Monoid Domain Constructions of Antimatter Domains
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ABSTRACT. An integral domain without irreducible elements is called an an-
timatter domain. We give some monoid domain constructions of antimatter
domains. Among other things, we show that if D is a GCD domain with quo-
tient field K that is algebraically closed, real closed, or perfect of characteristic
p > 0, then the monoid domain D[X; Q%] is an antimatter GCD domain. We
also show that a GCD domain D is antimatter if and only if P~! = D for each
maximal ¢-ideal P of D.

Let D be an integral domain with quotient field K. By an irreducible element
or atom of D we mean a nonunit x € D* = D — {0} such that z = uv, u,v € D,
implies w or v is a unit. The domain D is atomic if each nonzero nonunit of
D is expressible as a finite product of atoms. However, it may happen that a
domain does not have any atoms. Such domains, called antimatter domains, were
introduced by Coykendall, Dobbs, and Mullins [5]. A somewhat obvious example
of an antimatter domain is a valuation domain whose maximal ideal is not principal
[5, Proposition 1]. Another example is a field which, ironically, is also an example of
an atomic domain. It is patent that if D is an antimatter domain, or any integral
domain for that matter, then D[X] is not antimatter, as X + r is an atom in
D[X] for all r € D. On the other hand, the monoid domain C[X;Q"], where Q*
is the monoid of nonnegative rationals under addition, is an antimatter domain
(Theorem 1). But Q[X;Q*] is not antimatter as X — 2 is irreducible. (If X — 2
properly factors in Q[X;Q%], then X — 2 properly factors in some Q[X /"] since
QT is locally cyclic (that is, each finitely generated submonoid of QT is contained
in a cyclic submonoid of Qt). But by Eisenstein’s Criterion, X —2 = (X%/")" —2
is irreducible in Q[X/™]).

The purpose of this paper is to explore the following question. For an integral
domain D and torsionless cancellative monoid S (always written additively), when
is the monoid domain D[X;S] antimatter? Certainly, if D[X;S] is antimatter,
then D and S must be antimatter (a monoid S is antimatter if it has no atoms
where atoms are defined in the obvious way). However, as both Q and (Q%, +) are
antimatter while Q[X; Q"] is not, the converse is false. In this note we show that
if D is an antimatter GCD domain with quotient field K algebraically closed, real
closed, or perfect of characteristic p > 0, (Theorems 1, 2, and 5), then D[X; Q7] is
an antimatter domain. Our standard references are [6], [7], and [10].

In the case where D = K is an algebraically closed or real closed field, we
can show that D[X;S] is antimatter in slightly more generality than the case S =
(Q*,+). Let us call a monoid S pure if (1) S is (order-isomorphic to) a submonoid
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of (QT,+), (2) S is locally cyclic, and (3) for each s € S, there is a natural number
n > 1 (depending on s) with s/n € S. We remark that in the presence of (2) and
(3), condition (1) can be replaced by either S is totally ordered and each s > 0 or
that S is reduced, cancellative, and torsionless. Examples of pure monoids include
(Q*,+) and (Z},+) where Zf = {n/tjn € ZT, t € T} with T a multiplicatively
closed subset of Z* = {0,1,2,---}. We will consider a pure monoid S to actually
be a submonoid of (Q*, +). With this in mind, note that if 51,55 € S with s1 < sa,
then so — 51 € S. Indeed, (s1,s2) C (s) for some s € S; so s1 = ns and sy = ms
where necessarily n < m. Then so — s1 = ms —ns = (m —n)s € S. Observe that
for S pure and K any field, K[X;S5] is a nonatomic Bezout domain. For by [6,
Theorem 13.6] a monoid domain K[X;S] over a field K and monoid S is Bezout
if and only if S is isomorphic to a submonoid of (Q,+). And if S is pure and
0+#s¢c S, then s/n € S for some n > 1, s0o X* = (X*/™)" and hence K[X; S] does
not satisfy ACCP, or equivalently since K[X;S] is Bezout, is not atomic.

THEOREM 1. Let K be an algebraically closed field and S a pure monoid. Then
K[X; S] is an antimatter Bezout domain.

PROOF. We have already remarked that K[X; S] is Bezout. Let f be a nonzero
nonunit of K[X;S];so f =k X' + -+ k, X* where 0 < s; < --- < s, and each
ki 0. Now f = X*1(ky + ko X275 4+ ... 4+ k,, X*»~%1) where as previously noted
s; — s1 € S. First, suppose that s; > 0. Choose ny > 1 with s;/n; € S. Then
X®1 = (X*t/?)™ and hence f is not irreducible. Next suppose that s; = 0, so
n > 1. Choose ¢ € S with (s1, -+ ,8,) C (¢). Then f factors into linear factors in
K[X1Y] since K is algebraically closed. Now a typical linear factor of f in K|[X]
has the form ¢y + ¢1X9, {p,¢; € K with ¢; # 0. Choose m > 1 with ¢/m € S.
Then £y + (1 X9 = €y + £1(X%™)™ and is not irreducible in K[X9/™]. Thus f is
not irreducible in K[X;S]. So K[X;S] is an antimatter domain. O

Recall that a field K is real closed if K is formally real (that is, —1 is not a
sum of squares) and K has no proper formally real algebraic extensions. Using
Zorn’s Lemma, every formally real field F' is contained in a real closed field K that
is algebraic over F. Also, if K is a real closed field, then K (y/—1) is algebraically
closed. If K is formally real, then K(X) is again formally real for any set X of
indeterminates. Thus K (X) is contained in a real closed field. So there are plenty
of real closed fields in addition to R. For results on real closed fields, the reader is
referred to [9, Section 5.1].

THEOREM 2. Let K be a real closed field and S a pure monoid. Then K[X; 5]
s an antimatter Bezout domain.

PROOF. We have already remarked that K[X;S] is Bezout. Let f = k1 X1 +
ook, X s < oo < 8y, ki #£ 0, be a nonzero nonunit of K[X;S]. As in the
proof of Theorem 1, f is not irreducible if s; > 0. So suppose that s; = 0 and
hence n > 1. Choose ¢ € S with (s1,---,s,) C (¢) and m > 1 with ¢/m € S.
Choose m’ > 1 with ¢/mm’ € S. Then f as a polynomial in K[X%/™"| has
deg f > mm’ > 2. But over a real closed field an irreducible polynomial has degree
one or two. Hence f is not irreducible in K[X9/"'] and hence not irreducible in
K[X;S]. m

We want to extend Theorems 1 and 2 to the case where D is a GCD domain.
Thus it is of interest to know when a GCD domain is antimatter. In [5, Proposition
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2.1] it was shown that a valuation domain (V, M) is antimatter if and only if M ~*
V, that is, M is not principal. We generalize this result. For a nonzero (fractional
ideal I of a domain D recall that I, = (I~!)~! where I=! = [D:I] and I,
U{J”|0 # J C I,J is finitely generated}. An ideal I is called a t-ideal if I = I,.

A proper integral t-ideal is contained in a maximal proper integral ¢-ideal and a
maximal t-ideal is prime.

~—

THEOREM 3. (1) Suppose that D is an integral domain in which every irre-
ducible element is prime (e.g., a GCD domain). If P~* = D for each mazimal
t-ideal P of D, then D is antimatter.

(2) If D is an antimatter GCD domain, then P~ = D for each maximal t-ideal of
D.

PROOF. (1) Suppose that D has an irreducible element p. By hypothesis, p is
prime. Hence (p) is a maximal t-ideal [8, Proposition 1.3]. But then (p)~' = D, a
contradiction.

(2) Suppose that D is an antimatter GCD domain. Let P be a maximal t-ideal of
D. Let x/y € P~ where x,y € D*. Since D is a GCD domain, we can assume
that [z,y] = 1. Suppose that z/y € D, so y is a nonunit. Now (z/y)P C D gives
xP C (y). For 0 # p € P, y|zp. But then [z,y] = 1 gives y|p. Hence P C (y) # D
and thus P = (y) since P is a maximal t-ideal. But then y is prime and hence
irreducible, a contradiction. Hence P~! = D. Il

Thus a GCD (and hence a Bezout domain) domain is antimatter if and only
if P~! = D for each maximal t-ideal P of D. However, we will later give an
example (Example 1) of an antimatter pre-Schreier domain with a maximal ideal
M satisfying M~ # D (and hence M is a maximal t-ideal).

Recall that a saturated multiplicatively closed subset S of D is a splitting set
if for each x € D*, x = as for some a € D and s € S such that aD NtD = atD for
allt € S.

LEmMA 1. Let D be an integral domain and S a splitting set of D. Then D is
antimatter if and only if S contains no atoms and Dg is antimatter.

PROOF. (=) Suppose that D is antimatter. Then certainly S contains no
atoms. By [1, Corollary 1.4(d)], each atom of Dg is an associate in Dg of an atom
of D. Since D is antimatter, so is Dg. (<) Suppose that z is an atom of D. Then
since z is an atom either x € S or D NtD = ztD for all s € S. Since S contains
no atoms, the second case must hold. But then by [1, Corollary 1.4(c)], z is an
atom of Dg, a contradiction. O

THEOREM 4. Let D be an antimatter GCD domain with quotient field K that
is either algebraically closed or real closed. Then D[X;Q7V] is an antimatter GCD
domain.

PRrROOF. By [6, Theorem 14.5], D[X; Q7] is a GCD domain. Since D is a GCD
domain each nonzero element f of D[X; Q7] has the form f =7, ;X% where
[a1,- - ,a,] = 1. Moreover,

(D aiX™)D[X; QT NEDIX; Q1] = (3 aiX ™) D[X; Q"]

i=1
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for all t € D*. Hence D* is a splitting set in D[X;Q%]. Now D[X;QT|p: =
K[X;Q7] is an antimatter domain by either Theorem 1 or Theorem 2, respectively.
Since D* contains no atoms, D[X; Q7] is antimatter by Lemma, 1. O

Note that the ring of algebraic integers is an antimatter Bezout domain with al-
gebraically closed quotient field. Other examples can be obtained via [10, Theorem
102]. We next give a characteristic p > 0 result.

THEOREM 5. (1) Let K be a perfect field of characteristic p > 0. Let S be a
cardinal sum of copies of Q*. Then K[X;S] is an antimatter GCD domain.
(2) Suppose that D is an antimatter GCD domain with quotient field K where K
is a perfect field of characteristic p > 0. Then D[X; Q7] is an antimatter GCD
domain.

ProoF. (1) Let f = >I" | k;X* be a nonzero nonunit of K[X;S]. Since K
is perfect, each ¢/k; € K. Then f = S0 kX% = (31| ¢/k:X%/P)P is not
irreducible.

(2) By (1) K[X;Q"] = D[X;Q7"]p- is an antimatter domain. Then as in the proof
of Theorem 4, D[X;Q"] is an antimatter GCD domain. O

We next give the promised example showing that Theorem 3(2) can not be
extended to pre-Schreier domains. We first recall some definitions and results. A
nonzero element x of D is primal if whenever z|yz, y,z € D, then = x1x9 where
z1]y and xo|z. Call a primal element = completely primal if each factor of x is primal.
Finally, D is pre-Schreier if each nonzero element of D is (completely) primal and an
integrally closed pre-Schreier domain is called a Schreier domain. Schreier domains
were introduced by P. M. Cohn [3] and the last author [12] introduced pre-Schreier
domains. It is easy to see [3] that a GCD domain is Schreier. In [3, Theorem
5.3] (respectively, [12, p. 1901]) it was shown that an atom in a Schreier domain
(respectively, pre-Schreier domain) is prime. So by Theorem 3(1) a pre-Schreier
domain D is antimatter if P~' = D for each maximal t-ideal P of D. There
do exist examples of Schreier domains that are not GCD domains [2, Example
2.10] and there do exist examples of antimatter domains (in which vacuously every
irreducible element is prime) but which are not pre-Schreier [2, Proposition 3.10].
We next give an example of an antimatter pre-Schreier domain having a maximal
ideal M that is a (maximal) t-ideal with M ~1 # D.

ExAMPLE 1. Let D = Q + ({X*®|s € QT — {0}})R[X;Q"]. Then D is an
antimatter pre-Schreier domain having P = ({X?%|s € QT — {0}HR[X;Q™] as a
maximal ideal with (P~1)~' = P = P? and hence P is a mazimal t-ideal with
P 1#D.

Clearly P is a maximal ideal of D. For f € P, f = X%g where a > 0. Then
f=(X%?)2g; so f is not an atom and this also shows that P = P%. If f € D — P
is a nonunit, then f = s(1+4 g) where s € Q* and g € P. Now 1+ g is a nonunit
of the antimatter domain R[X; Q%] so we can write 1 + g = (14 p1)(1 + p2) where
p1,p2 € P and 1 + p1,1 + po are nonunits of D. Hence D is antimatter. We
show that P! = R[X;Q%]. Certainly R[X;QT] C P~1. Also, P! = [D:P] C
[RIX;QT]:P] = R[X;Q*t] C P~ where the second equality follows since P is a
noninvertible mazimal ideal in the Bezout domain R[X;Q%]. So P71 = R[X;QT].
Now PR[X;Q%] =P, so P C (R[X;Q"))"! C D; that is, P C P, # D. Since P is
maximal, we have P = P,. We next show that D is pre-Schreier. Let T = D — P.
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So f € T has the form f = q(1 4+ p) where ¢ € Q* and p € P. We show that
elements of T' are completely primal. Since T is saturated, it is enough to show that
elements of the form 1+p, p € P, are primal. Suppose that 1+ p|ab where a,b € D.
Then 1+ plab in the Bezout (and hence Schreier) domain R[X;Q%]. So we can
write 1+ p=(14+q)(1+q2), q1,92 € P where 1 + qi|a and 1+ g2|b in R[X;Q1].
Note that actually 1 4+ q1la and 14 q|b in D. So 1 + p is primal. By Nagata’s
Theorem for pre-Schreier domains (if S a saturated multiplicative set consisting of
completely primal elements and Dg pre-Schreier, then D is pre-Schreier; see [3] for
the Schreier case whose proof does not use integral closure), it is enough to show that
Dy is pre-Schreier. Now Dy = Q+PR[X;Qt]r C R[X; Q|7 = R[X; Q"] prix;o+]
where R[X; Q" prix,q+] @5 a valuation domain. Since PR[X; Q%] prix;q+) is not a
principal ideal of R[X; Q"] prix,q+], Dr is a Schreier domain [11, Theorem 3.2].
It is interesting to note that D is an ascending union of rings of the form Q +
X#R[X 7], each of which is atomic but not pre-Schreier.

We end with the following two results.

THEOREM 6. (1) Let D be an integral domain with quotient field K # D, L be
a field extension of K, R = D + XL|X], and T = {f € R|f(0) = 1}. Then D is
antimatter if and only if Ry is antimatter.
(2) Let D be an antimatter Schreier domain and S a multiplicative set of D con-
taining at least one monunit. Let T be the saturated multiplicative set of R =
D + X Dg[X] generated by the prime elements of R. Then Ry is antimatter.

PRrROOF. (1) Note that every nonzero element of R can be written as kX™(1 +
X f(X)) where n > 0, f(X) € L[X], and k € K* with k € D if n = 0. Thus in Dy
each nonzero nonunit is an associate of kX™ with k and n as above. For n > 2,
kX™ is clearly not an atom. For n =1, D # K gives that £X is not an atom since
kX = r(kX/r) for all nonunits r € D*. (It is essential that D # K as K + X L[X]
is atomic.) And for n = 0, k € D* properly factors in D if and only if it properly
factors in Rp. It follows that D is antimatter if and only if Ry is antimatter.
(2) As remarked in [4], R is a Schreier domain. Hence Ry is also a Schreier domain.
But in a Schreier domain atoms are the same thing as primes. Let a(X) be a nonzero
principal prime of R. Since D is antimatter, a(X) ¢ D. Also, a(0) # 0 since X is
not an atom because X = s(X/s) where s € S is a nonunit. Thus a(X)RND = (0),
so Rqx)r O K[X] and hence is a DVR. Also, since each such a(X) extends to a
prime of K[X], no nonzero element of R is divisible by infinitely many nonassociate
primes of R. Thus by [1, Proposition 1.6], T is a splitting set. Now there are no
nonzero principal primes in Ry because if there were one, then by [1, Corollary
1.4], there would be a corresponding nonzero principal prime in R — 7. But this is
a contradiction since T is generated by all such primes. O
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