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MONOIDS OF SEQUENCES OVER FINITE ABELIAN GROUPS

DEFINED VIA ZERO-SUMS WITH RESPECT TO A GIVEN SET

OF WEIGHTS AND APPLICATIONS TO FACTORIZATIONS OF

NORMS OF ALGEBRAIC INTEGERS

SAFIA BOUKHECHE, KAMIL MERITO, OSCAR ORDAZ, AND WOLFGANG A. SCHMID

Abstract. The investigation of the arithmetic of monoids of zero-sum se-
quences over finite abelian groups is a classical subject due to their crucial role
in understanding the arithmetic of (transfer) Krull monoids. More recently,
sequences that admit, for a given set of weights, a weighted zero-sum received
increased attention. Yet, the focus was on zero-sum constants rather than the
arithmetic of the monoids formed by these sequences. We begin a systematic
study of the arithmetic of these monoids. We show that for a wide class of
weights unions of sets of lengths are intervals and we obtain various results
on the elasticity of these monoids. More detailed results are obtained for the
special case of plus-minus weighted sequences. Moreover, we apply our results
to obtain results on factorizations of norms of algebraic integers.

1. Introduction

The investigation of zero-sum sequences over (finite) abelian groups by now has
a considerable tradition (see, e.g., [8], [12, Chapters 5 and 6], [18, Part II], [27,
Chapter 9]). We recall that a collection of elements g1 . . . gl of a finite abelian
group (G,+, 0G) is said to have sum zero, if the sum of all these elements is the
neutral element of the group, that is, g1 + · · · + gl = 0G. One can consider sets
or sequences of elements, in the former case there are no repetitions of elements
in the latter case there are repetitions of elements; to be precise, usually one does
not take the ordering of the elements in the sequence into account, indeed formally
sequences in this context are elements of the free abelian monoid over G. We refer
to Section 2 for further details.

Besides the study of zero-sum constants such as the Erdős–Ginzburg–Ziv con-
stant and the Davenport constant, considerable effort was put into the investigation
of the arithmetic of the monoids of zero-sum sequences over abelian groups, mainly
finite abelian groups. A main reason for this is that they are an important class
of auxiliary monoids in factorization theory (see, e.g., [9, 10, 12]). Every Krull
monoid, in particular the multiplicative monoid of every Dedekind domain, admits
a transfer homomorphism to a monoid of zero-sum sequences. Another reason is
that they are monoids that are easily described yet show rich phenomena regarding
their arithmetic.

In recent years the investigation of zero-sum problems was extended by introduc-
ing ‘weights’. Intuitively, this means that rather than considering simply the sum
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of the elements, one allows to assign weights to the elements, for example allowing

weights from the set {1, 3} means that one considers sums of the form
∑l

i=1 wigi
where wi ∈ {1, 3}, that is one can assign a different ‘weight’ to some elements by
chosing wi to equal 3 rather than 1.

Of course in a finite abelian group, ‘weight’ has to be understood figuratively.
But we recall that an early example of a zero-sum problem originated from the
question of the existence of points in an integral lattice whose barycenter is again
a lattice point [20], and in that context the idea of assigning different weights to
the points would make sense in a more literal sense.

It turns out that for certain applications a more general notion of ‘weights’ is
relevant. The generalization becomes intuitive, when one interprets for an integer
w the notion ‘multiplication by w’ as an endomorphism of the abelian group G.
Then, the idea to allow any endomorphism of G as a ‘weight,’ rather than just those
induced by multiplication by an integer becomes very natural. Generalizations of
the notion of ‘weight’ even beyond that are possible and appear in the literature,
but we will not consider them in the current paper (see [29] and [18, Chapter 16]).

This generalization, introducing weights, received considerable interest (see, e.g.,
[2, 3]). Those investigations were however focused on the investigation of zero-sum
constants. In this paper, we start an investigation of the monoids of sequences over
finite abelian groups that admit zero-sums with weights. For a precise definition
see Section 2.

After collecting the main definitions, we study the basic algebraic properties of
these monoids. Then, we investigate certain classical arithmetical invariants for
these monoids in detail, namely elasticities and unions of sets of lengths. It turns
out that these investigations bear similarity to those of the arithmetic of product-
one sequences over non-abelian groups (see the recent papers [13, 24]). We end by
showing that our results are not only a natural generalization of existing results
but that they have actual applications, too. We give an arithmetic application in
Section 7, namely we show that these monoids arise when investigating monoids
of norms of algebraic integers; a closely related connection already appears in [19]
and more implicitly in [23, Section 9.2].

2. Preliminaries

We recall some definitions and notations. For the most part, our notations are
fairly common in factorization theory and we follow [12]. By N and N0 we denote
the set of positive and non-negative integers, respectively. For real numbers a and
b, we denote by [a, b] = {x ∈ Z : a ≤ x ≤ b} the interval of integers.

In general, we use additive notation for abelian groups. We denote by Cn a
cyclic group of order n. For (G,+, 0), a finite abelian group, there are uniquely
determined 1 < n1 | · · · | nr such that G ∼= Cn1

⊕ · · · ⊕ Cnr
. One calls r the rank,

denoted r(G) and nr the exponent of G, denoted exp(G); the exponent of a group
of order 1 is 1 and its rank is 0. By a basis of G we mean an independent generating
family of elements (e1, . . . , es) of G; the family (e1, . . . , es) is called independent if
∑s

i=1 aiei = 0 with ai ∈ Z implies that aiei = 0 for each i ∈ [1, s]. For a basis
(e1, . . . , es) of G each element of G can be written in a unique way as

∑s

i=1 aiei
with ai ∈ [0, ord(ei)− 1].

For subsets A,B of G let A+ B = {a+ b : a ∈ A, b ∈ B} denote the sumset of
A and B.
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In this paper, by a monoid we always mean a commutative semigroup with
identity that satisfies the cancellation law (that is, if a, b, c are elements of the
monoid with ab = ac, then b = c follows). In general, we use multiplicative notation
for monoids. If we want to include the non-commutative case, we stress it explicitly
and speak of not necessarily commutative monoids (they still have an identity and
satisfy the cancellation law).

An element a of a monoid H is called invertible if there exists an element a′ ∈ H
such aa′ = 1H where 1H denotes the identity of H . The set of invertible elements
of H is denoted by H×; it is a subgroup of H . We call the monoid reduced if 1H
is the only invertible element of H . We call Hred = H/H× the reduced monoid
associated to H . An element a ∈ H is called irreducible or an atom (in H) if a = bc
with b, c ∈ H implies that b or c are invertible. The set of irreducible elements of H
is denoted by A(H). An element p ∈ H \H× is called prime if p | bc with b, c ∈ H
implies that p | b or p | c. The set of prime elements of H is denoted by P(H). It
is not hard to see that P(H) ⊆ A(H). In general, equality does not hold. Indeed,
for an atomic monoid H equality holds if and only if H is factorial, that is, up to
ordering and associates, each element has a unique factorization into irreducible
elements.

For a set P a sequence over P is formally defined as an element of F(P ) the
free abelian monoid over P . Thus, for a sequence S ∈ F(P ), there exist unique
vp ∈ N0, all but finitely many equal to 0, such that S =

∏

p∈P pvp . Then, one
calls vp the multiplicity of p in S or also its p-adic valuation of S; it is denoted by
vp(S). Alternatively, there exist up to ordering uniquely determined p1, . . . , pℓ ∈ P
(not necessarily distinct) such that S = p1 . . . pℓ. Thus, informally, a sequence
is a collection of elements of P where repetitions are allowed and the ordering of
elements is disregarded; one might also call these unordered sequences or multi-sets.

We call the identity element of the monoid of sequences, the empty sequence,
and simply denote it by 1 unless there is a risk of confusion. Further, we denote by
|S| = ℓ the length of S.

Formally, a subsequence of S is a sequence T that divides S in the monoid of
sequences, that is T =

∏

i∈I pi for some I ⊆ [1, ℓ]. Moreover, we denote by T−1S

the sequence fulfilling (T−1S)T = S, that is T−1S =
∏

i∈[1,ℓ]\I pi. This matches

the intuitive idea of a subsequence of a sequence. If P ′ is a set and f : P → P ′

some map, then f can be extended to a homomorphism of monoids from F(P ) to
F(P ′), which we continue to denote by f . In particular, for a sequence S we denote
by −S the sequence where each term g in S is replaced by −g.

Often we consider sequences over a subset G0 of an abelian group. In this case,

for a sequence S = g1 . . . gℓ ∈ F(G0) we denote by σ(S) =
∑ℓ

i=1 gi ∈ G its sum,
and the set Σ(S) = {σ(T ) : 1 6= T | S} is called the set of (nonempty) subsums
of S. A sequence whose sum is 0, the neutral element of the group, is called a
zero-sum sequence. The sequence S is called zero-sum free if 0 /∈ Σ(S). The set
of all sequences over G0 that are zero-sum sequences is denoted by B(G0), and it
is easy to see that B(G0) is a submonoid of F(G0). If G′ is an abelian group and
f : G → G′ is a group homomorphism, then the image of B(G) under f is contained
in B(G′).

Next, we recall the notion of sequences that admit a weighted zero-sum. Tra-
ditionally, one had taken sets of integers as sets of weights. For W ⊆ Z a set of

weights, an element of the form
∑ℓ

i=1 wigi with wi ∈ W is called a W -weighted
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sum of S. However, for our current application another, more general, notion of
weights is necessary, which also already appears in the literature see, e.g., [18].

For a subset Ω ⊆ End(G) of endomorphisms of the finite abelian group G, an

element
∑ℓ

i=1 ωi(gi) with ωi ∈ Ω is called an Ω-weighted sum of S. We denote by
σΩ(S) the set of all Ω-weighted sums of S. We say that S admits an Ω-weighted zero-
sum if 0 ∈ σΩ(S); we also call such a sequence an Ω-weighted zero-sum sequence. We
denote the set of all Ω-weighted zero-sum sequences over G0 by BΩ(G0). Explicitly,
a sequence S = g1 . . . gl with gi ∈ G0 is in BΩ(G0) if there exist ωi ∈ Ω such that
ω1(g1) + · · · + ωl(gl) = 0. If there is no risk of confusion we just write ωg instead
of ω(g).

An element is called an Ω-weighted subsum of S if it is an Ω-weighted sum of a
non-empty subsequence of S. We denote the set of all Ω-weighted subsums of S by
ΣΩ(S). The sequence S is called Ω-weighted zero-sum free if 0 /∈ ΣΩ(S). In this
context, we call Ω a set of weights.

To see the link between the two notions it suffices to recall that, for an integer
w, multiplication by an integer w induces an endomorphism of the abelian group
G. Thus, this can be considered as a generalization of the notion of weights. For
the sake of completeness, we note that different integers can induce the same endo-
morphism, in that sense it is not a generalization in a very strict sense. However,
this is essentially inconsequential in our context, and in any case it is common to
only consider sets of integral weights that do not contain distinct integers that are
congruent modulo the exponent of the group, in which case each integer does yield
a distinct endomorphism. Thus, for all practical purposes, the latter generalizes
the former notion of weights. We recall that there is an even more general notion
of weights for sequences (where rather than endomorphisms of an abelian group,
one considers homomophisms between two abelian groups), see [29].

The case Ω = {idG}, corresponds to the problem without weights. It should be
noted though that σ{idG}(S) is not σ(S) but {σ(S)}. Especially when used as a
subscript, we use the symbol ± to denote the set of weights {+ idG,− idG}, and
we use the terminology plus-minus weighted or ±-weighted to refer to this set of
weights; to emphasis this we usually write + idG instead of idG.

We recall some more concepts from factorization theory. A monoid H is called
atomic if each non-invertible element of H can be written as a (finite) product of ir-
reducible elements. The monoid of factorizations ofH , denoted Z(H), is the monoid
F(A(Hred)). Informally, the elements of the monoid of factorizations correspond to
factorizations of elements of H into irreducible elements where factorizations that
differ only by the ordering of the terms or multiplication by units are considered as
equal.

The homomorphism πH : Z(H) → Hred, which maps the formal product a1 . . . ak
to its value, is called the factorization homomorphism. It is surjective if and only if
H is atomic. For a ∈ H , the set ZH(a) = π−1

H (aH×) is called the set of factorizations
of a in H ; if the monoid H is obvious from context we drop H from the notation.

For z ∈ Z(H), one calls |z|, which is defined as Z(H) is a free monoid, the
length of the factorization; informally it is the number of irreducible elements in
the factorization where multiplicities are taken into account. Moreover, one calls
LH(a) = {|z| : z ∈ ZH(a)} the set of length of a in H . Moreover, the system of set
of lengths of H is defined as L(H) = {LH(a) : a ∈ H}.
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The monoid is called a bounded factorization monoid, BF-monoid for short,
if LH(a) is finite for each a ∈ H . Similarly, monoids for which even the sets of
factorizations are finite are called finite factorization monoids. We note that H is
factorial if and only if |ZH(a)| = 1 for each a ∈ H . One says that H is half-factorial
if |LH(a)| = 1 for each a ∈ H .

Let H and B be monoids. A monoid homomorphism Θ : H → B is called a
transfer homomorphism when it has the following two properties:

T1 B = Θ(H)B× and Θ−1(B×) = H×.
T2 If u ∈ H and b, c ∈ B with Θ(u) = bc, then there exist v, w ∈ H such that

u = vw, Θ(v) ≃ b and Θ(w) ≃ c.

The relevance of this notion is due to the fact that it preserves many arithmetical
properties. In particular, if Θ : H → B is a transfer homomorphism, then LH(a) =
LB(Θ(a)), and L(H) = L(B). We refer, for example, to [9, Section 1.3]. More
recently, this notion was generalized to not necessarily commutative monoids; we
refer to [4] yet do not recall the details here.

There are various arithmetical invariants that are derived from sets of lengths.
We recall some of them. For a more complete presentation see, e.g., [10, 12, 16].

Let k ∈ N and let H be an atomic monoid. To avoid complications in trivial
corner cases we assume that H 6= H× . Then

Uk(H) =
⋃

L∈L(H),k∈L

L

denotes the union of sets of length of H containing k. Furthermore, one sets
ρk(H) = supUk(H) and λk(H) = minUk(H).

The value ρk(H) is sometimes called the k-th local elasticity of H . This termi-
nology is derived from that of the elasticity of a monoid, denoted ρ(H). If A ⊆ N,
we call ρ(A) = supA/minA ∈ Q≥1∪{∞} the elasticity of A, and we set ρ({0}) = 1.
The elasticity of an element a ∈ H , denoted ρ(a), is just ρ(LH(a)). Finally, the
elasticity of H , denoted ρ(H), is defined as sup{ρ(a) : a ∈ H} ∈ Q≥1 ∪ {∞}. It is
not difficult to see that ρ(H) = limk→∞ ρk(H)/k.

We end by recalling the definition of the set of (successive) distances of a monoid;
we do not study it specifically in this paper, but need to invoke it in some arguments.
For A ⊆ Z, we denote by ∆(A) the set of (successive) distances of A, that is the set
of all d ∈ N for which there exists some ℓ ∈ A such that A ∩ [ℓ, ℓ+ d] = {ℓ, ℓ+ d}.
Clearly, ∆(A) ⊆ {d} if and only if A is an arithmetical progression with difference
d. A set A is called an interval if it is an arithmetical progression with difference 1.
We set ∆(H) =

⋃

a∈H ∆(L(a)). The monoid is half-factorial if and only if ρ(H) = 1
if and only if ∆(H) = ∅.

We briefly recall the notion of Krull monoids. For a submonoid H ′ of a monoid
H , we say that H ′ ⊆ H is saturated when a | b in H if and only if a | b in H ′.
A monoid H that is a saturated submonoid of a factorial monoid is called a Krull
monoid. It is well-known that a Krull monoid admits a transfer homomorphism to a
monoid of zero-sum sequences over its class group, more precisely to the monoid of
zero-sum sequences over the subsets of classes containing prime divisors. A monoid
is called transfer Krull if it admits a transfer homomorphism to a monoid of zero-
sum sequences (see [10, Section 4]). Numerous monoids of arithmetical interest are
Krull monoids or at least transfer Krull monoids, and they are no doubt the most
intensely studied class of monoids in factorization theory (see [10, 16, 26]). In the
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current paper, they do not play that prominent a role, thus we refrain from giving
further details.

3. The monoid of sequences that admit an Ω-weighted zero-sum

The purpose of this section is to introduce monoids of sequences over a finite
abelian group G that admit an Ω-weighted zero-sum for a general set of weights
Ω ⊆ End(G) and to establish first results on their arithmetic. We establish common
finiteness results. In Section 5 we will refine some of these results. In Section 6
more detailed results are obtained for the case of plus-minus weights, that is for
the special case Ω = {+ idG,− idG}.

We denote, for G0 a subset of a finite abelian group, by BΩ(G0) = {S ∈
F(G0) : 0 ∈ σΩ(S)} the set of sequences overG0 that admit an Ω-weighted zero-sum
over G0. As remarked earlier such sequences are also called Ω-weighted zero-sum
sequences, and one thus might refer to BΩ(G0) as the set of Ω-weighted zero-sum
sequences. To avoid confusion we stress that the sums are ‘weighted’ not the se-
quences themselves; the elements of BΩ(G0) are just sequences over G0, that is
BΩ(G0) ⊆ F(G0).

Noting that σΩ(S1S2) = σΩ(S1)+ σΩ(S2), and σΩ(1F(G0)) = {0}, it follows that
BΩ(G0) is a submonoid of F(G0). Since {ω(σ(S)) : ω ∈ Ω} ⊆ σΩ(S), it follows that
if 0 = σ(S), then 0 ∈ σΩ(S), that is, B(G0) ⊆ BΩ(G0).

Since BΩ(G0) is a submonoid of the free monoid F(G0), it follows that BΩ(G0)
is atomic and even a BF-monoid (see [12, Corollary 1.3.3 ]). We show that BΩ(G0)
is finitely generated, which yields various additional finiteness results for its arith-
metical invariants. To show that the monoid is finitely generated, we need to study
the set of irreducible elements BΩ(G0).

By definition, a sequence S ∈ BΩ(G0) \ {1} is irreducible in BΩ(G0), in other
words S ∈ A(BΩ(G0)) if it is not possible to write S = S1S2 with S1, S2 ∈ BΩ(G0)\
{1}. We call such a sequence a minimal Ω-weighted zero-sum sequence. We stress
that in contrast to the problem without weights this definition is not, in general,
equivalent to saying that the Ω-weighted zero-sum sequence S has no proper and
non-empty Ω-weighted zero-sum subsequence. In other words, it is possible that
S = S1T with S, S1 ∈ BΩ(G0) and T ∈ F(G) yet T /∈ BΩ(G0). The point is that
σΩ(S1), σΩ(T ) are subsets of G and it is well possible that for subsets A,B of an
abelian group one has 0 ∈ A+B = {a+b : a ∈ A, b ∈ B} and 0 ∈ A yet 0 /∈ B, while
for elements a, b ∈ G of course 0 = a+ b and 0 = a implies 0 = b. That is, BΩ(G0)
is not necessarily a saturated submonoid of F(G0), and thus not necessarily Krull.
Of course, in some specific cases it might still be Krull. We discuss this problem
towards the end of this section.

The Davenport constants play an important role in the investigations of the
arithmetic of monoids of zero-sum sequences. As mentioned earlier there are varied
investigations on Davenport constants with weights. However, some care is needed
as those constants do not correspond to the constants most relevant in the present
context. To explain the situation we recall two definitions from Cziszter, Domokos
and Geroldinger [5, Section 2.5].

Let H be a BF-monoid and let | · | : H → (N0,+) be a homomorphism of
monoids, which in this context is called a degree function, e.g., if H is a subset of
a free monoid then the usual length function is a degree function. Then, for k ∈ N,
the k-th large Davenport constant of H (with respect to the given degree function)
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is defined as sup{|a| : a ∈ Mk(H)} where Mk(H) = {a ∈ H : maxL(a) ≤ k}. For
k = 1, the index is dropped and D(H) = D1(H) is called the Davenport constant
of H .

Let H be a submonoid of a free monoid F and let | · | denote the usual length
function on F , and for k ∈ N let M∗

k(H) be the set of all f ∈ F such that f is
not divisible (in F ) by a product of k non-units in H . The k-th small Davenport
constant of H , denoted dk(H), is defined as sup{|f | : f ∈ M∗

k(H)}. Again, for
k = 1 one just writes d(H) and calls it the small Davenport constant of H . From
the definition it is follows that 1 + dk(H) is the smallest l ∈ N ∪ {∞} such that
every f ∈ F with length at least l is divisible (in F ) by a product of k non-units in
H .

In many common situations it is true that 1 + dk(H) ≤ Dk(H) and not rarely
even equality holds. Most notably this is the case for H = B(G), which allows to
use the two definitions interchangeably. However, in general this is not true and it
is even possible that dk(H) exceeds Dk(H). In particular, the Davenport constant
with weights that one usually finds in the literature and which is often denoted by
DΩ(G), is in fact 1 + d(BΩ(G)), yet not D(BΩ(G)). In light of this, to avoid any
risk of confusion we systematically use the notation for monoids, and do not use
the usual short-hand notation that drops B.

We recall a well-known finiteness result for the Davenport constant, see for ex-
ample [12, Theorem 3.4.2].

Proposition 3.1. Let G be an abelian group and let G0 ⊆ G be a finite subset.

Then D(B(G0)) is finite.

We proceed to show, for subsets of finite abelian groups, that D(BΩ(G0)) is
bounded above by D(B(G)).

Lemma 3.2. Let G be a finite abelian group and let G0 ⊆ G. Then D(BΩ(G0)) ≤
D(B(G)). Moreover A(BΩ(G0)) ∩ B(G0) ⊆ A(B(G)).

Proof. Let g1 . . . gℓ be a sequence in A(BΩ(G0)). Then there exists ωi ∈ Ω such

that
∑ℓ

i=1 ωigi = 0. We assert that (ω1g1) . . . (ωℓgℓ) ∈ A(B(G)). By construction
the sum of the sequence is 0. It remains to show that it is a minimal zero-sum
sequence. Assume that that there is some ∅ 6= I ( [1, ℓ] such that

∏

i∈I(ωigi)
and

∏

i∈[1,ℓ]\I(ωigi) are zero-sum sequences. Then (
∏

i∈I gi) and (
∏

i∈[1,ℓ]\I gi) are

Ω-weighted zero-sum sequences. A contradiction.
Thus, for each S ∈ A(BΩ(G0)) there exists some S′ ∈ A(B(G)) of the same

lengths. This implies that directly that D(BΩ(G0)) ≤ D(B(G)).
The additional statement is readily seen by recalling that B(G0) ⊆ BΩ(G0) and

thus each factorization in B(G0) yields one in BΩ(G0). �

Theorem 3.3. Let G be a finite abelian group. Then 1+ d(BΩ(G)) ≤ D(BΩ(G)) ≤
D(B(G)).

Proof. By Lemma 3.2 we have D(BΩ(G)) ≤ D(B(G)). We now show that 1 +
d(BΩ(G)) ≤ D(BΩ(G)). Let S be a sequence of length ℓ = D(BΩ(G))). We
show that it has a non-empty Ω-weighted zero-sum subsequence. We consider
the sequence (−σ(S))S, which is in B(G) and thus also in BΩ(G) by the inclusion
B(G) ⊆ BΩ(G). Now, |(−σ(S))S| > D(BΩ(G)). Consequently, it is not a minimal
Ω-weighted zero-sum sequence and there exit non-empty S1, S2 ∈ BΩ(G) such that
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(−σ(S))S = S1S2. It follows that S1 or S2 is a subsequence of S, establishing that
it has a non-empty Ω-weighted zero-sum subsequence.

Thus, we established that every sequence of length D(BΩ(G)) has a non-empty
Ω-weighted zero-sum subsequence. Since by definition 1+ d(BΩ(G)) is the smallest
positive integer with this property, we have 1 + d(BΩ(G)) ≤ D(BΩ(G)). �

We record the following direct corollary.

Corollary 3.4. Let G be a finite abelian group and let G0 ⊆ G. Let Ω ⊆ End(G)
be a set of weights. The monoid BΩ(G0) is finitely generated.

Proof. Since the length of elements of A(BΩ(G0)) is bounded above by D(BΩ(G0)),
which is finite by Lemma 3.2, it follows that the set A(BΩ(G0)) is finite, that is,
the monoid is finitely generated. �

This result has immediate and strong consequences for the arithmetic of these
monoids, which we discuss belows. However, first we establish another lower bound
on the Davenport constant that we need later on.

Lemma 3.5. Let G = G1 ⊕G2 be a finite abelian group. Let Ω ⊆ End(G) be a set

of endomorphisms that forms a group under composition and such that ω(Gi) ⊆ Gi

for i ∈ {1, 2}. Then D(BΩ(G)) ≥ D(BΩ(G1)) + D(BΩ(G2))− 1.

Proof. For i ∈ {1, 2}, let Ai be an element of A(BΩ(Gi)) of maximal length; fur-
thermore let gi be some fixed element of Ai and let Ai = giFi. Since 0 ∈ σΩ(Ai)
for i ∈ {1, 2}, there is some ωi ∈ Ω such that ωigi ∈ −σΩ(Fi). We consider
A = (ω1g1 + ω2g2)F1F2 and assert that it is contained in A(BΩ(G)). We start
by showing that 0 ∈ σΩ(A). Since Ω is a group, there is some ǫ ∈ Ω such that
ǫ ◦ ωi = ωi for i ∈ {1, 2}.

Now, ǫ(ω1g1 + ω2g2) ∈ −(σΩ(F1) + σΩ(F2)) = −(σΩ(F1F2)), implies that 0 ∈
σΩ(A). It remains to show that there is no decomposition A = A′A′′ with non-
empty A′ and A′′ such that 0 ∈ σΩ(A

′) and 0 ∈ σΩ(A
′′). Assume to the contrary

that such a decomposition exists. Without loss we may assume that ω1g1 + ω2g2
occurs in A′. We write A′ = (ω1g1 + ω2g2)F

′
1F

′
2 and A′′ = F ′′

1 F
′′
2 where Fi = F ′

iF
′′
i

for i ∈ {1, 2}.
Since 0 ∈ σΩ(A

′′) and σΩ(F
′′
i ) ⊆ Gi for i ∈ {1, 2}, it follows that 0 ∈ σΩ(F

′′
i ).

Moreover, there is some ω ∈ Ω such that ω(ω1g1 + ω2g2) ∈ −σΩ(F
′
1F

′
2). It follows

that ω(ωigi) ∈ −σΩ(F
′
i ) for i ∈ {1, 2}. Now, since ω ◦ ωi ∈ Ω, this implies that

0 ∈ σΩ(giF
′
i ). Thus, Ai = (giF

′
i )F

′′
i and 0 ∈ σΩ(giF

′
i ) and 0 ∈ σΩ(F

′′
i ). Since

at least one of F ′′
1 and F ′′

2 is non-empty and g1F1′ and g2F
′
2 are of course both

non-empty, we get a contradiction to A1 or A2 being irreducible. �

We now turn to the arithmetic of monoids of weighted zero-sum sequences.

Theorem 3.6. Let G be a finite abelian group and let G0 ⊆ G. Let Ω ⊆ End(G)
be a set of weights. Let H = BΩ(G0).

(1) The set ∆(H) and the constant ρ(H) are finite.

(2) There is some M ∈ N0 such that each set of lengths L of H is an almost

arithmetical multiprogression with bound M and difference d ∈ ∆(H)∪{0},
that is, L = y+(L1∪L∗∪L2) ⊆ y+D+dZ with y ∈ N0, {0, d} ⊆ D ⊆ [0, d],
L1,−L2 ⊆ [1,M ], minL∗ = 0 and L∗ = [0,maxL∗] ∩D + dZ.
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(3) There is some M ′ ∈ N0 such that each k ∈ N0 the set Uk(H) is an almost

arithmetical progression with bound M ′ and difference min∆(H), that is,

Uk(H) = y′ + (U1 ∪ U∗ ∪ U2) ⊆ y + dZ with y ∈ N0, U1,−U2 ⊆ [1,M ′],
minU∗ = 0 and U∗ = [0,maxU∗] ∩ dZ.

Proof. By Corollary 3.4 the monoid is finitely generated. The claim now follows
from results on finitely generated monoids, specifically see [12, Theorem 3.1.4 and
4.4.11], and for the final part see [6, Theorem 3.6]. �

It is also known that various other arithmetic invariants of H are finite, including
the catenary degree c(H) and the tame degree t(H), in particular the monoid is
locally tame; moreover in the result above the set of distances ∆(H) can be replaced
by ∆∗(H) and it is know that the elasticity is accepted. We refer to the references
mentioned in the proof just above and [16, Section 3].

We recall that the second point of the result is referred to as Structure Theorem
for Sets of Lengths, while the third is called Structure Theorem for Unions.

In Section 5 we refine the Structure Theorem for Unions for this class of monoids
showing that for a wide class of weights the sets are indeed arithmetic progressions,
with difference 1, i.e., intervals of integers.

We end this section by some more algebraic results on these monoids. We show
that in general they are not Krull monoids, not even transfer Krull monoids. How-
ever, they are still C-monoids; we refer to [12, Section 2.9] for a definition. For
the special case of plus-minus weighted zero-sum sequences it is possible to char-
acterize completely when such a monoid is Krull and transfer Krulll. This is done
in Proposition 3.8, which is due to Geroldinger and Zhong [17] including the main
idea of the lemma preceding it.

Lemma 3.7. Let G be an abelian group with exp(G) ≥ 3. Let Ω be a set of weights

such that {+ idG,− idG} ⊆ Ω ⊆ Aut(G). Then BΩ(G) is not a transfer Krull

monoid.

Proof. Assume to the contrary that there is a transfer homomorphism θ : BΩ(G) →
B(G0), where G0 is a subset of any abelian group. Let g ∈ G with ord(g) ≥ 3. We
observe that

A1 = g2, A2 = (2g)2, and A3 = g2(2g)

are atoms of BΩ(G); indeed, that A1, A2, A3 ∈ BΩ(G) follows from {+ idG,− idG} ⊆
Ω, that they are irreducible follows from ω(g) and ω(2g) being non-zero for each
ω ∈ Ω.

Since A2
3 = A2

1A2, we have θ(A2
3) = θ(A2

1A2) and it follows that

θ(A3)
2 = θ(A1)

2θ(A2) ∈ B(G0) ⊆ F(G0) .

Therefore θ(A1)
2 divides θ(A3)

2 in F(G0) whence θ(A1) divides θ(A3) in F(G0).
This implies that θ(A1) divides θ(A3) in B(G0) and hence θ(A1) = θ(A3) (because
both elements are atoms). Thus we get θ(A2) = 1, a contradiction to the first
condition in the definition of transfer homomorphism. �

Proposition 3.8. Let G be an abelian group and B±(G) the monoid of ±-zero-sum

sequences. Then the following statements are equivalent:

(a) G is an elementary 2-group.
(b) B±(G) is a Krull monoid.

(c) B±(G) is a transfer Krull monoid.
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Proof. (a) ⇒ (b) If G is an elementary 2-group, then B±(G) = B(G) as −g = g for
each g ∈ G, and B(G) is a Krull monoid.

(b) ⇒ (c) Obvious.
(c) ⇒ (a) Since the conditions on the set of weights in Lemma 3.7 hold, B±(G)

can only be a transfer Krull monoid when G contains no element of order at least
3, that is G is an elementary 2-group �

In other words, unless B±(G) = B(G), the monoid B±(G) is not a Krull monoid.
However, we now show that for finite abelian G and Ω a set of weights, the monoid
BΩ(G) is a C-monoid. To this end we recall a result by Cziszter, Domokos and
Geroldinger [5, Proposition 2.6.3] in a spcial case.

Proposition 3.9. Let H be a finitely generated and reduced monoid. Suppose that

H is a submonoid of a free monoid F(P ). The following statements are equivalent:

(1) H is a C-monoid defined in F(P ) and for every p ∈ P there is an a ∈ H
such that vp(a) > 0.

(2) For every a ∈ F(P ) there is an na ∈ N such that ana ∈ H.

Theorem 3.10. Let G be a finite abelian group and let G0 ⊆ G. Let Ω ⊆ End(G)
be a set of weights. The monoid BΩ(G0) is a C-monoid defind in F(G0).

Proof. By Proposition 3.9, it suffices to show that for S ∈ F(G0) there is an n ∈ N
such that Sn ∈ BΩ(G0). Let ω ∈ Ω. Let n denote the least common multiple of
{ord(ω(g)) : g | S}. Then 0 = σ(ω(Sn)) ∈ σΩ(S

n). �

4. Some general auxiliary results

We collect some results that are useful for our investigations but are not specific
to monoids of (weighted) zero-sum sequences. For the most part they concern the
sets Uk(H) and related notions. We refer to [9, Lemma 5.2 ] for further details.

Lemma 4.1. Let H be an atomic monoid with k, l ∈ N0 then:

(1) Uk(H) = {k} for k ∈ {0, 1} and k ∈ Uk(H) for each k ∈ N.
(2) For k, l ∈ N we have l ∈ Uk(H) if and only if k ∈ Ul(H).
(3) Uk(H) + Ul(H) ⊆ Uk+l(H).
(4) λk+l(H) ≤ λk(H) + λl(H) ≤ k + l ≤ ρk(H) + ρl(H) ≤ ρk+l(H).
(5) ρk(H) ≤ kρ(H) and k ≤ λk(H)ρ(H).

We make some further general observations on these constants.

Lemma 4.2. Let H be an atomic monoid. Let k ∈ N.

(1) ρλk(H)(H) ≥ k.
(2) If ρk(H) is finite, then λρk(H)(H) ≤ k.

Proof. 1. Since by definition λk(H) ∈ Uk(H), it follows by Lemma 4.1.2 that
k ∈ Uλk(H)(H). Since by definition ρλk(H)(H) = supUλk(H)(H), it is thus plain
that ρλk(H)(H) ≥ k.

2. Since ρk(H) is finite, we have ρk(H) ∈ Uk(H), and again by Lemma 4.1.2
k ∈ Uρk(H)(H) and hence λρk(H)(H) ≤ k. �

Lemma 4.3. Let H be an atomic monoid. Let k ∈ N. Suppose that Ui(H) is an

interval for each i ≤ k. Then, we have λk(H) = min{i : ρi(H) ≥ k}.
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Proof. Let j ∈ N be minimal such that ρj(H) ≥ k; note that since ρk(H) ≥ k by
Lemma 4.2 such a j exists and j ≤ k.

Since j ≤ k ≤ ρj(H) and Uj(H) is an interval, it follows that k ∈ Uj(H). Thus,
by Lemma 4.1.2 we have j ∈ Uk(H) and therefore λk(H) ≤ j.

Since by Lemma 4.2, we have ρλk(H)(H) ≥ k, it follows that min{i : ρi(H) ≥
k} ≤ λk(H). �

Lemma 4.4. Let H be an atomic monoid. Let k ∈ N. Suppose that Ui(H) is an

interval for each i ≤ k. Then, we have ρk(H) = sup{i : λi(H) ≤ k}.

Proof. Let j ∈ N with j ≥ k such that λj(H) ≤ k; note that since λk(H) ≤ k such
a j exists.

Since λj(H) ≤ k ≤ j and Uj(H) is an interval, it follows that k ∈ Uj(H). Thus,
by Lemma 4.1.2 we have j ∈ Uk(H) and therefore ρk(H) ≥ j. Thus, ρk(H) ≥
sup{i : λi(H) ≤ k}.

If sup{i : λi(H) ≤ k} is infinite, it follows that ρk(H) = ∞. Assume that
sup{i : λi(H) ≤ k} is finite and let j > sup{i : λi(H) ≤ k}. Assume that ρk(H) ≥
j. Since Uk(H) is an interval, it follows that j ∈ Uk(H). Yet, this implies that
k ∈ Uj(H) and thus k ≤ λj(H), a contradiction to j > sup{i : λi(H) ≤ k}. Thus
ρk(H) < j and the claim follows. �

The following lemma is a slight generalization of [24, Lemma 5.1].

Lemma 4.5. Let P be a set and let S1, · · · , Sk, T1, · · · , Tℓ ∈ F(P ) be non-empty

sequences such that

S1 . . . Sk = T1 . . . Tℓ.

If k < ℓ, then there exists some i0 ∈ [1, k] and j1, j2 ∈ [1, ℓ] such that p1p2 | Si0 and

p1 | Tj1 and p2 | Tj2 .

Proof. We assume that k < ℓ and proceed by induction on k. Set k = 1. Suppose
for any two h, h′ with hh′ | S1 there are no j, j′ ∈ [1, ℓ] such that h | Tj and h′ | Tj′ .
It follows that S1 = Sk | Tj for some j ∈ [1, ℓ] say Sk | Tℓ. Now, we get

1F(G) = T1T2 . . . (TℓS
−1
k )

a contradiction since T1 is non empty. Suppose now k ≥ 2 and assume the claim is
true for k−1 we have S1 . . . Sk = T1 . . . Tℓ; as before we obtain that Sk | Tℓ say. We
consider S1 . . . Sk−1 = T1 · · · Tℓ−1(TℓS

−1
k ). Now, the claim follows by the induction

hypotheses applied to S1 . . . Sk−1 = T1 . . . Tℓ−1. �

In the lemma below, which is essentially in [1] see in particular Theorem 2.1, we
adopt the convention that a/0 = ∞ for a ∈ R≥0 ∪ {∞}. Note that the condition
that H is not factorial guarantees that A(H) \P(H) 6= ∅. Of course, for a factorial
monoid H one has ρ(H) = 1, thus nothing is lost by excluding this case.

Lemma 4.6. Let H be an atomic monoid that is not factorial. Let r : H →
(R≥0,+) be a monoid homomorphism.

(1) Let r1 = inf{r(a) : a ∈ A(H)} and let R1 = sup{r(a) : a ∈ A(H)}. Then

ρ(H) ≤ R1/r1.
(2) Let r2 = inf{r(a) : a ∈ A(H) \ P(H)} and let R2 = sup{r(a) : a ∈ A(H) \

P(H)}. Then ρ(H) ≤ R2/r2.
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Proof. Since r is a monoid homomorphism, it follows that r(u) = 0 for each u ∈ H×.
Without loss we can assume that the monoid is reduced.

1. Let a1, . . . , ak, b1, . . . , bl ∈ A(H) such that a1 . . . ak = b1 . . . bl. It suffices to
show that l/k ≤ R1/r1. We note that

kR1 ≥ r(a1) + · · ·+ r(ak) = r(a1 . . . ak) = r(b1 . . . bl) = r(b1) + · · ·+ r(bl) ≥ lr1,

and the claim follows.
2. Let a1, . . . , ak, b1, . . . , bl ∈ A(H) such that a1 . . . ak = b1 . . . bl. Suppose first

that none of a1, . . . , ak, b1, . . . , bl is prime. Then, of course, we can conclude

kR2 ≥ r(a1) + · · ·+ r(ak) = r(a1 . . . ak) = r(b1 . . . bl) = r(b1) + · · ·+ r(bl) ≥ lr2.

Suppose that this is not the case, say, renumbering if necessary, a(k−r)+1, . . . , ak
are prime while a1, . . . , ak−r are not prime. It follows, renumbering if necessary,
that ak−r+i = bl−r+i for each 1 ≤ i ≤ r and that a1 . . . ak−r = b1 . . . bl−r. If
k− r = 0, our claim is trivially true and we assume that k− r 6= 0. Since now none
of a1, . . . ak−r, b1, . . . , bl−r are prime (note that if one of the bj is prime also one of
the ai would be prime), we get as above

(k − r)R2 ≥ (l − r)r2

and thus
k − r

l − r
≤

R2

r2
.

Now for k ≥ l we have that k−r
l−r

≥ k
l
and thus

k

l
≤

R2

r2
.

This completes the proof as for k < l the inequality holds trivially. �

5. Results on Uk(H) for monoids of weighted zero-sum sequences

The purpose of this section is to obtain various results for Uk(H) for monoids
of weighted zero-sum sequences that go beyond what was already established in
Theorem 3.6. First, we establish that under some assumptions on the weights
these sets are intervals, that is, arithmetic progressions with difference 1. We then
proceed to study the maxima and minima of these sets, that is ρk(H) and λk(H),
which in combination yields a complete description of these sets.

For the proof of our results, we use the results of Section 3 of [7] that are valid
for BΩ(G); we summarize them in the following lemma.

Lemma 5.1. Let H be an atomic monoid. Suppose that ∆(H) 6= ∅ and d =
min∆(H). Then, we have:

(1) ∆(Uk(H)) ⊆ dN, and there exists k∗ ∈ N such that min∆(Uk(H)) = d for

all k ≥ k∗.
(2) sup∆(Uk(H)) ≤ sup∆(H) for all k ∈ N.
(3) If k ∈ N and Um(H) ∩ N≥m is an arithmetical progression with difference

d for all m ∈ [λk(H), k], then Uk(H) ∩ [0, k] is an arithmetical progression

with difference d.
(4) The following statements are equivalent:

(a) Uk(H) ∩ N≥k is an arithmetical progression with difference d.
(b) Uk(H) is an arithmetical progression with difference d for all k ∈ N.
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We show that the sets Uk(BΩ(G)) are intervals if the set of weights Ω ⊆ End(G) is
a group with respect to composition of endomorphisms. We stress that Ω might be
a group while not containing idG, which makes some slight additional complication
in the argument. Indeed, in some other results we assume in addition that idG ∈ Ω,
in other words we make the stronger assumption that Ω is a subgroup of Aut(G).

Theorem 5.2. Let G be a finite abelian group. Let Ω ⊆ End(G). If Ω is a group

with respect to composition of endomorphisms, then Uk(BΩ(G)) is an interval for

each k ∈ N.

Proof. By Lemma 5.1 it suffices to show that Uk(BΩ(G)) ∩ N≥k is an interval for
each k ∈ N. This means we need to show that [k, ρk(BΩ(G))] ⊆ Uk(BΩ(G)).

Let ℓ ∈ [k, ρk(BΩ(G))] be minimal such that [ℓ, ρk(BΩ(G))] ⊆ Uk(BΩ(G)). This
is well-defined as of course for ℓ = ρk(BΩ(G)) we have [ℓ, ρk(BΩ(G))] ⊆ Uk(BΩ(G)).
We want to show that ℓ = k. Assume to the contrary ℓ > k.

We consider the set of all B ∈ BΩ(G) with {k, j} ⊆ L(B) for some j ≥ ℓ. Let B0

be such an element such that |B0| is minimal among all these elements. Now, let
B0 = U1 . . . Uk = V1 . . . Vj .

By Lemma 4.5 we may assume that there are

g1g2 | U1 such that g1 | Vj−1 and g2 | Vj .

Let ωi ∈ Ω such that Σ
|U1|
i=1ωigi = 0. Let g0 = ω1g1 + ω2g2. Put U ′

1 =
g0(g1g2)

−1U1 and V ′
j−1 = g0Vj−1Vj(g1g2)

−1. Since −g0 = −(ω1g1 + ω2g2) ∈

σΩ((g1g2)
−1U1) and since Ω is a group ω(−g0) ∈ σΩ((g1g2)

−1U1) for some (in fact,
for each) ω ∈ Ω, it follows that 0 ∈ σΩ(U

′
1). We assert that 0 ∈ σΩ(V

′
j−1) holds

as well. To see this note that 0 ∈ σΩ(Vj−1) implies that −ω′
1g1 ∈ σΩ(g

−1
1 Vj−1)

for some ω′
1 ∈ Ω. Since Ω is a group, it follows that −ω′

1g1 ∈ σΩ(g
−1
1 Vj−1) for

every ω′
1 ∈ Ω in particular −ω1g1 ∈ σΩ(g

−1
1 Vj−1). In the same way we obtain

−ω2g2 ∈ σΩ(g
−1
2 Vj). Thus, −g0 = −(ω1g1 +ω2g2) ∈ σΩ(Vj−1Vj(g1g2)

−1) and since
Ω is a group we have ω(−g0) ∈ σΩ(Vj−1Vj(g1g2)

−1) for some (in fact, for each)
ω ∈ Ω. Thus 0 ∈ σΩ(V

′
j−1).

Thus U ′
1, V

′
j−1 ∈ BΩ(G). Indeed, U ′

1 is in A(BΩ(G)), as a factorization of U ′
1

would directly yield a factorization of U1. For V
′
j−1 this is however not clear at this

point. Let

B′
0 = U ′

1U2 . . . Uk = V1 . . . Vj−2V
′
j−1

It is clear that B′
0 ∈ BΩ(G) and |B′

0| < |B0|.
Since U ′

1 is an atom, it follows that k ∈ L(B′
0). By our assumption on B0 it thus

follows that L(B′
0) does not contain any element greater than or equal to l, that is

maxL(B′
0) < ℓ.

Since B′
0 = V1 . . . Vj−2V

′
j−1, it follows that j − 2 + LBΩ(G)(V

′
j−1) ⊆ LBΩ(G)(B

′
0).

Since max L(B′
0) < ℓ, it follows that j − 2 + max LBΩ(G)(V

′
j−1) < ℓ.

As V ′
j−1 is not the empty sequence, maxLBΩ(G)(V

′
j−1) ≥ 1. Finally j ≥ ℓ, yields

the following chain of inequalities: ℓ− 2+1 ≤ j− 2+maxLBΩ(G)(V
′
j−1) < ℓ. Thus,

j−2+maxLBΩ(G)(V
′
j−1) = ℓ−1, and ℓ−1 ∈ L(B′

0). Since k ∈ L(B′
0), too. It follows

that ℓ− 1 ∈ Uk(BΩ(G)). Thus [ℓ− 1, ρk(BΩ(G))] ⊆ Uk(BΩ(G)). A contradiction to
the definition of ℓ. �

We proceed to establish a result that is useful for investigations of elasticities
and related problems.
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Lemma 5.3. Let G be a finite abelian group. Let Ω ⊆ End(G) and let j ∈
[2,D(BΩ(G))].

(1) If Ω is a semigroup with respect to composition, then there exists some

A ∈ A(BΩ(G)) with |A| = j.
(2) If Ω ⊆ Aut(G) is a subgroup, then there exists some B ∈ BΩ(G) such that

{2, j} ⊆ L(B).

Proof. 1. Let C ∈ A(BΩ(G)) with length l = D(BΩ(G)). Suppose that C =
∏l

i=1 gi
and

∑l

i=1 ωigi = 0 with ωi ∈ Ω. Let s =
∑l−j+1

i=1 ωigi and A = s
∏l

i=l−j+2 gi.

Then, A ∈ BΩ(G), since for ω ∈ Ω we have ω(
∑l

i=1 ωi(gi)) = 0 and thus ω(s) +
∑l

i=l−j+2(ω ◦ ωi)(gi) = 0. Moreover, it follows that A ∈ A(BΩ(G)), since a non-
trivial factorization of A would directly yield a non-trivial factorization of C; note
that we need again that Ω is a semigroup. Since |A| = j, this proves the first
assertion.

2. Let A ∈ A(BΩ(G)) with |A| = j. Note that 0 ∤ A. It is easy to see that
−A ∈ A(BΩ(G)). We consider B = (−A)A. By definition 2 ∈ L(B). For each
g ∈ G, one has (−g)g ∈ BΩ(G); note that since ω ∈ Ω is an endomorphisms of G
one always has ω(−g) = −ω(g). Since Ω contains only monomorphisms, it follows
that (−g)g ∈ A(BΩ(G)). Thus max L(B) = |A|, and the claim is established. �

Lemma 5.4. Let G be a finite abelian group. Let Ω ⊆ End(G). Let k ∈ N. Then

ρ2k(BΩ(G)) ≥ kD(BΩ(G)) and ρ2k+1(BΩ(G)) ≥ 1 + kD(BΩ(G)).

Proof. Let A ∈ A(BΩ(G)) with maximal length. We know that −A ∈ A(BΩ(G))
and consider B = (−A)kAk. By definition, 2k ∈ L(B). Since for each g ∈ G, one
has (−g)g ∈ BΩ(G) (note that since ω ∈ Ω is an endomorphisms of G one always
has ω(−g) = −ω(g)). It follows that max L(B) ≥ k|A| and the claim is established.
The second claim is an immediate consequence of the former, e.g., we can consider
0B. �

We now want to use Lemma 4.6 to establish that ρ2k(BΩ(G)) = kD(BΩ(G)) in
various cases. To this end we need to have a lower bound of 2 on the length of
atoms that are not prime. Somewhat surprisingly it turns out that this is not true
for all sets of weights.

Example 5.5. Let G = C2 ⊕ C6 let e1, e2 ∈ G be independent with ord(e1) = 2
and ord(e2) = 6. Let Ω = {+2 idG,+ idG,− idG}. Then e1 is in A(BΩ(G)) as
2 idG(e1) = 0. Yet, e1 is not in P(BΩ(G)) as e1 ∤ e1(e1 + e2)e2 while e1 | (e1(e1 +
e2)e2)

2.

However under some conditions on the set of weights this holds true.

Lemma 5.6. Let G be a finite abelian group. Let Ω ⊆ End(G). Let A ∈ A(BΩ(G))\
P(BΩ(G)).

(1) If Ω only contains monomorphismes, then |A| ≥ 2.
(2) If Ω is a commutative semigroup with respect to composition, then |A| ≥ 2.

Proof. Assume that Ω only contains monomorphismes. It follows directly that
the only elements in BΩ(G) of length less than 2 are the empty sequence and the
sequence 0. The former is not in A(BΩ(G)) while the latter is in P(BΩ(G)) and the
first claim follows.
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Now assume that Ω is closed under composition. Suppose that there is an atom of
length 1, say, for a ∈ G, we have a ∈ BΩ(G). This means that there is some ω′ ∈ Ω
such that ω′(a) = 0. We need to show that a ∈ P(BΩ(G)). Let C,D ∈ BΩ(G) such
that a | CD (the divisibility holds in BΩ(G)). We need to assert that a | C or a | D
(in BΩ(G)). Without loss, assume that C contains a, in other words a divides C in
F(G). We need to show that a divides C in BΩ(G). Let C = af1 . . . fr. We know
that there are ω0, ω1, . . . , ωr such that ω0(a) +ω1(f1)+ · · ·+ωr(fr) = 0. We apply
ω′ to this expression and obtain, (ω′ω0)(a)+(ω′ω1)(f1)+ · · ·+(ω′ωr)(fr) = 0. Now
(ω′ω0)(a) = (ω0ω

′)(a) = ω0(0) = 0. Thus (ω′ω1)(f1) + · · · + (ω′ωr)(fr) = 0, and
since ω′ωi ∈ Ω for each i ∈ [1, r], it follows that f1 . . . fr ∈ BΩ(G), establishing the
claim. �

The results established so far allow to determine for various sets of weights Ω
the constants ρk(BΩ(G)) for even k. The case of odd k is more complex and we
address it for the particular case of plus-minus weights in the following section.

Theorem 5.7. Let G be a finite abelian group. Let Ω ⊆ End(G). If Ω only contains

monomorphismes or if Ω is a commutative semigroup, with respect to composition,

then ρ2k(BΩ(G)) = kD(BΩ(G)) for each k ∈ N. Moreover,

1 + kD(BΩ(G)) ≤ ρ2k+1(BΩ(G)) ≤ kD(BΩ(G)) +

⌊

D(BΩ(G))

2

⌋

.

In particular, in this case ρ(BΩ(G)) = D(BΩ(G))/2.

Proof. The lower bounds are established in Lemma 5.4. The upper bounds follow
by Lemmas 4.6 and 5.6. The final claim is a direct consequence of the bounds and
the fact that ρ(H) = supk∈N

ρk(H)/k. �

The following result is known for monoids of zero-sum sequences without weights
(see [9, Coroallry 5.4]). The structure of our proof is very similar to the version
without weights.

Theorem 5.8. Let G be a finite abelian group. Let Ω ⊆ Aut(G) be a subgroup.

Let D denote the Davenport constant of BΩ(G) and suppose that D ≥ 2. Then, for

k ∈ N0, let l ∈ N0 and j ∈ [0,D−1] such that k = lD+j, we have

λk(BΩ(G)) =











2l if j = 0

2l+ 1 if j ∈ [1, ρ2l+1(BΩ(G))− lD]

2l+ 2 if j ∈ [ρ2l+1(BΩ(G)) − lD+1,D−1]

Proof. For |G| = 2, the monoid BΩ(G) is half-factorial. Thus Uk(BΩ(G)) = {k} for
each k and the claim is basically trivial; note that by assumption D = 2 (and not
1).

If l = 0, then for j ∈ [0, 1] we have Uj(BΩ(G)) = {j} and the claim is established;
for j ∈ [2,D− 1] we know by Lemma 5.3 that there is a set of length that contains
{2, j}, which shows that λj(BΩ(G)) ≤ 2; as it cannot be strictly less than 2, the
claim is established.

We can thus suppose that l ≥ 1. If j = 0, the claim is a consequence of
Theorem 5.7, because there is a set of lengths L with {2l, lD} ⊆ L, this is because
ρ2l(BΩ(G)) = lD(BΩ(G)), and there cannot exist an L′ with {l′, lD} ⊆ L′ for some
l′ < 2l as lD /l′ would exceed the elasticity D/2 of the monoid BΩ(G).
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Suppose j ≥ 1. Since k ≤ λk(BΩ(G))ρ(BΩ(G)) by Lemma 4.1 it follows that for
k = lD+ j one has

2l+
2j

D
=

lD+ j

D/2
≤ λlD+j(BΩ(G))

in particular λlD+j(BΩ(G)) > 2l and thus λlD+j(BΩ(G)) ≥ 2l + 1. In the other
direction we have by Lemma 4.1 that

λlD+j(BΩ(G)) ≤ λlD(BΩ(G)) + λj(BΩ(G)) ≤ 2l+ λj(BΩ(G)) ≤ 2l+ 2

where we used that λlD(BΩ(G)) = 2l and λj(BΩ(G)) ≤ 2 as established already.
For j = 1 we get that 2l < λlD+1(BΩ(G)) ≤ 2l + λ1(BΩ(G)) = 2l + 1, and thus
λlD+1(BΩ(G)) = 2l + 1.

We assume that j ≥ 2. If j ∈ [2, ρ2l+1(BΩ(G))−lD], then j+lD ≤ ρ2l+1(BΩ(G)).
Since U2l+1(BΩ(G)) is an interval by Theorem 5.2, this implies that j + lD ∈
U2l+1(BΩ(G)) and thus λlD+j(BΩ(G)) ≤ 2l + 1, which shows that λlD+j(BΩ(G)) =
2l+ 1.

If j > ρ2l+1(BΩ(G))−lD, then j+lD > ρ2l+1(BΩ(G)). This implies that j+lD /∈
U2l+1(BΩ(G)) and thus λlD+j(BΩ(G)) > 2l + 1, which shows that λlD+j(BΩ(G)) =
2l+ 2. �

6. Results for plus-minus weighted sequences

The purpose of this section is to establish further results on BΩ(G) in the spe-
cific case that the set of weights is equal to {+ idG,− idG}, which we refer to as
plus-minus weighted zero-sum sequences; we denote this set of weights by using the
subscript ±, that is, B±(G) denotes B{+ idG,− idG}(G). Since {+ idG,− idG} is a
commutative subgroup of Aut(G), the results of the preceding section are applica-
ble, and we know that for G a finite abelian group:

• Uk(B±(G)) is an interval for each k ∈ N (see Theorem 5.2).
• ρ2k(B±(G)) = kD(B±(G)) for each k ∈ N (see Theorem 5.7).

We will investigate on the one hand the actual value of D(BΩ(G)), and on the
other hand investigate the value of ρk(B±(G)) for k odd. It turns out that the
results depend on the parity of the order of the group.

We start by investigating the set of atoms of B±(G). We remarked in Section 3
that A(B±(G)) ∩ B(G) ⊆ A(B(G)). Conversely, while it is clear that A(B(G)) ⊆
B±(G), the elements of A(B(G)), which are irreducible in the monoid B(G), might
well not be irreducible in the larger monoid B±(G). For example, in C4 = 〈e〉,
the sequence e4 is a minimal zero-sum sequence over C4, that is, e4 ∈ A(B(C4)).
However, in B±(C4) it admits the factorization e2 ·e2. We show that that for groups
of odd order this never happens.

Theorem 6.1. Let G be an abelian group such that |G| is odd. Then, A(B(G)) ⊆
A(B±(G)).

Proof. Let A ∈ A(B(G)). Since B(G) ⊆ B±(G), it follows that A ∈ B±(G). Assume
for a contradictionA = A1 ·A2 with non-empty A1 and A2 such that 0 ∈ σ±(A1) and
0 ∈ σ±(A2). We can now decompose A1 and A2 according to the choice of weights
that lead to sum zero; this decomposition might not be unique. Let A1 = A+

1 A
−
1

such that 0 = σ(A+
1 ) − σ(A−

1 ), and likewise for A2. Hence σ(A+
1 ) = σ(A−

1 ) and
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σ(A+
2 ) = σ(A−

2 ). We have A = A+
1 A

−
1 A

+
2 A

−
2 . We introduce some shorthand-

notation σ(A−
1 ) = s−1 , σ(A

+
1 ) = s+1 , σ(A

−
2 ) = s−2 , and σ(A+

2 ) = s+2 . We noted that
s+1 = s−1 and s+2 = s−2 . Since σ(A) = 0 it follows that s+1 + s−1 + s+2 + s−2 = 0.

Consequently, we have s+1 + s+1 + s+2 + s+2 = 0, that is 2s+1 + 2s+2 = 0. This
means that 2(s+1 + s+2 ) = 0 and since the order of G is odd, we have s+1 + s+2 = 0.
Therefore, A+

1 A
+
2 is a zero-sum subsequence of A (without weights). Since A is a

minimal zero-sum sequence, this is only possible when A+
1 A

+
2 is empty or equal to

A. The same holds true for A+
1 A

−
2 , A

−
1 A

+
2 and A−

1 A
−
2 .

Now, exactly one of A+
1 A

+
2 and A−

1 A
−
2 equals A and the other is empty. By

symmetry we may assume that A+
1 A

+
2 = A and A−

1 A
−
2 is empty. Yet, then A+

1 and
A+

2 are zero-sum sequences without weight and A = A+
1 A

+
2 , a contradiction. �

In particular, the result above shows that in case the order of G is odd, the
inclusion A(B±(G)) ∩ B(G) ⊆ A(B(G)) is an equality. However, this does not
imply that A(B±(G)) = A(B(G)) as in general there exist elements in A(B±(G))
that are not in B(G). For example, for C3 = 〈e〉, we have that e2 ∈ A(B±(C3)) yet
e2 /∈ B(C3).

As an immediate corollary of this result we get that for groups of odd order the
Davenport constant of B±(G) is equal to the classical Davenport constant.

Corollary 6.2. Let G be an abelian group of odd order. Then D(B±(G)) =
D(B(G)).

Proof. Directly from Theorem 6.1 and Lemma 3.2. �

While the value of D(B(G)) is not known in general, there are known results
that can be use to obtain explicit results for D(B±(G)) for groups of odd order.
In particular, for G = Cn1

⊕ · · · ⊕ Cnr
with 1 < n1 | · · · | nr one has D(B(G)) ≥

1 +
∑r

i=1(ni − 1) and equality is known to hold if G has rank at most two, i.e.,
r ≤ 2, or if G is a p-group, i.e., nr is a prime-power. Equality also holds in some
other cases yet not in general, we refer to [8, Section 3] for an overview.

The situation regarding D(B±(G)) for groups of even order is more complicated.
We treat the case of cyclic groups of even order completely and then obtain a
general lower bound. To do this we recall a result on the structure of long minimal
zero-sum sequences and related concepts. Our presentation follows [9, Section 7];
the results are originally due to Savchev and Chen [25] and Yuan [28].

Definition 6.3. Let G be a finite abelian group.

(1) A sequence S ∈ F(G) is called smooth, or more precisely g-smooth, if there
is some g ∈ G such that S = (n1g) · · · (nℓg), where 1 = n1 ≤ · · · ≤ nℓ,
n = n1 + · · ·+ nℓ < ord(g) and Σ(S) = {g, 2g, · · · , ng}.

(2) A sequence S ∈ F(G) is called a splittable minimal zero-sum sequence if
S ∈ A(B(G)), and S = (g1 + g2)T for some g1, g2 ∈ G and T ∈ F(G) such
that g1g2T ∈ A(B(G)).

Theorem 6.4. Let G be cyclic of order n ≥ 3.

(1) If S ∈ F(G) is zero-sum free and |S| ≥ (n + 1)/2, then S is g-smooth for

some g ∈ G with ord(g) = n.
(2) Let A ∈ A(B(G)) be of length |A| ≥ ⌊n/2⌋ + 2. Then A = (n1g) · · · (nℓg)

for some g ∈ G with ord(g) = n, 1 = n1 ≤ · · · ≤ nℓ, n1 + · · · + nℓ = n.
Moreover, if A is not splittable, then A = gn.
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Lemma 6.5. Let g ∈ G and k, ℓ, n1, · · · , nℓ ∈ N such that ℓ ≥ k/2 and n =
n1 + · · · + nℓ < k ≤ ord(g). If 1 ≤ n1 ≤ · · · ≤ nℓ and S = (n1g) . . . (nℓg), then
Σ(S) = {g, 2g, · · ·ng}, and S is g-smooth.

We establish a lower bound for D(B±(Cn)) for even n.

Lemma 6.6. Let n ≥ 2 be even. Then

D(B±(Cn)) ≥ 1 +
n

2
.

Proof. Let n = 2m. Let Cn = 〈e〉. For n = 2, we note that e2 is an element of
A(B±(Cn)), which establishes the claim in this case.

Now we assume that n ≥ 4. We show that A = em(me) is an element of
A(B±(Cn)).

Suppose that A = A1A2 with 0 ∈ σ±(Ai) for i ∈ {1, 2}. Without loss we can
assume that me | A1. Let A1 = (me)ek with k ∈ [0,m].

Since 0 ∈ σ±(Ai) it follows that there exist ǫ1, . . . , ek ∈ {+ idG,− idG} such that

me +
∑k

i=1 ǫie = 0 (we can assume that the weight of me is + idG). Yet, this

means that
∑k

i=1 ǫie = me. Since
∑k

i=1 ǫie is equal to de where d is the difference
between the numbers of weights + idG and − idG, we get that |d| is at most k.
Thus, de = me is only possible for k = m. Consequently, A1 = A and A is indeed
in A(B±(Cn)). �

Theorem 6.7. Let n be even. Then, we have

D(B±(Cn)) = 1 +
n

2
.

Proof. The claim is easily established for n = 2; we assume n ≥ 4. By Lemma 6.6
we know that D(B±(Cn)) ≥ 1+n/2. It remains to show that D(B±(Cn)) ≤ 1+n/2.
Let S = g1 · · · gℓ ∈ A(B±(Cn)) and assume for a contradiction that |S| ≥ n/2 + 2.
Since 0 ∈ σ±(S) there exist ǫi ∈ {+ idG,− idG} such that (ǫ1g1) + · · ·+ (ǫℓgℓ) = 0.

Hence A = (ǫ1g1) . . . (ǫℓgℓ) ∈ B(Cn). In fact this zero-sum sequence A must be
minimal, since a decomposition of A in B(Cn) would imply a decomposition of S
in B±(Cn).

By Theorem 6.4 there exists e ∈ Cn such that Cn = 〈e〉 and moreover we

can write A = (a1e) · · · (aℓe) with ai ∈ [1, n] and
∑ℓ

i=1 ai = n. We assume that
1 ≤ a1 ≤ · · · ≤ aℓ.

We show that a1 = a2 = a3 = a4 = 1. Assume for a contradiction that a4 ≥ 2.
Then

∑ℓ
i=1 ai ≥ 3 + 2 · (ℓ − 3) ≥ 3 + 2 · (n/2− 1) > n, a contradiction.

Hence A = e4(a5e) . . . (aℓe). We consider T = e−2A. Now, we write T =

(b1e)(b2e) · · · (bℓ′e) where b1 ≤ · · · ≤ bℓ′ ,
∑ℓ′

i=1 bi = n− 2 and b1 = b2 = 1. Notice
that ℓ′ = ℓ − 2 and ℓ′ ≥ n/2. We now note that Lemma 6.5 can be applied
to T . We have that Σ(T ) = {e, 2e, . . . , (ord(e) − 2)e}. Let T1 | T such that
σ(T1) = ((n− 2)/2)e. Set T = T1T2. Hence σ(T1) = σ(T2).

Therefore we can decompose A = e2 · T1T2, and 0 ∈ σ±(e
2) and 0 ∈ σ±(T1T2).

Therefore A /∈ A(B±(G)). Since {+ idG,− idG} is a group under composition of
endomorphisms, we can conclude S /∈ A(B±(G), a contradiction. This establishes
D(B±(Cn)) ≤ 1 + n/2. �
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Corollary 6.8. Let G = Cn1
⊕ · · · ⊕ Cnr

with 1 < n1 | · · · | nr and let t ∈ [0, r] be
maximal such that 2 ∤ ni. Then

D(B±(G)) ≥ 1 +

t
∑

i=1

(ni − 1) +

r
∑

i=t+1

ni

2
.

Proof. By Lemma 3.5 we know that

D(B±(G)) ≥ 1 +

r
∑

i=1

(D(B±(Cni
))− 1).

The claim now follows using the fact that D(B±(Cni
)) is equal to ni for odd ni (see

Corollary 6.2) and equal to 1 + ni/2 for even ni (see Theorem 6.7). �

With ni and r, t as above, we denote D∗(B±(G)) = 1+
∑t

i=1(ni−1)+
∑r

i=t+1 ni/2.
It would be interesting to have further results on the question of equality in the
inequality D(B±(G)) ≥ D

∗(B±(G)), for example for groups of rank two of even
order or for 2-groups.

Finally, we point out that the result above show that D(B±(G)) and 1+d(B±(G))
are quite different. We recall that the later is bounded above by 1 + 〈log2 |G|〉; we
refer to [2] and [21] for further results on this constant.

We conclude the section by some results on sets of lengths and elasticities in case
G is a group of odd order.

Proposition 6.9. Let G be a group of odd order. For each B ∈ B(G) we have

ZB(G)(B) ⊆ ZB±(G)(B) and, in particular, LB(G)(B) ⊆ LB±(G)(B).

Proof. Let B ∈ B(G). Let z ∈ ZB(G)(B). This means z = A1 . . . Ak with Ai ∈
A(G). Yet, since the order of G is odd, by Theorem 6.1, we have A(G) ⊆ A(B±(G)
and thus Ai ∈ A(B±(G)) for each 1 ≤ i ≤ k. That is, z ∈ ZB±(G)(B). The claim
on the set of lengths is immediate. �

The preceding result allows to obtain results on elasticities.

Corollary 6.10. Let G be a group of odd order. For k ∈ N, we have Uk(B(G)) ⊆
Uk(B±(G)), and in particular ρk(B(G)) ≤ ρk(B±(G)), and λk(B(G)) ≥ λk(B±(G)).

Proof. This is immediate from Proposition 6.9 and the definitions. �

In Theorem 5.7 we already determined ρ2k(B±(G)) and remarked that the prob-
lem for odd index is more complicated. We now show how we can use results
obtained for the problem without weights.

Proposition 6.11. Let G be a group of odd order. Let D = D(B(G)). Let k ∈ N0.

(1) We have ρ2k(B±(G)) = ρ2k(B(G)) = kD and ρ(B±(G)) = ρ(B(G)) = D /2.
(2) If ρ2k+1(B(G)) = kD+⌊D /2⌋, then

ρ2k+1(B±(G)) = ρ2k+1(B(G)) = kD+

⌊

D

2

⌋

.

Proof. By Theorem 6.1 we have D = D(B±(G)). The first part is now imme-
diate from Theorem 5.7. For the second part, again by Theorem 5.7 we have
ρ2k+1(B±(G)) ≤ kD+⌊D /2⌋. Since by Corollary 6.10, we have ρ2k+1(B(G)) ≤
ρ2k+1(B±(G)) the claim follows. �
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For a detailed investigation of the question when ρ2k+1(B(G)) = kD+⌊D /2⌋
holds, we refer to [11]. Various results there, by the result above, give directly the
analogous result for B±(G). There is no point in essentially just copying all these
results. By way of example we state one result.

Corollary 6.12. Let r ≥ 2 and let n be a power of an odd prime. Then for each

k ∈ N we have

ρ2k+1(B±(C
r
n)) = k(1 + r(n− 1)) +

r(n− 1)

2
.

Proof. This is a direct consequence of Proposition 6.11 and [11, Corollary 4.3] that
establishes ρ2k+1(B(Cr

n)) = k(1+ r(n− 1))+ (r(n− 1))/2 (note that we plugged in
the value of D(Cr

n) and evaluated the floor-function). �

7. The arithmetic of monoids of norms of rings of algebraic integers

In the present section we relate the arithmetic of certain multiplicative sub-
monoids of the natural numbers, defined via norms of rings of algebraic integers,
to the arithmetic of monoids of weighted zero-sum sequences over finite abelian
groups. A relation between problems on norms of algebraic integers and weighted
zero-sum sequences was investigated in [19]; our application is closely related but
distinct.

To fix ideas and notations, we recall some standard notions and results from
algebraic number theory (see, e.g., [22, 23]).

Let K denote a number field of degree d, and assume that the extension K/Q is
a Galois extension; let Gal(K/Q) denote its Galois group. Let OK denote the ring
of algebraic integers of K. Let Cl(OK) denote its ideal class group.

For an ideal I of OK let N(I) = |OK/I| denote the (numerical) norm of I.
Moreover, for a ∈ O∗

K let N(a) denote the absolute norm of a, that is the norm of
the principal ideal aOK , which is also equal to the absolute value of the norm of a
in the extension K/Q.

Let Id(OK) denote the set of all ideals of OK . Furthermore, let H(OK) denote
the principal ideal of OK , and let spec(OK) denote the prime ideals of OK . It is
well-known that every (non-zero) ideal has a unique representation as a product of
(non-zero) prime ideals, in other words Id(OK)\{0} is equal to F(spec(OK)\{0}).

The norms mentioned above are multiplicative, that is, N : (Id(OK) \ {0}, ·) →
(N, ·) and N : (O∗

K , ·) → (N, ·) are homomorphism of monoids. The set N(O∗
K), that

is the set of absolute norms of elements of O∗
K , is thus a submonoid of (N, ·). We

want to study its arithmetic.
In case the extension K/Q is Galois, for every prime number p ∈ N there are

e, f, g ∈ N, that depend on p, and distinct non-zero prime ideals P1, . . . , Pg ∈
spec(OK) \ {0} such that pOK = P e

1 . . . P e
g . Moreover, d = efg and N(Pi) = pf .

We recall that the only elements of spec(OK) \ {0} whose norm is a power of p are
P1, . . . , Pg.

Indeed, for every P ′ ∈ spec(OK) \ {0} there is a (unique) prime number p′ such
that P ′ occurs in the decomposition of p′OK ; the norm of P ′ is then a power of p′.

Finally, we recall that the Galois group Γ acts transitively on the set {P1, . . . , Pg}.
For P ∈ spec(OK) \ {0} we denote the orbit of P under this action by Orb(P ). We
denote by OrbSpec(OK) the sets of orbits of the action of Γ on spec(OK) \ {0}.
Moreover for a prime number p we denote by Orb(p) the orbit of P for some
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prime ideal whose norm is a p-th power, which is well-defined by the facts that we
just recalled. Also recall that the Galois group acts on the ideal class group by
γ[P ] = [γ(P )].

Theorem 7.1. Let K be a Galois number field with Galois group Γ and class group

G. There is a transfer homomorphism from N(O∗
K), the monoid of absolute norms

of non-zero algebraic integers of K, to BΓ(G), the monoid of Γ-weighted zero-sum

sequences over the class group of K.

Proof. Let c̃l : OrbSpec(OK) → Cl(OK) we some surjective map such that for each

P ∈ spec(OK) \ {0} we have c̃l(Orb(P )) ∈ {[γ(P )] : γ ∈ Γ}. Note that such a map
actually exists; the only thing to be concerned about is surjectivity, yet this can be
assured easily since each class contains infinitely many prime ideals. Moreover, let
cl : spec(OK) \ {0} → Cl(OK) denote the map given by cl(P ) = c̃l(Orb(P )). The
map cl is fixed throughout the argument.

We now proceed to define the transfer homomorphism. For n ∈ N(O∗
K) let

an ∈ O∗
K such that N(an) = n. There are uniquely determined vP (an) such that

(an) =
∏

P∈spec(OK)\{0} P
vP (an). We set Θ(n) =

∏

P∈spec(OK)\{0} cl(P )vP (an) ∈

F(Cl(OK)); note that we have to show that this is well-defined, that is, the defini-
tion only depends on n yet not the choice of an. Assuming that the map is well-
defined, it is easy to see that it is a homomorphism. Concretely, if n,m ∈ N(O∗

K)
and an, am ∈ OK such that N(an) = n and N(am) = m, then anam is an element
of OK of norm nm, and as vP (anam) = vP (an) + vP (am) for each P . We see that
Θ(nm) = Θ(n)Θ(m).

We now proceed to show that the map is well-defined. Let again an ∈ O∗
K such

that N(an) = n. Let n =
∏k

i=1 p
vi
i denote the factorization of n into prime powers

(we assume that the pi are distinct and that the vi are non-zero).
Let anOK = P1 . . . PL denote the factorization into prime ideals. Since N(an) =

N(P1) . . .N(PL) and each N(Pi) is a prime-power it follows that we can write

{1, . . . , L} =
⊎k

i=1 Ii where j ∈ Ii if N(Pj) is a pi-power. Furthermore it fol-

lows that for each pi there is an integer fi such that N(Pj) = pfii for each j ∈ Ii.
Consequently, |Ii| = vi/fi for each i ∈ {1, . . . , k}; note that these quantities depend
on n only. Moreover, note that for j, j′ ∈ Ii the orbits of Pj and P ′

j are the same
and thus cl(Pj) = cl(P ′

j). Thus, in any case, the contribution to Θ(n) does not
depend on the choice of an.

We assert that Θ(n) is a sequence with a Γ-weighted zero-sum. To see this it
suffices to note that

∑

P∈spec(OK)\{0}[P ]vP (an) = 0, since (an) is a principal ideal,

and for each P we have that [P ] is an element of {[γ(P )] : γ ∈ Γ} = {γ([P ]) : γ ∈ Γ}.
Thus, we have a homomorphism Θ : N(O∗

K) → BΓ(Cl(OK)). It remains to show
that it is a transfer homomorphism.

First, we assert that the map is surjective. Let S ∈ BΓ(Cl(OK)), say, S =
g1 . . . gr. Let γi ∈ Γ such that

∑r

i=1 γigi = 0. For each i, let Pi ∈ spec(OK) \ {0}
such that cl(Pi) = gi and more precisely [Pi] is equal to γigi. We consider the ideal
I = P1 . . . Pr. Since

∑r

i=1[Pi] =
∑r

i=1 γigi = 0, it follows that I is a principal
ideal. Choosing for a some generating element of this principal ideal, it follows that
Θ(N(a)) = S.

It is plain that only invertible elements are mapped to invertible elements. It
remains to show that if Θ(n) = S1S2 with S1, S2 ∈ BΓ(Cl(OK)) then there exit
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n1, n2 ∈ N(OK) such that n = n1n2 and Θ(n1) = S1 and Θ(n2) = S2. Let

S1 = g
(1)
1 . . . g

(1)
k1

and S2 = g
(2)
1 . . . g

(2)
k2

Let an ∈ OK such that N(an) = n. By definition of Θ we know that (an) =

P
(1)
1 . . . P

(1)
k1

P
(2)
1 . . . P

(2)
k2

with non-zero prime ideals P
(j)
i such that cl(P

(j)
i ) = g

(j)
i

for all i, j. Now, let γ
(j)
i ∈ Γ such that

∑kj

i=1 γ
(j)
i g

(j)
i = 0 for j ∈ {1, 2}.

Let P
(j),s
i the prime ideal in the orbit of P

(j)
i such that [P

(j),s
i ] = γ

(j)
i g

(j)
i . Since

the class of the ideal
∏kj

i=1 P
(j),s
i is the trivial class, this ideal is a principal ideal,

say, it is equal to (bj) with bj ∈ OK . Let nj = N(b(j)). Since N(P
(j),s
i ) = N(P

(j)
i ),

it follows that n1n2 = n. Moreover, since cl(P
(j),s
i ) = cl(P

(j)
i ), it follows that

Θ(nj) = Sj . This establishes the claim. �

We point out some consequences of the preceding result.

Corollary 7.2. Let K be a Galois number field with class group G. Let H = N(O∗
K)

be the monoid of absolute norms of non-zero algebraic integers of K.

(1) The set ∆(H) and the constant ρ(H) are finite.

(2) For each k ∈ N the set Uk(H) is an interval.

(3) There is some M ∈ N0 such that each set of lengths L of H is an almost

arithmetical multiprogression with bound M and difference d ∈ ∆(H)∪{0},
that is, L = y+(L1∪L∗∪L2) ⊆ y+D+dZ with y ∈ N0, {0, d} ⊆ D ⊆ [0, d],
L1,−L2 ⊆ [1,M ], minL∗ = 0 and L∗ = [0,maxL∗] ∩D + dZ.

Proof. By Theorem 7.1 we know that there is a tranfer homomorphism from H to
BΓ(G) where Γ denotes the Galois group of K. By Theorem 3.6 and Theorem 5.2
we know that BΓ(G) has the claimed properties. Since all the properties depend on
length of factorizations only, and transfer homomorphisms preserve sets of lengths
(see Section 2 after we recall the definition of transfer homomorphism), the claim
follows. �

In the case of quadratic number fields, we can apply our results on plus-minus
weighted sequences.

Corollary 7.3. Let K be a quadratic number field with odd class number. Then

ρ(N(O∗
K)) = ρ(O∗

K) and ρ2k(N(O∗
K)) = ρ2k(O∗

K) for each k ∈ N.

Proof. As in the preceding corollary it suffices to establish the claim for BΓ(G)
where Γ denotes the Galois group of K. Since K is a quadratic number field it
follows that |Γ| = 2. Moreover, if Γ = {id, γ}, then Pγ(P ) is a principal ideal for
each prime ideal P of OK . Thus, [P ] + [γ(P )] = 0 for each P , which implies that γ
acts like − idG on G. That is, in this case BΓ(G) = B±(G). The claim now follows
by Proposition 6.11. �
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