Monoid Domain Constructions of Antimatter Domains

D. D. Anderson, J. Coykendall, L. Hill, and M. Zafrullah

Abstract

An integral domain without irreducible elements is called an antimatter domain. We give some monoid domain constructions of antimatter domains. Among other things, we show that if D is a GCD domain with quotient field K that is algebraically closed, real closed, or perfect of characteristic $p>0$, then the monoid domain $D\left[X ; \mathbb{Q}^{+}\right]$is an antimatter GCD domain. We also show that a GCD domain D is antimatter if and only if $P^{-1}=D$ for each maximal t-ideal P of D.

Let D be an integral domain with quotient field K. By an irreducible element or atom of D we mean a nonunit $x \in D^{\star}=D-\{0\}$ such that $x=u v, u, v \in D$, implies u or v is a unit. The domain D is atomic if each nonzero nonunit of D is expressible as a finite product of atoms. However, it may happen that a domain does not have any atoms. Such domains, called antimatter domains, were introduced by Coykendall, Dobbs, and Mullins [5]. A somewhat obvious example of an antimatter domain is a valuation domain whose maximal ideal is not principal [5, Proposition 1]. Another example is a field which, ironically, is also an example of an atomic domain. It is patent that if D is an antimatter domain, or any integral domain for that matter, then $D[X]$ is not antimatter, as $X+r$ is an atom in $D[X]$ for all $r \in D$. On the other hand, the monoid domain $\mathbb{C}\left[X ; \mathbb{Q}^{+}\right]$, where \mathbb{Q}^{+} is the monoid of nonnegative rationals under addition, is an antimatter domain (Theorem 1). But $\mathbb{Q}\left[X ; \mathbb{Q}^{+}\right]$is not antimatter as $X-2$ is irreducible. (If $X-2$ properly factors in $\mathbb{Q}\left[X ; \mathbb{Q}^{+}\right]$, then $X-2$ properly factors in some $\mathbb{Q}\left[X^{1 / n}\right]$ since \mathbb{Q}^{+}is locally cyclic (that is, each finitely generated submonoid of \mathbb{Q}^{+}is contained in a cyclic submonoid of $\left.\mathbb{Q}^{+}\right)$. But by Eisenstein's Criterion, $X-2=\left(X^{1 / n}\right)^{n}-2$ is irreducible in $\mathbb{Q}\left[X^{1 / n}\right]$).

The purpose of this paper is to explore the following question. For an integral domain D and torsionless cancellative monoid S (always written additively), when is the monoid domain $D[X ; S]$ antimatter? Certainly, if $D[X ; S]$ is antimatter, then D and S must be antimatter (a monoid S is antimatter if it has no atoms where atoms are defined in the obvious way). However, as both \mathbb{Q} and $\left(\mathbb{Q}^{+},+\right)$are antimatter while $\mathbb{Q}\left[X ; \mathbb{Q}^{+}\right]$is not, the converse is false. In this note we show that if D is an antimatter GCD domain with quotient field K algebraically closed, real closed, or perfect of characteristic $p>0$, (Theorems 1,2 , and 5), then $D\left[X ; \mathbb{Q}^{+}\right]$is an antimatter domain. Our standard references are [6], $[\mathbf{7}]$, and [10].

In the case where $D=K$ is an algebraically closed or real closed field, we can show that $D[X ; S]$ is antimatter in slightly more generality than the case $S=$ $\left(\mathbb{Q}^{+},+\right)$. Let us call a monoid S pure if (1) S is (order-isomorphic to) a submonoid
of $\left(\mathbb{Q}^{+},+\right),(2) S$ is locally cyclic, and (3) for each $s \in S$, there is a natural number $n>1$ (depending on s) with $s / n \in S$. We remark that in the presence of (2) and (3), condition (1) can be replaced by either S is totally ordered and each $s \geq 0$ or that S is reduced, cancellative, and torsionless. Examples of pure monoids include $\left(\mathbb{Q}^{+},+\right)$and $\left(\mathbb{Z}_{T}^{+},+\right)$where $\mathbb{Z}_{T}^{+}=\left\{n / t \mid n \in \mathbb{Z}^{+}, t \in T\right\}$ with T a multiplicatively closed subset of $\mathbb{Z}^{+}=\{0,1,2, \cdots\}$. We will consider a pure monoid S to actually be a submonoid of $\left(\mathbb{Q}^{+},+\right)$. With this in mind, note that if $s_{1}, s_{2} \in S$ with $s_{1}<s_{2}$, then $s_{2}-s_{1} \in S$. Indeed, $\left\langle s_{1}, s_{2}\right\rangle \subseteq\langle s\rangle$ for some $s \in S$; so $s_{1}=n s$ and $s_{2}=m s$ where necessarily $n<m$. Then $s_{2}-s_{1}=m s-n s=(m-n) s \in S$. Observe that for S pure and K any field, $K[X ; S]$ is a nonatomic Bezout domain. For by $[\mathbf{6}$, Theorem 13.6] a monoid domain $K[X ; S]$ over a field K and monoid S is Bezout if and only if S is isomorphic to a submonoid of $(\mathbb{Q},+)$. And if S is pure and $0 \neq s \in S$, then $s / n \in S$ for some $n>1$, so $X^{s}=\left(X^{s / n}\right)^{n}$ and hence $K[X ; S]$ does not satisfy ACCP, or equivalently since $K[X ; S]$ is Bezout, is not atomic.

Theorem 1. Let K be an algebraically closed field and S a pure monoid. Then $K[X ; S]$ is an antimatter Bezout domain.

Proof. We have already remarked that $K[X ; S]$ is Bezout. Let f be a nonzero nonunit of $K[X ; S]$; so $f=k_{1} X^{s_{1}}+\cdots+k_{n} X^{s_{n}}$ where $0 \leq s_{1}<\cdots<s_{n}$ and each $k_{i} \neq 0$. Now $f=X^{s_{1}}\left(k_{1}+k_{2} X^{s_{2}-s_{1}}+\cdots+k_{n} X^{s_{n}-s_{1}}\right)$ where as previously noted $s_{i}-s_{1} \in S$. First, suppose that $s_{1}>0$. Choose $n_{1}>1$ with $s_{1} / n_{1} \in S$. Then $X^{s_{1}}=\left(X^{s_{1} / n_{1}}\right)^{n_{1}}$ and hence f is not irreducible. Next suppose that $s_{1}=0$, so $n>1$. Choose $q \in S$ with $\left\langle s_{1}, \cdots, s_{n}\right\rangle \subseteq\langle q\rangle$. Then f factors into linear factors in $K\left[X^{q}\right]$ since K is algebraically closed. Now a typical linear factor of f in $K\left[X^{q}\right]$ has the form $\ell_{0}+\ell_{1} X^{q}, \ell_{0}, \ell_{1} \in K$ with $\ell_{1} \neq 0$. Choose $m>1$ with $q / m \in S$. Then $\ell_{0}+\ell_{1} X^{q}=\ell_{0}+\ell_{1}\left(X^{q / m}\right)^{m}$ and is not irreducible in $K\left[X^{q / m}\right]$. Thus f is not irreducible in $K[X ; S]$. So $K[X ; S]$ is an antimatter domain.

Recall that a field K is real closed if K is formally real (that is, -1 is not a sum of squares) and K has no proper formally real algebraic extensions. Using Zorn's Lemma, every formally real field F is contained in a real closed field K that is algebraic over F. Also, if K is a real closed field, then $K(\sqrt{-1})$ is algebraically closed. If K is formally real, then $K(X)$ is again formally real for any set X of indeterminates. Thus $K(X)$ is contained in a real closed field. So there are plenty of real closed fields in addition to \mathbb{R}. For results on real closed fields, the reader is referred to [9, Section 5.1].

Theorem 2. Let K be a real closed field and S a pure monoid. Then $K[X ; S]$ is an antimatter Bezout domain.

Proof. We have already remarked that $K[X ; S]$ is Bezout. Let $f=k_{1} X^{s_{1}}+$ $\cdots+k_{n} X^{s_{n}}, s_{1}<\cdots<s_{n}, k_{i} \neq 0$, be a nonzero nonunit of $K[X ; S]$. As in the proof of Theorem 1, f is not irreducible if $s_{1}>0$. So suppose that $s_{1}=0$ and hence $n>1$. Choose $q \in S$ with $\left\langle s_{1}, \cdots, s_{n}\right\rangle \subseteq\langle q\rangle$ and $m>1$ with $q / m \in S$. Choose $m^{\prime}>1$ with $q / m m^{\prime} \in S$. Then f as a polynomial in $K\left[X^{q / m m^{\prime}}\right]$ has $\operatorname{deg} f \geq m m^{\prime}>2$. But over a real closed field an irreducible polynomial has degree one or two. Hence f is not irreducible in $K\left[X^{q / m m^{\prime}}\right]$ and hence not irreducible in $K[X ; S]$.

We want to extend Theorems 1 and 2 to the case where D is a GCD domain. Thus it is of interest to know when a GCD domain is antimatter. In [5, Proposition
2.1] it was shown that a valuation domain (V, M) is antimatter if and only if $M^{-1}=$ V, that is, M is not principal. We generalize this result. For a nonzero (fractional) ideal I of a domain D recall that $I_{v}=\left(I^{-1}\right)^{-1}$ where $I^{-1}=[D: I]$ and $I_{t}=$ $\bigcup\left\{J_{v} \mid 0 \neq J \subseteq I, J\right.$ is finitely generated $\}$. An ideal I is called a t-ideal if $I=I_{t}$. A proper integral t-ideal is contained in a maximal proper integral t-ideal and a maximal t-ideal is prime.

Theorem 3. (1) Suppose that D is an integral domain in which every irreducible element is prime (e.g., a $G C D$ domain). If $P^{-1}=D$ for each maximal t-ideal P of D, then D is antimatter.
(2) If D is an antimatter $G C D$ domain, then $P^{-1}=D$ for each maximal t-ideal of D.

Proof. (1) Suppose that D has an irreducible element p. By hypothesis, p is prime. Hence (p) is a maximal t-ideal [8, Proposition 1.3]. But then $(p)^{-1}=D$, a contradiction.
(2) Suppose that D is an antimatter GCD domain. Let P be a maximal t-ideal of D. Let $x / y \in P^{-1}$ where $x, y \in D^{*}$. Since D is a GCD domain, we can assume that $[x, y]=1$. Suppose that $x / y \notin D$, so y is a nonunit. Now $(x / y) P \subseteq D$ gives $x P \subseteq(y)$. For $0 \neq p \in P, y \mid x p$. But then $[x, y]=1$ gives $y \mid p$. Hence $P \subseteq(y) \neq D$ and thus $P=(y)$ since P is a maximal t-ideal. But then y is prime and hence irreducible, a contradiction. Hence $P^{-1}=D$.

Thus a GCD (and hence a Bezout domain) domain is antimatter if and only if $P^{-1}=D$ for each maximal t-ideal P of D. However, we will later give an example (Example 1) of an antimatter pre-Schreier domain with a maximal ideal M satisfying $M^{-1} \neq D$ (and hence M is a maximal t-ideal).

Recall that a saturated multiplicatively closed subset S of D is a splitting set if for each $x \in D^{*}, x=a s$ for some $a \in D$ and $s \in S$ such that $a D \cap t D=a t D$ for all $t \in S$.

Lemma 1. Let D be an integral domain and S a splitting set of D. Then D is antimatter if and only if S contains no atoms and D_{S} is antimatter.

Proof. (\Rightarrow) Suppose that D is antimatter. Then certainly S contains no atoms. By [1, Corollary $1.4(\mathrm{~d})]$, each atom of D_{S} is an associate in D_{S} of an atom of D. Since D is antimatter, so is D_{S}. (\Leftarrow) Suppose that x is an atom of D. Then since x is an atom either $x \in S$ or $x D \cap t D=x t D$ for all $s \in S$. Since S contains no atoms, the second case must hold. But then by [1, Corollary 1.4(c)], x is an atom of D_{S}, a contradiction.

Theorem 4. Let D be an antimatter $G C D$ domain with quotient field K that is either algebraically closed or real closed. Then $D\left[X ; \mathbb{Q}^{+}\right]$is an antimatter $G C D$ domain.

Proof. By $\left[\mathbf{6}\right.$, Theorem 14.5], $D\left[X ; \mathbb{Q}^{+}\right]$is a GCD domain. Since D is a GCD domain each nonzero element f of $D\left[X ; \mathbb{Q}^{+}\right]$has the form $f=r \sum_{i=1}^{n} a_{i} X^{q_{i}}$ where $\left[a_{1}, \cdots, a_{n}\right]=1$. Moreover,

$$
\left(\sum_{i=1}^{n} a_{i} X^{q_{i}}\right) D\left[X ; \mathbb{Q}^{+}\right] \cap t D\left[X ; \mathbb{Q}^{+}\right]=t\left(\sum_{i=1}^{n} a_{i} X^{q_{i}}\right) D\left[X ; \mathbb{Q}^{+}\right]
$$

for all $t \in D^{*}$. Hence D^{*} is a splitting set in $D\left[X ; \mathbb{Q}^{+}\right]$. Now $D\left[X ; \mathbb{Q}^{+}\right]_{D^{*}}=$ $K\left[X ; \mathbb{Q}^{+}\right]$is an antimatter domain by either Theorem 1 or Theorem 2, respectively. Since D^{*} contains no atoms, $D\left[X ; \mathbb{Q}^{+}\right]$is antimatter by Lemma 1 .

Note that the ring of algebraic integers is an antimatter Bezout domain with algebraically closed quotient field. Other examples can be obtained via [10, Theorem 102]. We next give a characteristic $p>0$ result.

Theorem 5. (1) Let K be a perfect field of characteristic $p>0$. Let S be a cardinal sum of copies of \mathbb{Q}^{+}. Then $K[X ; S]$ is an antimatter $G C D$ domain.
(2) Suppose that D is an antimatter $G C D$ domain with quotient field K where K is a perfect field of characteristic $p>0$. Then $D\left[X ; \mathbb{Q}^{+}\right]$is an antimatter $G C D$ domain.

Proof. (1) Let $f=\sum_{i=1}^{n} k_{i} X^{s_{i}}$ be a nonzero nonunit of $K[X ; S]$. Since K is perfect, each $\sqrt[p]{k_{i}} \in K$. Then $f=\sum_{i=1}^{n} k_{i} X^{s_{i}}=\left(\sum_{i=1}^{n} \sqrt[p]{k_{i}} X^{s_{i} / p}\right)^{p}$ is not irreducible.
(2) By (1) $K\left[X ; \mathbb{Q}^{+}\right]=D\left[X ; \mathbb{Q}^{+}\right]_{D^{*}}$ is an antimatter domain. Then as in the proof of Theorem $4, D\left[X ; \mathbb{Q}^{+}\right]$is an antimatter GCD domain.

We next give the promised example showing that Theorem 3(2) can not be extended to pre-Schreier domains. We first recall some definitions and results. A nonzero element x of D is primal if whenever $x \mid y z, y, z \in D$, then $x=x_{1} x_{2}$ where $x_{1} \mid y$ and $x_{2} \mid z$. Call a primal element x completely primal if each factor of x is primal. Finally, D is pre-Schreier if each nonzero element of D is (completely) primal and an integrally closed pre-Schreier domain is called a Schreier domain. Schreier domains were introduced by P. M. Cohn [3] and the last author $[\mathbf{1 2}]$ introduced pre-Schreier domains. It is easy to see $[\mathbf{3}]$ that a GCD domain is Schreier. In [3, Theorem 5.3] (respectively, [12, p. 1901]) it was shown that an atom in a Schreier domain (respectively, pre-Schreier domain) is prime. So by Theorem 3(1) a pre-Schreier domain D is antimatter if $P^{-1}=D$ for each maximal t-ideal P of D. There do exist examples of Schreier domains that are not GCD domains [2, Example 2.10] and there do exist examples of antimatter domains (in which vacuously every irreducible element is prime) but which are not pre-Schreier [2, Proposition 3.10]. We next give an example of an antimatter pre-Schreier domain having a maximal ideal M that is a (maximal) t-ideal with $M^{-1} \neq D$.

Example 1. Let $D=\mathbb{Q}+\left(\left\{X^{s} \mid s \in \mathbb{Q}^{+}-\{0\}\right\}\right) \mathbb{R}\left[X ; \mathbb{Q}^{+}\right]$. Then D is an antimatter pre-Schreier domain having $P=\left(\left\{X^{s} \mid s \in \mathbb{Q}^{+}-\{0\}\right\}\right) \mathbb{R}\left[X ; \mathbb{Q}^{+}\right]$as a maximal ideal with $\left(P^{-1}\right)^{-1}=P=P^{2}$ and hence P is a maximal t-ideal with $P^{-1} \neq D$.

Clearly P is a maximal ideal of D. For $f \in P, f=X^{\alpha} g$ where $\alpha>0$. Then $f=\left(X^{\alpha / 2}\right)^{2} g$; so f is not an atom and this also shows that $P=P^{2}$. If $f \in D-P$ is a nonunit, then $f=s(1+g)$ where $s \in \mathbb{Q}^{*}$ and $g \in P$. Now $1+g$ is a nonunit of the antimatter domain $\mathbb{R}\left[X ; \mathbb{Q}^{+}\right]$so we can write $1+g=\left(1+p_{1}\right)\left(1+p_{2}\right)$ where $p_{1}, p_{2} \in P$ and $1+p_{1}, 1+p_{2}$ are nonunits of D. Hence D is antimatter. We show that $P^{-1}=\mathbb{R}\left[X ; \mathbb{Q}^{+}\right]$. Certainly $\mathbb{R}\left[X ; \mathbb{Q}^{+}\right] \subseteq P^{-1}$. Also, $P^{-1}=[D: P] \subseteq$ $\left[\mathbb{R}\left[X ; \mathbb{Q}^{+}\right]: P\right]=\mathbb{R}\left[X ; \mathbb{Q}^{+}\right] \subseteq P^{-1}$ where the second equality follows since P is a noninvertible maximal ideal in the Bezout domain $\mathbb{R}\left[X ; \mathbb{Q}^{+}\right]$. So $P^{-1}=\mathbb{R}\left[X ; \mathbb{Q}^{+}\right]$. Now $P \mathbb{R}\left[X ; \mathbb{Q}^{+}\right]=P$, so $P \subseteq\left(\mathbb{R}\left[X ; \mathbb{Q}^{+}\right]\right)^{-1} \subsetneq D$; that is, $P \subseteq P_{v} \neq D$. Since P is maximal, we have $P=P_{v}$. We next show that D is pre-Schreier. Let $T=D-P$.

So $f \in T$ has the form $f=q(1+p)$ where $q \in \mathbb{Q}^{*}$ and $p \in P$. We show that elements of T are completely primal. Since T is saturated, it is enough to show that elements of the form $1+p, p \in P$, are primal. Suppose that $1+p \mid a b$ where $a, b \in D$. Then $1+p \mid a b$ in the Bezout (and hence Schreier) domain $\mathbb{R}\left[X ; \mathbb{Q}^{+}\right]$. So we can write $1+p=\left(1+q_{1}\right)\left(1+q_{2}\right), q_{1}, q_{2} \in P$ where $1+q_{1} \mid a$ and $1+q_{2} \mid b$ in $\mathbb{R}\left[X ; \mathbb{Q}^{+}\right]$. Note that actually $1+q_{1} \mid a$ and $1+q \mid b$ in D. So $1+p$ is primal. By Nagata's Theorem for pre-Schreier domains (if S a saturated multiplicative set consisting of completely primal elements and D_{S} pre-Schreier, then D is pre-Schreier; see [3] for the Schreier case whose proof does not use integral closure), it is enough to show that D_{T} is pre-Schreier. Now $\left.D_{T}=\mathbb{Q}+P \mathbb{R}\left[X ; \mathbb{Q}^{+}\right]_{T} \subseteq \mathbb{R}\left[X ; \mathbb{Q}^{+}\right]_{T}=\mathbb{R}\left[X ; \mathbb{Q}^{+}\right]_{P \mathbb{R}\left[X ; Q^{+}\right.}\right]$ where $\mathbb{R}\left[X ; \mathbb{Q}^{+}\right]_{P \mathbb{R}\left[X ; \mathbb{Q}^{+}\right]}$is a valuation domain. Since $P \mathbb{R}\left[X ; \mathbb{Q}^{+}\right]_{P \mathbb{R}\left[X ; \mathbb{Q}^{+}\right]}$is not a principal ideal of $\mathbb{R}\left[X ; \mathbb{Q}^{+}\right]_{P \mathbb{R}\left[X ; \mathbb{Q}^{+}\right]}, D_{T}$ is a Schreier domain $[\mathbf{1 1}$, Theorem 3.2]. It is interesting to note that D is an ascending union of rings of the form $\mathbb{Q}+$ $X^{\frac{1}{n!}} \mathbb{R}\left[X^{\frac{1}{n!}}\right]$, each of which is atomic but not pre-Schreier.

We end with the following two results.
Theorem 6. (1) Let D be an integral domain with quotient field $K \neq D, L$ be a field extension of $K, R=D+X L[X]$, and $T=\{f \in R \mid f(0)=1\}$. Then D is antimatter if and only if R_{T} is antimatter.
(2) Let D be an antimatter Schreier domain and S a multiplicative set of D containing at least one nonunit. Let T be the saturated multiplicative set of $R=$ $D+X D_{S}[X]$ generated by the prime elements of R. Then R_{T} is antimatter.

Proof. (1) Note that every nonzero element of R can be written as $k X^{n}(1+$ $X f(X)$) where $n \geq 0, f(X) \in L[X]$, and $k \in K^{*}$ with $k \in D$ if $n=0$. Thus in D_{T} each nonzero nonunit is an associate of $k X^{n}$ with k and n as above. For $n \geq 2$, $k X^{n}$ is clearly not an atom. For $n=1, D \neq K$ gives that $k X$ is not an atom since $k X=r(k X / r)$ for all nonunits $r \in D^{*}$. (It is essential that $D \neq K$ as $K+X L[X]$ is atomic.) And for $n=0, k \in D^{*}$ properly factors in D if and only if it properly factors in R_{T}. It follows that D is antimatter if and only if R_{T} is antimatter.
(2) As remarked in [4], R is a Schreier domain. Hence R_{T} is also a Schreier domain. But in a Schreier domain atoms are the same thing as primes. Let $a(X)$ be a nonzero principal prime of R. Since D is antimatter, $a(X) \notin D$. Also, $a(0) \neq 0$ since X is not an atom because $X=s(X / s)$ where $s \in S$ is a nonunit. Thus $a(X) R \cap D=(0)$, so $R_{a(X) R} \supset K[X]$ and hence is a DVR. Also, since each such $a(X)$ extends to a prime of $K[X]$, no nonzero element of R is divisible by infinitely many nonassociate primes of R. Thus by [$\mathbf{1}$, Proposition 1.6], T is a splitting set. Now there are no nonzero principal primes in R_{T} because if there were one, then by [1, Corollary 1.4], there would be a corresponding nonzero principal prime in $R-T$. But this is a contradiction since T is generated by all such primes.

References

[1] D. D. Anderson, D. F. Anderson, and M. Zafrullah, Factorization in integral domains, II, J. Algebra 151 (1992), 78-93.
[2] D. D. Anderson and M. Zafrullah, The Schreier property and Gauss' Lemma, Bolletino U. M. I., to appear.
[3] P. M. Cohn, Bezout rings and their subrings, Proc. Cambridge Phil. Soc. 64 (1968), 251-264.
[4] D. L. Costa, J. L. Mott, and M. Zafrullah, The construction $D+X D_{S}[X]$, J. Algebra 53 (1978), 423-439.
[5] J. Coykendall, D. E. Dobbs, and B. Mullins, On integral domains with no atoms, Comm. Algebra 27 (1999), 5813-5831.
[6] R. Gilmer, Commutative Semigroup Rings, The University of Chicago Press, Chicago, 1984.
[7] R. Gilmer, Multiplicative Ideal Theory, Queen's Papers Pure Appl. Math., Vol. 90, Kingston, Ontario, 1992.
[8] E. Houston and M. Zafrullah, t-invertibility II, Comm. Algebra 17 (1989), 1955-1969.
[9] N. Jacobson, Lectures in Abstract Algebra, Volume III, Von Nostrand, 1964.
[10] I. Kaplansky, Commutative Rings, rev. ed., University of Chicago Press, Chicago, 1974.
[11] D. E. Rush, Quadratic polynomials, factorization in integral domains and Schreier domains from pullbacks, Mathematika 50 (2003), 103-112 (2005).
[12] M. Zafrullah, On a property of pre-Schreier domains, Comm. Algebra 15 (1987), 1895-1920.

D. D. Anderson
Department of Mathematics
The University of Iowa
Iowa City, IA 52242
dan-anderson@uiowa.edu

J. Coykendall

Department of Mathematics
North Dakota State University
Fargo, ND 58105-5075
jim.coykendall@ndsu.nodak.edu

L. Hill

Department of Mathematics
Idaho State University
Pocatello, ID 83209
hilllin1@isu.edu
M. Zafrullah

57 Colgate St.
Pocatello, ID 83201
mzafrullah@usa.net

