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Abstract. An integral domain without irreducible elements is called an an-
timatter domain. We give some monoid domain constructions of antimatter
domains. Among other things, we show that if D is a GCD domain with quo-
tient �eld K that is algebraically closed, real closed, or perfect of characteristic
p > 0, then the monoid domain D[X;Q+] is an antimatter GCD domain. We
also show that a GCD domain D is antimatter if and only if P�1 = D for each
maximal t-ideal P of D.

Let D be an integral domain with quotient �eld K. By an irreducible element
or atom of D we mean a nonunit x 2 D? = D � f0g such that x = uv, u; v 2 D,
implies u or v is a unit. The domain D is atomic if each nonzero nonunit of
D is expressible as a �nite product of atoms. However, it may happen that a
domain does not have any atoms. Such domains, called antimatter domains, were
introduced by Coykendall, Dobbs, and Mullins [5]. A somewhat obvious example
of an antimatter domain is a valuation domain whose maximal ideal is not principal
[5, Proposition 1]. Another example is a �eld which, ironically, is also an example of
an atomic domain. It is patent that if D is an antimatter domain, or any integral
domain for that matter, then D[X] is not antimatter, as X + r is an atom in
D[X] for all r 2 D. On the other hand, the monoid domain C[X;Q+], where Q+
is the monoid of nonnegative rationals under addition, is an antimatter domain
(Theorem 1). But Q[X;Q+] is not antimatter as X � 2 is irreducible. (If X � 2
properly factors in Q[X;Q+], then X � 2 properly factors in some Q[X1=n] since
Q+ is locally cyclic (that is, each �nitely generated submonoid of Q+ is contained
in a cyclic submonoid of Q+). But by Eisenstein�s Criterion, X � 2 = (X1=n)n � 2
is irreducible in Q[X1=n]).

The purpose of this paper is to explore the following question. For an integral
domain D and torsionless cancellative monoid S (always written additively), when
is the monoid domain D[X;S] antimatter? Certainly, if D[X;S] is antimatter,
then D and S must be antimatter (a monoid S is antimatter if it has no atoms
where atoms are de�ned in the obvious way). However, as both Q and (Q+;+) are
antimatter while Q[X;Q+] is not, the converse is false. In this note we show that
if D is an antimatter GCD domain with quotient �eld K algebraically closed, real
closed, or perfect of characteristic p > 0, (Theorems 1, 2, and 5), then D[X;Q+] is
an antimatter domain. Our standard references are [6], [7], and [10].

In the case where D = K is an algebraically closed or real closed �eld, we
can show that D[X;S] is antimatter in slightly more generality than the case S =
(Q+;+). Let us call a monoid S pure if (1) S is (order-isomorphic to) a submonoid
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of (Q+;+), (2) S is locally cyclic, and (3) for each s 2 S, there is a natural number
n > 1 (depending on s) with s=n 2 S. We remark that in the presence of (2) and
(3), condition (1) can be replaced by either S is totally ordered and each s � 0 or
that S is reduced, cancellative, and torsionless. Examples of pure monoids include
(Q+;+) and (Z+T ;+) where Z

+
T = fn=tjn 2 Z+; t 2 Tg with T a multiplicatively

closed subset of Z+ = f0; 1; 2; � � � g. We will consider a pure monoid S to actually
be a submonoid of (Q+;+). With this in mind, note that if s1; s2 2 S with s1 < s2,
then s2 � s1 2 S. Indeed, hs1; s2i � hsi for some s 2 S; so s1 = ns and s2 = ms
where necessarily n < m. Then s2 � s1 = ms� ns = (m� n)s 2 S. Observe that
for S pure and K any �eld, K[X;S] is a nonatomic Bezout domain. For by [6,
Theorem 13.6] a monoid domain K[X;S] over a �eld K and monoid S is Bezout
if and only if S is isomorphic to a submonoid of (Q;+). And if S is pure and
0 6= s 2 S, then s=n 2 S for some n > 1, so Xs = (Xs=n)n and hence K[X;S] does
not satisfy ACCP, or equivalently since K[X;S] is Bezout, is not atomic.

Theorem 1. Let K be an algebraically closed �eld and S a pure monoid. Then
K[X;S] is an antimatter Bezout domain.

Proof. We have already remarked that K[X;S] is Bezout. Let f be a nonzero
nonunit of K[X;S]; so f = k1Xs1 + � � �+ knXsn where 0 � s1 < � � � < sn and each
ki 6= 0. Now f = Xs1(k1 + k2X

s2�s1 + � � �+ knXsn�s1) where as previously noted
si � s1 2 S. First, suppose that s1 > 0. Choose n1 > 1 with s1=n1 2 S. Then
Xs1 = (Xs1=n1)n1 and hence f is not irreducible. Next suppose that s1 = 0, so
n > 1. Choose q 2 S with hs1; � � � ; sni � hqi. Then f factors into linear factors in
K[Xq] since K is algebraically closed. Now a typical linear factor of f in K[Xq]
has the form `0 + `1X

q, `0; `1 2 K with `1 6= 0. Choose m > 1 with q=m 2 S.
Then `0 + `1Xq = `0 + `1(X

q=m)m and is not irreducible in K[Xq=m]. Thus f is
not irreducible in K[X;S]. So K[X;S] is an antimatter domain. �

Recall that a �eld K is real closed if K is formally real (that is, �1 is not a
sum of squares) and K has no proper formally real algebraic extensions. Using
Zorn�s Lemma, every formally real �eld F is contained in a real closed �eld K that
is algebraic over F . Also, if K is a real closed �eld, then K(

p
�1) is algebraically

closed. If K is formally real, then K(X) is again formally real for any set X of
indeterminates. Thus K(X) is contained in a real closed �eld. So there are plenty
of real closed �elds in addition to R. For results on real closed �elds, the reader is
referred to [9, Section 5.1].

Theorem 2. Let K be a real closed �eld and S a pure monoid. Then K[X;S]
is an antimatter Bezout domain.

Proof. We have already remarked that K[X;S] is Bezout. Let f = k1Xs1 +
� � � + knXsn ; s1 < � � � < sn; ki 6= 0, be a nonzero nonunit of K[X;S]. As in the
proof of Theorem 1, f is not irreducible if s1 > 0. So suppose that s1 = 0 and
hence n > 1. Choose q 2 S with hs1; � � � ; sni � hqi and m > 1 with q=m 2 S.
Choose m0 > 1 with q=mm0 2 S. Then f as a polynomial in K[Xq=mm0

] has
deg f � mm0 > 2. But over a real closed �eld an irreducible polynomial has degree
one or two. Hence f is not irreducible in K[Xq=mm0

] and hence not irreducible in
K[X;S]. �

We want to extend Theorems 1 and 2 to the case where D is a GCD domain.
Thus it is of interest to know when a GCD domain is antimatter. In [5, Proposition
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2.1] it was shown that a valuation domain (V;M) is antimatter if and only ifM�1 =
V , that is, M is not principal. We generalize this result. For a nonzero (fractional)
ideal I of a domain D recall that Iv = (I�1)�1 where I�1 = [D:I] and It =[
fJvj0 6= J � I; J is �nitely generatedg. An ideal I is called a t-ideal if I = It.

A proper integral t-ideal is contained in a maximal proper integral t-ideal and a
maximal t-ideal is prime.

Theorem 3. (1) Suppose that D is an integral domain in which every irre-
ducible element is prime (e.g., a GCD domain). If P�1 = D for each maximal
t-ideal P of D, then D is antimatter.
(2) If D is an antimatter GCD domain, then P�1 = D for each maximal t-ideal of
D.

Proof. (1) Suppose that D has an irreducible element p. By hypothesis, p is
prime. Hence (p) is a maximal t-ideal [8, Proposition 1.3]. But then (p)�1 = D, a
contradiction.
(2) Suppose that D is an antimatter GCD domain. Let P be a maximal t-ideal of
D. Let x=y 2 P�1 where x; y 2 D�. Since D is a GCD domain, we can assume
that [x; y] = 1. Suppose that x=y 62 D, so y is a nonunit. Now (x=y)P � D gives
xP � (y). For 0 6= p 2 P , yjxp. But then [x; y] = 1 gives yjp. Hence P � (y) 6= D
and thus P = (y) since P is a maximal t-ideal. But then y is prime and hence
irreducible, a contradiction. Hence P�1 = D. �

Thus a GCD (and hence a Bezout domain) domain is antimatter if and only
if P�1 = D for each maximal t-ideal P of D. However, we will later give an
example (Example 1) of an antimatter pre-Schreier domain with a maximal ideal
M satisfying M�1 6= D (and hence M is a maximal t-ideal).

Recall that a saturated multiplicatively closed subset S of D is a splitting set
if for each x 2 D�; x = as for some a 2 D and s 2 S such that aD \ tD = atD for
all t 2 S.

Lemma 1. Let D be an integral domain and S a splitting set of D. Then D is
antimatter if and only if S contains no atoms and DS is antimatter.

Proof. ()) Suppose that D is antimatter. Then certainly S contains no
atoms. By [1, Corollary 1.4(d)], each atom of DS is an associate in DS of an atom
of D. Since D is antimatter, so is DS . (() Suppose that x is an atom of D. Then
since x is an atom either x 2 S or xD \ tD = xtD for all s 2 S. Since S contains
no atoms, the second case must hold. But then by [1, Corollary 1.4(c)], x is an
atom of DS , a contradiction. �

Theorem 4. Let D be an antimatter GCD domain with quotient �eld K that
is either algebraically closed or real closed. Then D[X;Q+] is an antimatter GCD
domain.

Proof. By [6, Theorem 14.5], D[X;Q+] is a GCD domain. Since D is a GCD
domain each nonzero element f of D[X;Q+] has the form f = r

Pn
i=1 aiX

qi where
[a1; � � � ; an] = 1. Moreover,

(
nX
i=1

aiX
qi)D[X;Q+] \ tD[X;Q+] = t(

nX
i=1

aiX
qi)D[X;Q+]
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for all t 2 D�. Hence D� is a splitting set in D[X;Q+]. Now D[X;Q+]D� =
K[X;Q+] is an antimatter domain by either Theorem 1 or Theorem 2, respectively.
Since D� contains no atoms, D[X;Q+] is antimatter by Lemma 1. �

Note that the ring of algebraic integers is an antimatter Bezout domain with al-
gebraically closed quotient �eld. Other examples can be obtained via [10, Theorem
102]. We next give a characteristic p > 0 result.

Theorem 5. (1) Let K be a perfect �eld of characteristic p > 0. Let S be a
cardinal sum of copies of Q+. Then K[X;S] is an antimatter GCD domain.
(2) Suppose that D is an antimatter GCD domain with quotient �eld K where K
is a perfect �eld of characteristic p > 0. Then D[X;Q+] is an antimatter GCD
domain.

Proof. (1) Let f =
Pn

i=1 kiX
si be a nonzero nonunit of K[X;S]. Since K

is perfect, each p
p
ki 2 K. Then f =

Pn
i=1 kiX

si = (
Pn

i=1
p
p
kiX

si=p)p is not
irreducible.
(2) By (1) K[X;Q+] = D[X;Q+]D� is an antimatter domain. Then as in the proof
of Theorem 4, D[X;Q+] is an antimatter GCD domain. �

We next give the promised example showing that Theorem 3(2) can not be
extended to pre-Schreier domains. We �rst recall some de�nitions and results. A
nonzero element x of D is primal if whenever xjyz, y; z 2 D, then x = x1x2 where
x1jy and x2jz. Call a primal element x completely primal if each factor of x is primal.
Finally, D is pre-Schreier if each nonzero element ofD is (completely) primal and an
integrally closed pre-Schreier domain is called a Schreier domain. Schreier domains
were introduced by P. M. Cohn [3] and the last author [12] introduced pre-Schreier
domains. It is easy to see [3] that a GCD domain is Schreier. In [3, Theorem
5.3] (respectively, [12, p. 1901]) it was shown that an atom in a Schreier domain
(respectively, pre-Schreier domain) is prime. So by Theorem 3(1) a pre-Schreier
domain D is antimatter if P�1 = D for each maximal t-ideal P of D. There
do exist examples of Schreier domains that are not GCD domains [2, Example
2.10] and there do exist examples of antimatter domains (in which vacuously every
irreducible element is prime) but which are not pre-Schreier [2, Proposition 3.10].
We next give an example of an antimatter pre-Schreier domain having a maximal
ideal M that is a (maximal) t-ideal with M�1 6= D.

Example 1. Let D = Q + (fXsjs 2 Q+ � f0gg)R[X;Q+]. Then D is an
antimatter pre-Schreier domain having P = (fXsjs 2 Q+ � f0gg)R[X;Q+] as a
maximal ideal with (P�1)�1 = P = P 2 and hence P is a maximal t-ideal with
P�1 6= D.

Clearly P is a maximal ideal of D. For f 2 P , f = X�g where � > 0. Then
f = (X�=2)2g; so f is not an atom and this also shows that P = P 2. If f 2 D�P
is a nonunit, then f = s(1 + g) where s 2 Q� and g 2 P . Now 1 + g is a nonunit
of the antimatter domain R[X;Q+] so we can write 1 + g = (1 + p1)(1 + p2) where
p1; p2 2 P and 1 + p1; 1 + p2 are nonunits of D. Hence D is antimatter. We
show that P�1 = R[X;Q+]. Certainly R[X;Q+] � P�1. Also, P�1 = [D:P ] �
[R[X;Q+]:P ] = R[X;Q+] � P�1 where the second equality follows since P is a
noninvertible maximal ideal in the Bezout domain R[X;Q+]. So P�1 = R[X;Q+].
Now PR[X;Q+] = P , so P � (R[X;Q+])�1 ( D; that is, P � Pv 6= D. Since P is
maximal, we have P = Pv. We next show that D is pre-Schreier. Let T = D � P .
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So f 2 T has the form f = q(1 + p) where q 2 Q� and p 2 P . We show that
elements of T are completely primal. Since T is saturated, it is enough to show that
elements of the form 1+p; p 2 P , are primal. Suppose that 1+pjab where a; b 2 D.
Then 1 + pjab in the Bezout (and hence Schreier) domain R[X;Q+]. So we can
write 1 + p = (1 + q1)(1 + q2); q1; q2 2 P where 1 + q1ja and 1 + q2jb in R[X;Q+].
Note that actually 1 + q1ja and 1 + qjb in D. So 1 + p is primal. By Nagata�s
Theorem for pre-Schreier domains (if S a saturated multiplicative set consisting of
completely primal elements and DS pre-Schreier, then D is pre-Schreier; see [3] for
the Schreier case whose proof does not use integral closure), it is enough to show that
DT is pre-Schreier. Now DT = Q+PR[X;Q+]T � R[X;Q+]T = R[X;Q+]PR[X;Q+]

where R[X;Q+]PR[X;Q+] is a valuation domain. Since PR[X;Q+]PR[X;Q+] is not a
principal ideal of R[X;Q+]PR[X;Q+], DT is a Schreier domain [11, Theorem 3.2].
It is interesting to note that D is an ascending union of rings of the form Q +
X

1
n!R[X 1

n! ], each of which is atomic but not pre-Schreier.

We end with the following two results.

Theorem 6. (1) Let D be an integral domain with quotient �eld K 6= D, L be
a �eld extension of K, R = D +XL[X], and T = ff 2 Rjf(0) = 1g. Then D is
antimatter if and only if RT is antimatter.
(2) Let D be an antimatter Schreier domain and S a multiplicative set of D con-
taining at least one nonunit. Let T be the saturated multiplicative set of R =
D +XDS [X] generated by the prime elements of R. Then RT is antimatter.

Proof. (1) Note that every nonzero element of R can be written as kXn(1 +
Xf(X)) where n � 0, f(X) 2 L[X], and k 2 K� with k 2 D if n = 0. Thus in DT
each nonzero nonunit is an associate of kXn with k and n as above. For n � 2,
kXn is clearly not an atom. For n = 1, D 6= K gives that kX is not an atom since
kX = r(kX=r) for all nonunits r 2 D�. (It is essential that D 6= K as K +XL[X]
is atomic.) And for n = 0, k 2 D� properly factors in D if and only if it properly
factors in RT . It follows that D is antimatter if and only if RT is antimatter.
(2) As remarked in [4], R is a Schreier domain. Hence RT is also a Schreier domain.
But in a Schreier domain atoms are the same thing as primes. Let a(X) be a nonzero
principal prime of R. Since D is antimatter, a(X) 62 D. Also, a(0) 6= 0 since X is
not an atom because X = s(X=s) where s 2 S is a nonunit. Thus a(X)R\D = (0),
so Ra(X)R � K[X] and hence is a DVR. Also, since each such a(X) extends to a
prime of K[X], no nonzero element of R is divisible by in�nitely many nonassociate
primes of R. Thus by [1, Proposition 1.6], T is a splitting set. Now there are no
nonzero principal primes in RT because if there were one, then by [1, Corollary
1.4], there would be a corresponding nonzero principal prime in R� T . But this is
a contradiction since T is generated by all such primes. �

References

[1] D. D. Anderson, D. F. Anderson, and M. Zafrullah, Factorization in integral domains, II, J.
Algebra 151 (1992), 78�93.

[2] D. D. Anderson and M. Zafrullah, The Schreier property and Gauss�Lemma, Bolletino U.
M. I., to appear.

[3] P. M. Cohn, Bezout rings and their subrings, Proc. Cambridge Phil. Soc. 64 (1968), 251�264.
[4] D. L. Costa, J. L. Mott, and M. Zafrullah, The construction D + XDS [X], J. Algebra 53

(1978), 423�439.



6 D. D. ANDERSON, J. COYKENDALL, L. HILL, AND M. ZAFRULLAH

[5] J. Coykendall, D. E. Dobbs, and B. Mullins, On integral domains with no atoms, Comm.
Algebra 27 (1999), 5813�5831.

[6] R. Gilmer, Commutative Semigroup Rings, The University of Chicago Press, Chicago, 1984.
[7] R. Gilmer, Multiplicative Ideal Theory, Queen�s Papers Pure Appl. Math., Vol. 90, Kingston,

Ontario, 1992.
[8] E. Houston and M. Zafrullah, t-invertibility II, Comm. Algebra 17 (1989), 1955�1969.
[9] N. Jacobson, Lectures in Abstract Algebra, Volume III, Von Nostrand, 1964.
[10] I. Kaplansky, Commutative Rings, rev. ed., University of Chicago Press, Chicago, 1974.
[11] D. E. Rush, Quadratic polynomials, factorization in integral domains and Schreier domains

from pullbacks, Mathematika 50 (2003), 103�112 (2005).
[12] M. Zafrullah, On a property of pre-Schreier domains, Comm. Algebra 15 (1987), 1895�1920.

D. D. Anderson
Department of Mathematics
The University of Iowa
Iowa City, IA 52242
dan-anderson@uiowa.edu

L. Hill
Department of Mathematics
Idaho State University
Pocatello, ID 83209
hilllin1@isu.edu

J. Coykendall
Department of Mathematics
North Dakota State University
Fargo, ND 58105-5075
jim.coykendall@ndsu.nodak.edu

M. Zafrullah
57 Colgate St.
Pocatello, ID 83201
mzafrullah@usa.net


