,
range of

complications
including
cognitive

impairment and
psychiatric

manifestations

Initial good
response

Few examples,
appears to have a
good response for
duplications, poor

response for
missense
mutations

α-synuclein-
positive and LB
pathology [10]

LRRK2 AD

1% of PD but
higher in North
African Berber

Arab and
Ashkenazi Jewish

populations

The p.G2019S
mutation found in

Europeans with
high prevalence in

North African
Berbers and

Ashkenazi Jews

7 missense
variants described

Resembles
idiopathic PD

Vast majority
show a good
response to

levodopa [11]

DBS is effective
[12]

Most patients with
the p.G2019S

mutation show LB
pathology,

whereas this
finding is rare for
other mutations

VPS35 AD
Rare (overall
prevalence of

0.115%)

European, Asian,
Ashkenazi Jewish

[5]

1 missense
mutation
described,
p.D620N

Resembles
idiopathic PD

Good response
[11]

Small numbers
reported, at least 2

had a good
outcome [11]

Not available

PRKN AR

Most common
cause of EOPD,

12.5% of recessive
PD [13]

Majority Asian,
followed by

Caucasians and
Hispanics [14]

Missense
mutations,
frameshift
mutations,

structural variants

EOPD, lower limb
dystonia, absence

of cognitive
impairment

Good response to
levodopa therapy,

frequent motor
fluctuations, and

dyskinesias

Good outcome in
all patients [11]

Substantia nigra
pars compacta loss

with the notable
absence of LB

pathology



Genes 2022, 13, 471 4 of 25

Table 1. Cont.

Gene Mode of
Inheritance Frequency

Ethnic
Population

Distribution

Types of
Mutations

Clinical
Phenotype

Response to PD
Medication Response to DBS Pathological

Findings

PINK1 AR

Second most
common cause of

EOPD, 1.9% of
recessive PD [13]

European, Asian,
may be frequent in
Arab Berber and

Polynesian
populations

[9,14,15]

Missense
mutations,
nonsense

mutations,
structural variants

EOPD, typical PD,
dyskinesias, dystonia,

and motor fluctuations
can occur

Vast majority
show a good
outcome [11]

Good or moderate
[11]

LB pathology may
or may not be
present in the

handful of autopsy
cases reported

PARK7 (DJ1) AR 0.16% of recessive
PD [13]

Most patients are
from Italy, Iran,
and Turkey [14]

Missense, splice
site, frameshift,
and structural

variants

EOPD

50% show a good
response, others

moderate or
minimal [11]

No reports
identified [11] LB pathology [16]

TAF1 X-linked

0.34 per 100,000 in
the Philippines,
Island of Panay
5.24 per 100,000

Philippines, high
prevalence on the
Island of Panay

Insertion of a
SINE-VNTR-Alu

type
retrotransposon in

intron 32 of the
TAF1 gene

Parkinsonism, dystonia

May be responsive
to levodopa,

particularly for
those with pure

parkinsonism [17]

DBS results in an
improvement in

dystonia and to a
lesser extent

parkinsonism [18]

Accumulation of
lipofuscin in the
neurons and glia,
but absence of LB

pathology

ATP13A2 AR Rare Spread across the
globe [19]

Frameshift,
missense, and

splice site
mutations [19]

KRS, clinical triad of
spasticity, dementia,

and supranuclear gaze
palsy [20],

facial-faucial-finger
mini-myoclonus [21],

other phenotypes
include HSP

Variable response
to levodopa [19]

May respond well,
variable [22]

Accumulation of
lipofuscin, absence

of LB pathology
[23]
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Table 1. Cont.

Gene Mode of
Inheritance Frequency Ethnic Population

Distribution
Types of

Mutations
Clinical

Phenotype
Response to PD

Medication Response to DBS Pathological
Findings

DCTN1 AD Rare Spread across the
globe

10 different
heterozygous

missense
mutations [19]

Perry
syndrome—rapidly

progressive
parkinsonism,

depression and mood
changes, weight loss,

and progressive
respiratory changes

May be levodopa-
responsive

No reports
identified

Selective loss of
putative respiratory

neurons in the
ventrolateral medulla

and in the raphe
nucleus, no or few

LBs, TDP43-positive
inclusions [24,25]

DNAJC6 AR Rare

Mainly found in
Middle Eastern

populations, although
families of European
origin have also been

found to harbor
DNAJC6 mutations

5 different
homozygous

mutations, largest
family carries a

nonsense
mutation [19]

Juvenile PD with
complicating features,

EOPD
Poor Good outcome

[26] No reports identified

FBXO7 AR Rare

Reported in the
Iranian, Turkish,

Italian, Dutch,
Pakistani, and

Chinese populations

Biallelic missense,
splice site, and

nonsense
mutations

Juvenile PD, EOPD,
parknsonian-pyramidal
syndrome, can overlap

with NBIA [27]

Variable No reports
identified No reports identified

PLA2G6 AR Rare

Various ethnic groups,
including Indian,

Pakistani, European,
Japanese, Chinese,

and Korean
populations

54 mutations
associated with

parkinsonism [28]

Adult-onset
dystonia-parkinsonism

with cognitive and
psychiatric symptoms
[28], other phenotypes

include NBIA

Variable May benefit from
DBS [28]

Mixed Lewy and Tau
pathology [28]
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Table 1. Cont.

Gene Mode of
Inheritance Frequency Ethnic Population

Distribution
Types of

Mutations
Clinical

Phenotype
Response to PD

Medication Response to DBS Pathological
Findings

SYNJ1 AR Rare

Reported in Iranian,
Italian, German,

Algerian, Senegalese,
and Chinese
populations

Missense,
frameshift

Parkinsonism in the
third decade of life,

complicating features
such as dystonia,

seizures, or cognitive
impairment

Poor No reports
identified No reports identified

CHCHD2 AD Rare Japanese and Chinese
patients

Missense, splice
site Typical PD Good No reports

identified

A brain autopsy
revealed widespread
α-synuclein pathology

with Lewy bodies
present in the

brainstem, neocortex,
and limbic regions

[29]

LRP10 AD Rare Italy, Taiwan
Loss of function

and missense
variants

Late onset PD, PD
dementia, dementia
with Lewy Bodies

[30–32]

Good [32]

Excellent response
for a patient with
a LRP10 and GBA

variant in trans
[33]

Severe LB pathology

TMEM230 AD Rare
Identified in a

Canadian Mennonite
family

Missense variant Typical PD
Responds to

levodopa in most
cases

No report
identified

Typical LB pathology
[34]

UQCRC1 AD Rare Taiwan, may not be in
European populations Missense variants Parkinsonism with

polyneuropathy Good No report
identified No report identified

VPS13C AR Rare Turkish, French Truncating
mutations

EOPD, rapid
progression,

complicating features
including dysphagia,
cognitive impairment,
hyperreflexia [19,35]

Initial good
response Poor Resembles diffuse LB

disease [35]

AD: autosomal dominant, AR: autosomal recessive, DBS: deep brain stimulation, EOPD: early-onset Parkinson’s disease, HSP: hereditary spastic paraplegia, KRS: Kufor Rakeb syndrome,
LB: Lewy body, NBIA: neurodegeneration with brain iron accumulation, PD: Parkinson’s disease, XDP: X-linked dystonia parkinsonism.



Genes 2022, 13, 471 7 of 25

2.1.2. Pathophysiology

The discovery of dominant mutations in SNCA as a cause of PD is consistent with
the critical role the α-synuclein protein plays in PD pathogenesis. The molecular effects
may vary according to the type of SNCA mutation [36]. The p.A30P, p.A53T, and p.E46K
mutations all affect the N-terminal domain of the α-synuclein protein [36]. The p.A30P
and p.A53T mutations stimulate protofibril formation and smaller to larger aggregates [36].
The p.E46K mutation increases the N-terminal positive charge and enhances N-terminal
and C-terminal contacts, whereas the opposite is seen for the p.A30P and p.A53T muta-
tions [36]. A recent study showed impaired mitochondrial respiration, energy deficits,
vulnerability to rotenone, and altered lipid metabolism in dopaminergic neurons derived
from a patient with the p.A30P mutation in SNCA, with a comparison to gene-corrected
clones, highlighting the numerous effects of these mutations [37].

Table 2. Levodopa-responsiveness stratified according to Parkinson’s disease monogenic forms.

Good Response to Levodopa Poor, Variable, or Uncertain Response to Levodopa

SNCA TAF1

LRRK2 ATP13A2

VPS35 DCTN1

PRKN DNAJC6

PINK1 FBXO7

DJ1 PLA2G6

CHCHD2 SYNJ1

LRP10

TMEM230

UQCRC1

VPS13C

2.2. LRRK2
2.2.1. Genotype-Phenotype

At least seven missense variants in LRRK2 have been described as causing PD (p.N1437H,
p.R1441C/G/H, p.Y1699C, p.G2019S, and p.I2020T) [3]. On an individual level, LRRK2-PD is
clinically indistinguishable from idiopathic PD. However, as a group, it may be considered
as having a milder phenotype [38,39]. For example, LRRK2 mutation carriers are less likely
to have non-motor symptoms such as olfactory impairment, cognitive features, and REM-
behavior sleep disorder [39]. Furthermore, patients with LRRK2-PD may be susceptible to
certain cancers [40–42]. A very recent study provides evidence that LRRK2-PD is associated
with a significantly higher risk of stroke [43]. Additionally, recent evidence suggests that regu-
lar use of non-steroidal anti-inflammatory drugs may be associated with reduced penetrance
of PD in both pathogenic and risk variant carriers [44].

The most common and well-characterized LRRK2 mutation is the p.G2019S mutation.
It has a prevalence of 1% in the PD population with a high prevalence in North African
Berber Arab (39%) and Ashkenazi Jewish (approximately 18%) populations [45–47]. The
penetrance of this mutation is incomplete and variable and influenced by age, environment,
and genetic background [48].

Other mutations in LRRK2 may be relevant to different ethnic and regional populations.
For example, the p.R1441C variant has a founder effect in Basque populations and may be
higher in Southern Italy and Belgium [38]. The p.G2019S mutation is very rare in Chinese
populations, whereas the p.G2385R and p.R1628P variants are common (5–10% in patients,
2–5% in controls) [49–51].
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Recent reports suggest that loss of function variants in LRRK2 are not associated with
PD, arguing that haploinsufficiency is neither causative nor protective of PD [52].

2.2.2. Pathophysiology

All the definite LRRK2 mutations are in the catalytic domains and may result in
hyperactivation of the kinase domain [3,53]. LRRK2 is involved in a large array of cell
biological processes, and the disease mechanism may reflect important roles in microtubule
function and Rab proteins as phosphorylation substrates [2,54].

2.3. VPS35
2.3.1. Genotype-Phenotype

VPS35 is implicated in autosomal dominant PD [55,56], with the missense variant
p.D620N being the only mutation confirmed to date. This variant appears to be a muta-
tional hotspot identified in different ethnic populations [57]. The mutation has an overall
prevalence of 0.115% from the reported studies but may be as high as 1% in autosomal
dominant PD [57–59]. The phenotype resembles idiopathic PD with a median age at onset
of 49 years, levodopa responsiveness, and predominant tremor [5,58]. A recent study
suggests that disease progression may be slow, with minimal cognitive impairment even
after more than 10 years of disease onset [60].

2.3.2. Pathophysiology

VPS35 plays a critical role in endosomal trafficking, but there is emerging evidence
for a role in mitochondrial function [61]. The p.D620N mutation impairs the sorting
function of the retromer complex, resulting in a disturbance of maturation of endolyso-
somes and autophagy, membrane receptor recycling, and mitochondrial-derived vesicle
formation [2,59,62]. There may also be a role in neurotransmission and an interaction with
other genes causing monogenic PD (such as SNCA, LRRK2, and PRKN) [62].

3. Autosomal Recessive Forms
3.1. PRKN
3.1.1. Genotype-Phenotype

Mutations in PRKN are the most common cause of early-onset PD (EOPD), particularly
in European populations. A recent study by Lesage and colleagues demonstrated that
PRKN mutations account for 27.6% of autosomal recessive families [13]. They found that
the proportion of probands with PRKN mutations is higher the younger the age at onset
(AAO), as follows: 42.2% for AAO less than or equal to 20 years, 29% for 21 to 30 years,
13% for 31 to 40 years, but only 4.4% for 41 to 60 years [13].

A variety of different mutation types are described, including structural variants
(43.2%, including exonic deletions, duplications, and triplications), missense mutations
(22.3%), and frameshift mutations (16.5%) [14,63]. Deletions in exon 3 are the most common
mutation [14]. Furthermore, a deletion of the PRKN and PACRG gene promoter has also
been described in autosomal recessive PD [63].

PD-PRKN is characterized phenotypically by an early age at disease onset, lower limb
dystonia at presentation, absence of cognitive impairment, a good and sustained response
to levodopa, and frequent motor fluctuations and dyskinesias [64].

3.1.2. Pathophysiology

Mutations in PRKN and PINK1 likely disturb PINK1/parkin-mediated mitophagy,
which is the selective degradation of mitochondria, a function essential for mitochon-
drial homeostasis [65]. In brief, parkin is a E3 ubiquitin ligase that ubiquinates outer
mitochondrial membrane proteins such as mitofusin 1 and 2 [66]. PINK1 phosphorylates
parkin and maintains its mitochondrial stabilization and translocation, mediating parkin
activation [2,66].
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3.2. PINK1
3.2.1. Genotype-Phenotype

PINK1 is the second most common cause of autosomal recessive PD and is charac-
terized by typical Parkinson’s features such as tremor, bradykinesia, and rigidity, with a
median age of onset of 32 [14,67]. Additional phenotypic features include dyskinesias in
39%, dystonia in 21%, and motor fluctuations in 34%, with cognitive impairment and psy-
chosis occurring rarely (14% and 9%, respectively) [14]. The disease is slowly progressive,
with a sustained response to levodopa therapy, although with an increased tendency for
levodopa-induced dyskinesias.

The main mutation type was missense mutations (47.6%), then structural variants
(19.1%), followed by nonsense mutations (14.3%) [14]. The most common specific mutation
was a missense mutation, c.1040T>C (p.Leu347Pro) [14].

A recent paper suggests that the c.1040T>C mutation is frequently found in patients
from the Pacific Islands [15]. The allele frequency was particularly high in West Polynesians
(2.8%), which would translate to a homozygosity of 1 in 5000 people, suggesting that this
could have a major contribution to EOPD in the region [15].

3.2.2. Pathophysiology

See PRKN above.

3.3. PARK7
3.3.1. Genotype-Phenotype

Mutations in PARK7 can cause early-onset autosomal recessive parkinsonism, with at
least 20 mutations in the PARK7 gene identified. The majority of PARK7 mutation carriers
have EOPD (83%), whereas 13% have juvenile onset and 4% have late onset [14]. Recently,
a Turkish family with juvenile PD was found to have a novel deletion of the neighboring
genes of PARK7 and TNFRSF9, raising the possibility of TNFRSF9 as a disease modifier [68].

3.3.2. Pathophysiology

DJ-1 is ubiquitously expressed and is highly expressed in cells with high energy
demands. DJ-1 exerts an antioxidative stress function through scavenging reactive oxygen
species, regulation of transcription and signal transduction pathways, and acting as a
molecular chaperone and enzyme [69]. Mutations within the PARK7 gene substantially
affect the survival of cells in oxidative environments, potentially leading to PD [70,71].

4. X-Linked Dystonia-Parkinsonism
4.1. Genotype-Phenotype

X-linked dystonia-parkinsonism (XDP), also referred to as Lubag, is a movement
disorder initially described in Filipino males, caused by the insertion of a SINE-VNTR-
Alu (SVA)-type retrotransposon in intron 32 of the TAF1 gene [72,73]. The prevalence
is 0.34 per 100,000 in the Philippines, with a high prevalence on the Island of Panay of
5.24 per 100,000 [74]. It initially presents with dystonia, and predominantly involves the
craniocervical region that can become generalized at a later stage [72,75]. It may also
present with parkinsonism, or this can develop later in the disease course [75]. Therefore, it
can show longitudinal evolution from a hyperkinetic to a hypokinetic movement disorder.
Although it primarily affects males, manifesting female carriers have been reported. The
median age at onset is 40 years from a recent MDSGene review [72].

4.2. Pathophysiology

Recent evidence suggests that probands with XDP have reduced expression of the
canonical TAF1 transcript [73]. De novo assembly of multiple neuronal lineages derived
from pluripotent stem cells showed reduced expression due to alternative splicing and
intron retention close to the SVA [73]. CRISPR/Cas 9 excision of the SVA was able to
rescue TAF1 expression, providing evidence of abnormal transcription mediated by the
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SVA in the pathophysiology of XDP [73]. Further evidence suggests that a hexanucleotide
repeat within the SVA modifies disease expressivity, with the number of repeats showing
an inverse correlation with the age at onset [76].

5. Complex or Atypical Forms
5.1. ATP13A2
5.1.1. Genotype-Phenotype

Biallelic mutations in ATP13A2 have been found to cause a complex form of parkinson-
ism known as Kufor-Rakeb syndrome (KRS), characterized by juvenile onset parkinsonism,
cognitive impairment, and a supranuclear gaze palsy. ATP13A2 mutations can also cause a
range of phenotypes, including neuronal ceroid lipofuscinosis, hereditary spastic paraple-
gia, and juvenile amyotrophic lateral sclerosis.

Recently, perhaps the first postmortem study of KRS was reported [77]. This showed
accumulation of lipofuscin in the neurons and glia, but an absence of Lewy body pathology
as well as alpha-synuclein, TDP43, tau, and beta amyloid pathology. This provides evidence
for a pathological link with neuronal lipofuscinosis rather than the typical findings in
PD [77].

5.1.2. Pathophysiology

ATP13A2 mutations impair lysosomal and mitochondrial function. The mechanism
may involve impaired lysosomal polyamine transport resulting in lysosome-dependent
cell death [78].

5.2. DCTN1
5.2.1. Genotype-Phenotype

DCTN1-associated Parkinson-plus disorder, also called Perry syndrome, is a rare auto-
somal dominant disorder characterized by rapidly progressive parkinsonism, depression
and mood changes, weight loss, and progressive respiratory changes, chiefly tachypnoea
and nocturnal hypoventilation [79].

The disease is linked to mutations in exon 2 of the DCTN1 gene. The mean age at
onset of disease is 48 years (range: 35–61) and the mean duration to death is 5 years
since diagnosis, from either respiratory failure, sudden unexplained death, or suicide [80].
DCTN1 mutations have been associated with additional phenotypes, including distal spinal
and bulbar muscular atrophy and amyotrophic lateral sclerosis.

5.2.2. Pathophysiology

DCTN1 encodes p150glued, the major subunit of the dynactin complex which binds to
the motor protein dynein which binds directly to microtubules and different dynactin sub-
units [80]. Mutations in DCTN1 diminish microtubule binding and lead to intracytoplasmic
inclusions [81].

5.3. DNAJC6
5.3.1. Genotype-Phenotype

Biallelic mutations in DNAJC6 cause juvenile-onset, atypical parkinsonism with onset
during childhood and a very rapid disease progression with loss of ambulation within
10 years from onset [82,83]. Patients are poorly responsive to levodopa therapy and have
additional manifestations such as developmental delay, intellectual disability, seizures, and
other movement disorders (e.g., dystonia, spasticity, myoclonus). A minority of patients
have early-onset parkinsonism, with symptom onset in the third to fourth decade of life
and an absence of additional features [84]. These patients generally have a slower rate of
disease progression and a favorable response to levodopa therapy.
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5.3.2. Pathophysiology

DNAJC6 encodes for auxilin 1, a brain-specific form of auxilin and a co-chaperone
protein involved in the clathrin-mediated synaptic vesicle endocytosis. Auxilin deficiency
has been found in animal models to result in impaired synaptic vesicle endocytosis, and thus
negatively impacts synaptic neurotransmission, homeostasis, and signaling [85]. However,
the exact mechanism by which auxilin deficiency leads to dopaminergic neurodegeneration
and atypical neurological symptoms remains unclear.

5.4. FBXO7
5.4.1. Genotype-Phenotype

Mutations in FBXO7 cause autosomal recessive, juvenile/early-onset parkinsonian-
pyramidal syndrome (also called PARK15). Missense, splice site, and nonsense mutations
have been reported. The median age at onset was 17 years, with a range of 10 to 52 years.
The typical presenting symptoms were bradykinesia and tremor, and patients affected by
this atypical parkinsonism frequently show pyramidal signs, dysarthria, and dyskinesia.
Psychiatric manifestations, such as visual hallucination, agitation, aggression, disinhibi-
tion, and impulsive control disorder, are prominent in these patients as a complication of
dopaminergic therapy [86–89].

5.4.2. Pathophysiology

FBXO7 is expressed in various tissues, including the gray and white matters of the
brain. It directly interacts with PINK1 and parkin to engage in mitophagy [90]. The loss of
FBXO7 expression has been shown to lead to a significant inhibition of parkin recruitment
to depolarized mitochondria [90].

5.5. PLA2G6
5.5.1. Genotype-Phenotype

Mutations in PLA2G6 have been linked to a variety of neurological disorders, including
infantile neuroaxonal dystrophy, neurodegeneration with brain iron accumulation 2B, and
Karak syndrome. PLA2G6 mutations may also result in another phenotype—autosomal
recessive, adult-onset dystonia-parkinsonism (also called PARK14) [91].

Patients with PLA2G6-related parkinsonism first show symptoms in their childhood
or early adulthood, with an age at onset ranging from 8 to 36. In addition to parkinsonism,
the majority have dystonia [92,93]. Neuropsychiatric presentations such as depression,
psychosis, and cognitive decline are common. There is a good response to levodopa
therapy. Magnetic resonance imaging of the brain in most patients showed an absence of
iron deposition, and if iron was present, it was found in the substantia nigra or globus
pallidus, or both [94].

5.5.2. Pathophysiology

PLA2G6, a phospholipase 2, catalyzes the hydrolysis of the sn-2 acyl-ester bonds
in phospholipids to form arachidonic acid and other fatty acids. This is involved in the
phospholipid remodeling, apoptosis, and prostaglandin and leukotriene synthesis. The
exact mechanism of PLA2G6 in neurodegenerative diseases remains obscure, however
defective phospholipases have been implicated in the pathogenesis of neurodegenerative
conditions with iron dyshomeostasis.

5.6. SYNJ1
5.6.1. Genotype-Phenotype

Mutations in SYNJ1 are linked to autosomal recessive, early-onset Parkinson disease-
20 (PARK20). Individuals affected by SYNJ1-associated parkinsonism generally show
symptoms in the third decade of life, and manifest parkinsonism (tremor, bradykinesia)
with a poor response to levodopa treatment, as well as additional atypical signs such as
dystonia, seizures, cognitive impairment, and developmental delay [95].
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5.6.2. Pathophysiology

Synaptojanin-1 plays a crucial role in synaptic vesicle dynamics, including endocytosis
and recycling. SJ1-knockout mice display endocytic defects and a remarkable accumulation
of clathrin-coated intermediates [96]. Fasano et al. further showed that SYNJ1 is critically
involved in early endosome function, and that a loss of SYNJ1 leads to impaired recycling
of the transferrin receptor to the plasma membrane, highlighting the important role that
the autophagy-lysosome pathway plays in PD pathogenesis [92].

6. Recently Described Parkinson’s Disease Genes
6.1. CHCHD2
6.1.1. Genotype-Phenotype

Mutations in the CHCHD2 gene were linked to an autosomal dominant, late-onset
form of PD (PARK22) in the Japanese population in 2015 by Funayama et al., who reported
two missense mutations (p.T61I, p.R145Q) and a splice-site mutation (c.300 + 5G > A)
in the CHCHD2 gene [93]. Both missense mutations were also reported in the Chinese
population [97,98], although were not found in a study on a large cohort of PD patients
of western European ancestry [99]. Instead, three rare variants (p.A32T, p.P34L, and
p.I80V) in the CHCHD2 gene were found in the western European cohort, occurring in
highly conserved residues [99]. A homozygous missense mutation (p.A71P) has also been
reported in a 26-year-old Caucasian woman with recessive early-onset PD [100]. Patients
affected by CHCHD2-associated PD typically present with typical parkinsonian features,
with a significant response to levodopa.

6.1.2. Pathophysiology

CHCHD2 contains a mitochondrial-targeting sequence at the N-terminus and localizes
to the mitochondrial intermembrane space. Its close homologue CHCHD10 is enriched
at crista junctions of the mitochondria and is believed to be involved in oxidative phos-
phorylation or in maintenance of crista morphology [101]. The loss of CHCHD2 in flies
leads to mitochondrial and neural phenotypes associated with PD pathology and causes
chronic oxidative stress and thus age-dependent neurodegeneration in the dopaminergic
neurons [102].

6.2. LRP10
6.2.1. Genotype-Phenotype

Through genome-wide linkage analysis of an Italian family with autosomal dominant
PD, Quadri and colleagues implicated the LRP10 gene on chromosome 14 as a possible
causative disease gene [31]. This was verified through analysis of a larger cohort of patients,
where rare, potential mutations in LRP10 were found to be associated with PD and dementia
with Lewy bodies [31]. These findings were unable to be replicated in a study by Tesson
et al., whose co-segregation analysis did not support a causal role for LRP10 in PD [103].
Since then, several additional variants in the LRP10 have been identified in patients with PD,
progressive supranuclear palsy, frontotemporal dementia, and amyotrophic lateral sclerosis,
although the correlation of LRP10 variants with the development of α-synucleinopathies
and other neurodegenerative diseases has been debated [104–106].

6.2.2. Pathophysiology

LRP10 is a single-pass transmembrane protein and a member of a subfamily of LDL
receptors. Grochowska et al. discovered that LRP10 expression was high in non-neuronal
cells but undetectable in neurons, and that it was present in the trans-Golgi network, plasma
membrane, retromer, and early endosomes in astrocytes [107]. They suggested that LRP10-
mediated pathogenicity involves the interaction of LRP10 and SORL1 in vesicle tracking
pathways, as they were shown to co-localize and interact, and that disturbed vesicle
trafficking and loss of LRP10 function were crucial in the pathogenesis of neurodegenerative
diseases [107].
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6.3. TMEM230
6.3.1. Genotype-Phenotype

The link with PD was first proposed in 2016 by Deng et al., who investigated a large
Canadian Mennonite pedigree with autosomal dominant, typical PD, and discovered a
p.R141L mutation in TMEM230 which reportedly fully co-segregated with disease [34].
The same pedigree was investigated by Vilarino-Guell and colleagues, who identified a
heterozygous missense variant in DNAJC13 (p.N855S) which did not fully co-segregate
with disease [108]. Whilst TMEM230 variants have been identified in further studies on
PD patient groups, other follow-up genetic studies have failed to detect PD-associated
TMEM230 variants, and whether evidence exists for ‘proof of pathogenecity’ has been
debated [109,110].

6.3.2. Pathophysiology

TMEM230 is a transmembrane protein with ubiquitous expression. It is a trafficking
protein of secretory and recycling vesicles, including neuronal synaptic vesicles. Expression
of mutant TMEM230 was found to lead to increased α-synuclein levels [34]. Loss of function
of TMEM230 impairs secretory autophagy, Golgi-derived vesicle secretion, and retromer
trafficking [111].

6.4. UQCRC1
6.4.1. Genotype-Phenotype

An association between UQCRC1 mutations and familial PD was first reported by
Lin et al. in 2020, who identified a novel heterozygous mutation (p.Y314S) in the UQCRC1
gene which co-segregated with disease in a Taiwanese family with autosomal dominant
parkinsonism with polyneuropathy [112]. An additional variant in UQCRC1 (p.I311L) also
co-segregated with disease [112]. In a subsequent study, no common variant was found to
be significantly associated with PD in the European population [113].

6.4.2. Pathophysiology

UQCRC1 is a core component of complex III in the respiratory chain. In Drosophila
and mouse models, URCRC1 p.Y314S knock-in organisms showed dopaminergic neuronal
loss, age-dependent locomotor deficits, and peripheral neuropathy [112]. Disruption of
the Uqcrc1 gene in mice causes embryonic lethality [114], and deficiency of Uqcrc1 in
Drosophila increases the cytochrome c in the cytoplasmic fraction and activates the caspase
cascade, thus causing a reduction of dopaminergic neurons and neurodegeneration [115].

6.5. VPS13C
6.5.1. Genotype-Phenotype

Lesage et al. first reported five truncating mutations in VPS13C in three unrelated
PD patients [35]. These probands were either homozygous or compound heterozygous
and had a distinct phenotype of EOPD which progressed rapidly and showed a good but
transient initial response to levodopa treatment. Additional variants in VPS13C have been
identified in further reports on autosomal recessive, early-onset forms of parkinsonism,
although not in late-onset PD [116].

6.5.2. Pathophysiology

VPS13C is part of the family of conserved VPS13 proteins and behaves similarly to
VPS35 (see above). VPS13C is a phospholipid transporter and localizes to the contact sites
between the endoplasmic reticulum (ER) and late endosome [117]. VPS13 proteins are
thought to mediate endoplasmic reticulum-phagy at late endosomes [117].

7. Rare, Atypical, and Unconfirmed Forms

There are many genes that can cause parkinsonian phenotypes, and comprehensive
lists can be found elsewhere, with over 70 different genes causing early-onset parkinsonism
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or parkinsonism as part of a complex neurological disorder [118]. Clinicians should be
especially vigilant for treatable causes such as Wilson’s disease [118]. Mutations in GCH1
can cause dopa-responsive dystonia and PD and should also be considered. POLG muta-
tions can cause movement disorders including parkinsonism and dystonia. Mutations in
PTRHD1 can cause autosomal recessive PD with intellectual impairment but are rare [119].
RAB39B mutations can cause X-linked intellectual impairment and parkinsonism with
classic Lewy body pathology on autopsy studies [120]. Several additional reported genes
have not been independently replicated and perhaps require further validation before being
considered PD genes, such as DNAJC13, EIF4G1, GIGYF2, HTRA2, and UCHL1 [121].

8. Risk Variants versus Monogenic Forms

When discussing genetic risk in PD, one should differentiate risk variants from
causative monogenic ones. Risk variants are relatively common, each with an individual
small effect size, yet collectively they significantly increase disease risk. A recent large
meta-analysis of genome-wide association studies (GWAS) identified 90 such genome-wide
risk alleles that collectively account for 16–36% of PD heritability [122]. A causative mono-
genic variant, on the other hand, is a rare variant with a large effect size, that is considered
the causative culprit of the disease. Complicating this oversimplified dichotomic differ-
entiation is the fact that autosomal dominant forms of monogenic PD have incomplete
age-dependent penetrance to a variable extent, which may be affected by the causative
gene and the specific pathogenic variant as well as the patient’s ethnicity. Moreover, a
complex interplay between monogenic causative variants and risk variants may affect
disease penetrance, as exemplified by a recent study which showed that disease penetrance
of the LRRK2 variant p.G2019S is modified by a polygenic risk score [45].

9. GBA Variants

A notable issue is the one related to pathogenic GBA (or GBA1) variants, which consti-
tute the most common genetic risk factor for PD. These variants are found in approximately
8.5% of PD patients [123]. However, this number varies significantly across different ethnic
groups, ranging between 2.3% and 12% in populations of non-Ashkenazi Jewish origin
to 10–31% in Ashkenazi Jews [124]. GBA variants were more common in patients with
early-onset disease (<50 years), more rapid development of dementia, and a more aggres-
sive motor course [125,126]. Pathogenic variants in this gene have a low, age-dependent
penetrance in PD, which is highly variable across different reports, ranging between 8%
and 30% by age 80 years [127–130]. In a recent study, the authors used a kin-cohort design
to evaluate the penetrance of pathogenic GBA variants in a cohort of unselected PD patients,
showing that the risk to develop disease by age 60, 70, and 80 years was 10%, 16%, and
19%, respectively [131]. This study also found a trend towards a greater PD penetrance
for severe pathogenic variants compared to mild pathogenic variants in the GBA gene,
although this difference did not reach statistical significance [131].

Adding to the complexity of GBA-associated PD, a recent study demonstrated an
association between PD polygenic risk score and both penetrance and age at onset in
individuals carrying a disease-associated GBA variant [132]. Another study examined
PD clustering in eight families of non-Parkinsonian GBA-p.N370S homozygote Gaucher
patients, showing that all PD cases in these families stemmed from only one of the proband’s
parents, further highlighting the potential role of genetic modifiers in PD risk among carriers
of GBA variants [133].

Furthermore, a recent study showed that both pathogenic (i.e., associated with Gaucher
disease) and non-pathogenic (i.e., not associated with Gaucher) variants in GBA are com-
mon in PD, with a more aggressive course in terms of dementia and motor progression [126].

In summary, GBA variants are a common risk factor for PD. They should be clearly
differentiated as such from monogenic causes for PD, to avoid ambiguity and terminological
and conceptual perplexity when discussing PD risk with patients and clinicians.
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10. Genetic Testing in Parkinson’s Disease

Genetic workup is not routinely performed as part of PD evaluation, and movement
disorder specialists only very occasionally suggest genetic testing to PD patients. This is
due to a combination of factors related to cost, lack of physician’s perceived impact on
patient’s management, and physician’s discomfort regarding test selection and its results or
their impact on the patients and their family members [134]. The field of genetic testing in
PD is rapidly evolving during recent years, due to the better availability of next-generation
sequencing (NGS)-based molecular tests and the initiation of genetic diagnosis-based
interventional clinical trials.

10.1. Who Should Be Offered Genetic Testing in Parkinson’s Disease?

Traditionally, a monogenic cause would most probably be suspected, and therefore a
genetic test considered, in patients with early-onset PD before age 50 years, and particularly
before age 40 years. Furthermore, although polygenic risk and multifactorial inheritance
would probably explain most cases with familial clustering of PD, a striking familial history,
either of autosomal dominant or autosomal recessive pattern, is yet another clue for a
possible monogenic cause that may suggest that a genetic test should be considered. Ethnic
origin may also affect the decision to perform genetic testing, for example in patients of
Ashkenazi Jewish or African Berber origin. As opposed to this traditional case-by-case
approach, as molecular testing is becoming more available, a recently suggested permissive
approach supports a more widespread use of genetic testing in PD to improve patient
care, to allow inclusion of patients in molecular diagnosis-based clinical trials, and to
benefit therapeutic insights and strategies for the larger PD population, including patients
with idiopathic disease [135]. This notion can tremendously benefit PD patients both
individually and collectively. However, it should be backed up by thorough knowledge
of the different evolving aspects of genetic testing in PD, and by an individually tailored
explanation to patients and potential carriers in their family prior to testing as well as
when returning them the test results, regarding the test and the potential implications of its
results for them and for their family members.

10.2. The Implications of a Genetic Diagnosis in Parkinson’s Disease

A genetic diagnosis may have significant implications for PD patients, both for ex-
pected disease course and response to therapeutic interventions. As mentioned, several
monogenic forms are expected to respond well to levodopa medication (e.g., PRKN),
whereas others are poorly responsive (e.g., DNAJC6) (Table 2). Additionally, a recent
study found that the rate of cognitive decline for GBA mutation carriers after bilateral
subthalamic nucleus deep brain stimulation (STN-DBS) is higher than that of carriers of
PRKN and LRRK2 mutations and those without identified disease-associated pathogenic
variants [136] (Figure 1A). These findings were further corroborated by a new study which
suggests that STN-DBS is associated with a greater rate of cognitive decline in GBA muta-
tion carriers [137]. A recommendation that arose from this study is that PD patients should
be screened for GBA pathogenic variants prior to DBS surgery, and that carriers of such
variants should be counseled on the greater risk of cognitive decline [137].

For SNCA-PD, the response to DBS may also differ according to the type of mutation
(Figure 1B). A recent report of four patients with SNCA mutations showed a good response
in the three patients with duplications and a poor response in the patient with a missense
mutation (p.A53E) [138] (Table 1).
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Figure 1. (A) Increasing cognitive decline in GBA carriers versus PRKN, LRRK2, and those without
disease-associated variants. (B) Outcome of deep brain stimulation stratified according to Parkinson’s
disease monogenic forms.

In addition to implications for DBS, the emerging importance of a genetic diagnosis in
PD is also related to new gene-based targeted approaches that are being developed in recent
years [3], since a specific molecular genetic diagnosis may allow inclusion in interventional
clinical trials that target a genetically determined subgroup of PD patients. Moreover, a
genetic diagnosis for additional family members at risk of developing PD allows for a more
accurate estimation of recurrence risk and informs genetic counseling and family planning.
Moreover, some patients are greatly distressed just by the uncertainty regarding the cause
for their condition and a genetic diagnosis may bring them great relief.

10.3. Challenges in Genetic Testing

The challenges in genetic testing in PD are related to the patient, the choice of genetic
test, and the test results. Patients may be reluctant to perform genetic testing due to
different reasons, including a lack of perceived benefit, concern regarding the implications
of the test results for them or their family members, or cost. Genetic counseling prior to
performing a genetic test is non-directive, meaning that patients or their relatives cannot be
directed to have a genetic test, however it should include a thorough, individually tailored
explanation regarding the reason why a genetic test is offered, the test itself, its advantages
and limitations, and the potential implications of the test results for the patient and their
family members. This type of pre-test discussion with the patient is necessary to address
the patient’s concerns and to ensure that they are given all the required information to
make a knowledge-based decision on whether to proceed with genetic testing or not.

Many types of genetic tests are available in clinical and research settings, ranging from
focused testing for a single gene or a specific variant, through variant panels and gene
panels, to exome or genome sequencing. Due to the increase in availability and decrease in
cost of NGS-based tests, the traditional approach of testing one gene at a time was largely
replaced in recent years with broader tests, such as gene panels and exome or genome
sequencing, except when a known pathogenic variant has been previously found in the
patient’s family, or in uncommon cases where a very high suspicion is raised for a specific
gene. When choosing to use a gene panel, one should consider the considerable variability
in gene content of different panels. A recent study evaluated the types of clinical genetic
tests that are used in PD, revealing notable differences in gene panel size, ranging from 5
to 62 genes. That study showed that five genes were included in all panels (SNCA, PRKN,
PINK1, PARK7 (DJ1), and LRRK2), while VPS35 and GBA were only variably included,
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and that the differences between panels were mainly the result of the variable inclusion
of genes associated with atypical parkinsonism and dystonia disorders, or genes with
an uncertain association with PD [139]. The selected gene panel should ideally include
all established genes for PD with both sequence and deletion/duplication analysis. In
cases where the patient presents a combined or an atypical phenotype, a broader approach
should be considered, either by using a more comprehensive gene panel or by a genomic
analysis with exome or genome sequencing, depending on the specific clinical indicators.
Notable limitations that should be taken into consideration are the ones associated with
the GBA gene, for which a related pseudogene and structural variations may complicate
the detection of pathogenic variants. A novel approach is to use long-read sequencing
to assess this gene, with the GridION nanopore sequencing platform recently used in a
New Zealand cohort of patients [139]. Another factor to consider is the cost of genetic tests,
which might not be covered by the patient’s insurance and therefore may inevitably affect
decisions in the molecular workup in some cases. In summary, the decision regarding
which genetic test should be used depends on case-specific factors and requires to consider
the different types of tests available, their advantages and limitations, and their suitability
for each individual patient.

11. Role for Heterozygosity in Autosomal Recessive Parkinson Genes

The possibility that monoallelic pathogenic variants in autosomal recessive PD genes
constitute a risk factor for PD is controversial, and conflicting evidence regarding this issue
has been reported.

11.1. PRKN Heterozygotes

A recent population-based study analyzed data of 164 confirmed heterozygous PRKN
mutation carriers and 2582 controls from South Tyrol in Northern Italy. This study showed
a significantly higher number of carriers than controls with a reported akinesia-related
phenotype based on a validated PD screening questionnaire [140]. Another study evaluated
PRKN as a risk factor for PD in three large independent case-control cohorts and revealed
a 1.55-fold risk increase in heterozygous carriers, who also had a younger age of disease
onset [141]. However, ~70% of potentially monoallelic cases were not assessed for a second
PRKN mutation. To further address this, the authors conducted a meta-analysis of available
cohorts and studies of individuals from European ancestry, demonstrating a significant
1.65-fold increase in PD risk in monoallelic PRKN mutation carriers. Nevertheless, when
excluding from the analysis studies which did not search for biallelic carriers and those
that focused on early-onset PD, no association between monoallelic PRKN mutation and
disease risk was found, highlighting the importance of confounding factors that might bias
this association [141]. In a recent study, full sequencing and CNV analysis of PRKN in 2809
PD patients and 3629 controls revealed no association between all types of heterozygous
PRKN variants and PD risk [142].

11.2. PINK1 Heterozygotes

Several studies have previously suggested that heterozygous PINK1 variants may act
as a risk factor for late-onset PD. Of note, one study in a large German family suggested
that heterozygous PINK1 mutations may increase the risk for the development of at least
subtle motor and non-motor signs of PD [143]. Puschmann et al. investigated the functional
effects of the heterozygous PINK1 p.G411S variant and concluded that it acts as a risk
factor for PD, which confers its effect by a partial dominant-negative mechanism [144].
A recent comprehensive analysis contradicted these studies. By harnessing combined
data from several large datasets totaling 13,708 cases and 362,850 control individuals, this
investigation found no evidence of association between heterozygous PINK1 mutations
and PD risk [145], further highlighting the complexity and controversy in this field.
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11.3. Conclusion on Heterozygous Carriers

The evidence for the role of heterozygous carriers is conflicting—some studies which
were based largely on findings in specific cases or families suggested a possible association,
while newer studies that utilized large datasets mostly refuted this possibility.

A hidden trans-acting pathogenic variant on the other allele of the gene may at least
partly explain these contradictory findings. This may occur in cases where the chosen
methodology could not identify these variants, for example when a deletion/duplication
analysis was not performed or when the second allele harbored a disease-associated
non-coding, structural, or mosaic variant which the molecular testing strategy that was
used could not reveal. In these cases, an apparent association between a monoallelic
variant and disease may be erroneously concluded. This scenario, however, would not
explain cases of families with a clear autosomal dominant inheritance pattern across
several generations. Another possible explanation for the conflicting evidence may be that
monoallelic deleterious variants in autosomal recessive Parkinson-related genes confer
an increased disease risk to some extent as part of a multifactorial inheritance, where
each individual, family, or ethnic group are affected by a certain genetic background
and/or environmental factors. In this potential scenario, while a monoallelic pathogenic
variant may indeed increase the risk for PD, the threshold for disease expression may vary
substantially between different individuals, families, or ethnic groups, depending on other
genetic variants and environmental factors. This might be missed when analyzing very
large, grouped datasets or data that are limited to specific ethnic groups. Other potential
factors that might contribute to those contradictory findings may stem from data collection-
related biases, such as a recall bias or cases of subtle signs of parkinsonism in reportedly
healthy individuals which are considered in the analysis as unaffected controls.

12. Dual LRRK2 and GBA Mutation Carriers

It would be anticipated that having a mutation in both LRRK2 and GBA would have
an added deleterious effect, as suggested by laboratory studies [146,147]. However, a
recent longitudinal study of a large PD sample measuring progression using the Montreal
Cognitive Assessment and Movement Disorders Society—Unified Parkinson Disease Rating
Scale–Part III, showed that patients with both the p.G2019S mutation and GBA-PD had a
slower rate of decline than those with GBA-PD alone, which was no different from LRRK2-
G2019S alone [148]. Similarly, a retrospective observational study of Ashkenazi Jewish
patients revealed that patients with mutations in LRRK2 and GBA (described by the authors
as “GBA-LRRK2-PD”) were less frequently affected by dementia, probable REM-behavior
sleep disorder, and psychosis, compared to other groups (GBA-PD, LRRK2-PD, mutation-
negative PD) [149]. This raises the possibility of a protective effect of having the LRRK2
p.G2019S mutation in GBA mutation carriers [149].

13. Conclusions

There have been major advances in research into monogenic PD in recent years.
There have been multiple PD gene discoveries, although we highlight the importance of
independent validation of these findings. There have been greater insights into genotype–
phenotype relationships, and laboratory studies have translated the genetic discoveries
into an improved understanding of the pathophysiological mechanism underlying PD.

It has become apparent that there are major ethnic and regional differences in the
distribution of mutations in PD genes. There has been further evidence on the role of
heterozygous carriers in autosomal recessive PD genes, and the effect of having mutations
in both LRRK2 and GBA in the same individual. Additionally, there is a suggestion that the
underlying monogenic cause may influence the disease course as well as the response to
levodopa and DBS.

Advances in genomic technology provide individuals with PD with greater access
to genetic testing through both clinical and research pathways. Global efforts will play a
key role in exploiting this genomic data. Worldwide studies can pool many patients to
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identify rare genetic causes of PD and can also be used to attempt to replicate important
genetic discoveries. Furthermore, they offer greater representation of underrepresented
populations from different ethnic groups and geographic regions. There are several major
global projects to identify new disease genes in PD, including established initiatives such
as the International Parkinson Disease Genomics Consortium [150] and newer initiatives
such as the Global Parkinson’s disease genetics program (GP2) [151].

PD currently remains an incurable disorder but advances in our understanding of the
genetics of PD may inform our understanding of the pathophysiology and thus help with
efforts to develop targeted therapies.
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