
Monoids: Theme and Variations (Functional Pearl)

Brent A. Yorgey
University of Pennsylvania
byorgey@cis.upenn.edu

Abstract
The monoid is a humble algebraic structure, at first glance even
downright boring. However, there’s much more to monoids than
meets the eye. Using examples taken from the diagrams vector
graphics framework as a case study, I demonstrate the power and
beauty of monoids for library design. The paper begins with an
extremely simple model of diagrams and proceeds through a series
of incremental variations, all related somehow to the central theme
of monoids. Along the way, I illustrate the power of compositional
semantics; why you should also pay attention to the monoid’s
even humbler cousin, the semigroup; monoid homomorphisms; and
monoid actions.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.2.2 [Design
Tools and Techniques]

General Terms Languages, Design

Keywords monoid, homomorphism, monoid action, EDSL

Prelude
diagrams is a framework and embedded domain-specific language
for creating vector graphics in Haskell.1 All the illustrations in
this paper were produced using diagrams, and all the examples
inspired by it. However, this paper is not really about diagrams
at all! It is really about monoids, and the powerful role they—and,
more generally, any mathematical abstraction—can play in library
design. Although diagrams is used as a specific case study, the
central ideas are applicable in many contexts.

Theme
What is a diagram? Although there are many possible answers to
this question (examples include those of Elliott [2003] and Matlage
and Gill [2011]), the particular semantics chosen by diagrams is
an ordered collection of primitives. To record this idea as Haskell
code, one might write:

type Diagram= [Prim]

But what is a primitive? For the purposes of this paper, it doesn’t
matter. A primitive is a thing that Can Be Drawn—like a circle, arc,

1 http://projects.haskell.org/diagrams/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Haskell ’12, September 13, 2012, Copenhagen, Denmark.
Copyright c© 2012 ACM 978-1-4503-1574-6/12/09. . . $10.00

≡

],,[

Figure 1. Superimposing a list of primitives

polygon, Bézier curve, and so on—and inherently possesses any
attributes we might care about, such as color, size, and location.

The primitives are ordered because we need to know which
should appear “on top”. Concretely, the list represents the order
in which the primitives should be drawn, beginning with the “bot-
tommost” and ending with the “topmost” (see Figure 1).

Lists support concatenation, and “concatenating” two Diagrams
also makes good sense: concatenation of lists of primitives corre-
sponds to superposition of diagrams—that is, placing one diagram
on top of another. The empty list is an identity element for con-
catenation ([] ++ xs = xs++ [] = xs), and this makes sense in the
context of diagrams as well: the empty list of primitives represents
the empty diagram, which is an identity element for superposition.
List concatenation is associative; diagram A on top of (diagram B
on top of C) is the same as (A on top of B) on top of C. In short,
(++) and [] constitute a monoid structure on lists, and hence on
diagrams as well.

This is an extremely simple representation of diagrams, but it
already illustrates why monoids are so fundamentally important:
composition is at the heart of diagrams—and, indeed, of many
libraries. Putting one diagram on top of another may not seem very
expressive, but it is the fundamental operation out of which all other
modes of composition can be built.

However, this really is an extremely simple representation
of diagrams—much too simple! The rest of this paper develops
a series of increasingly sophisticated variant representations for
Diagram, each using a key idea somehow centered on the theme of
monoids. But first, we must take a step backwards and develop this
underlying theme itself.

Interlude
The following discussion of monoids—and the rest of the paper in
general—relies on two simplifying assumptions:

105

• all values are finite and total;
• the floating-point type Double is a well-behaved representation

of the real numbers R.

The first assumption is reasonable, since we will have no need for
infinite data structures, nontermination, or partial functions. The
second is downright laughable, but makes up for in convenience
what it lacks in accuracy.

Monoids
A monoid is a set S along with a binary operation � :: S→ S→ S
and a distinguished element ε :: S, subject to the laws

ε � x = x� ε = x (M1)
x� (y� z) = (x� y)� z. (M2)

where x, y, and z are arbitrary elements of S. That is, ε is an identity
for � (M1), which is required to be associative (M2).

Monoids are represented in Haskell by the Monoid type class
defined in the Data.Monoid module, which is part of the standard
base package.

class Monoid a where
ε :: a
(�) :: a→ a→ a
mconcat :: [a]→ a
mconcat = foldr (�) ε

The actual Monoid methods are named mempty and mappend, but
I will use ε and (�) in the interest of brevity.

mconcat “reduces” a list using (�), that is,

mconcat [a,b,c,d] = a� (b� (c�d)).

It is included in the Monoid class in case some instances can
override the default implementation with a more efficient one.

At first, monoids may seem like too simple of an abstraction
to be of much use, but associativity is powerful: applications of
mconcat can be easily parallelized [Cole 1995], recomputed in-
crementally [Piponi 2009], or cached [Hinze and Paterson 2006].
Moreover, monoids are ubiquitous—here are just a few examples:

• As mentioned previously, lists form a monoid with concatena-
tion as the binary operation and the empty list as the identity.

• The natural numbers N form a monoid under both addition
(with 0 as identity) and multiplication (with 1 as identity). The
integers Z, rationals Q, real numbers R, and complex numbers
C all do as well. Data.Monoid provides the Sum and Product
newtype wrappers to represent these instances.

• N also forms a monoid under max with 0 as the identity. How-
ever, it does not form a monoid under min; no matter what n∈N
we pick, we always have min(n,n+ 1) = n 6= n+ 1, so n can-
not be the identity element. More intuitively, an identity for min
would have to be “the largest natural number”, which of course
does not exist. Likewise, none of Z, Q, and R form monoids
under min or max (and min and max are not even well-defined
on C).

• The set of booleans forms a monoid under conjunction (with
identity True), disjunction (with identity False) and exclusive
disjunction (again, with identity False). Data.Monoid provides
the All and Any newtype wrappers for the first two instances.

• Sets, as defined in the standard Data.Set module, form a
monoid under set union, with the empty set as the identity.

• Given Monoid instances for m and n, their product (m,n) is also
a monoid, with the operations defined elementwise:

instance (Monoid m,Monoid n)
⇒Monoid (m,n) where

ε = (ε,ε)
(m1,n1)� (m2,n2) = (m1 �m2,n1 �n2)

• A function type with a monoidal result type is also a monoid,
with the results of functions combined pointwise:

instance Monoid m⇒Monoid (a→ m) where
ε = const ε

f1 � f2 = λa→ f1 a� f2 a

In fact, if you squint and think of the function type a → m
as an “a-indexed product” of m values, you can see this as a
generalization of the instance for binary products. Both this and
the binary product instance will play important roles later.

• Endofunctions, that is, functions a→ a from some type to itself,
form a monoid under function composition, with the identity
function as the identity element. This instance is provided by
the Endo newtype wrapper.

• The dual of any monoid is also a monoid:

newtype Dual a =Dual a
instance Monoid a⇒Monoid (Dual a) where

ε =Dual ε

(Dual m1)� (Dual m2) =Dual (m2 �m1)

In words, given a monoid on a, Dual a is the monoid which uses
the same binary operation as a, but with the order of arguments
switched.

Finally, a monoid is commutative if the additional law

x� y = y� x

holds for all x and y. The reader can verify how commutativity
applies to the foregoing examples: Sum, Product, Any, and All
are commutative (as are the max and min operations); lists and
endofunctions are not; applications of (,), ((→) e), and Dual are
commutative if and only if their arguments are.

Monoid homomorphisms
A monoid homomorphism is a function from one monoidal type
to another which preserves monoid structure; that is, a function f
satisfying the laws

f ε = ε (H1)
f (x� y) = f x� f y (H2)

For example, length [] = 0 and length (xs ++ ys) = length xs +
length ys, making length a monoid homomorphism from the
monoid of lists to the monoid of natural numbers under addition.

Free monoids
Lists come up often when discussing monoids, and this is no ac-
cident: lists are the “most fundamental” Monoid instance, in the
precise sense that the list type [a] represents the free monoid over
a. Intuitively, this means that [a] is the result of turning a into a
monoid while “retaining as much information as possible”. More
formally, this means that any function f :: a → m, where m is a
monoid, extends uniquely to a monoid homomorphism from [a]
to m—namely, mconcat ◦map f . It will be useful later to give this
construction a name:

hom ::Monoid m⇒ (a→ m)→ ([a]→ m)
hom f = mconcat ◦map f

See the Appendix for a proof that hom f really is a monoid homo-
morphism.

106

Semigroups
A semigroup is like a monoid without the requirement of an identity
element: it consists simply of a set with an associative binary
operation.

Semigroups can be represented in Haskell by the Semigroup
type class, defined in the semigroups package2:

class Semigroup a where
(�) :: a→ a→ a

(The Semigroup class also declares two other methods with default
implementations in terms of (�); however, they are not used in
this paper.) The behavior of Semigroup and Monoid instances for
the same type will always coincide in this paper, so using the
same name for their operations introduces no ambiguity. I will also
pretend that Monoid has Semigroup as a superclass, although in
actuality it does not (yet).

One important family of semigroups which are not monoids are
unbounded, linearly ordered types (such as Z and R) under the
operations of min and max. Data.Semigroup defines Min as

newtype Min a =Min {getMin :: a}
instance Ord a⇒ Semigroup (Min a) where

Min a�Min b =Min (min a b)

and Max is defined similarly.
Of course, any monoid is automatically a semigroup (by for-

getting about its identity element). In the other direction, to turn a
semigroup into a monoid, simply add a new distinguished element
to serve as the identity, and extend the definition of the binary oper-
ation appropriately. This creates an identity element by definition,
and it is not hard to see that it preserves associativity.

In some cases, this new distinguished identity element has a
clear intuitive interpretation. For example, a distinguished identity
element added to the semigroup (N,min) can be thought of as
“positive infinity”: min(+∞,n) = min(n,+∞) = n for all natural
numbers n.

Adding a new distinguished element to a type is typically ac-
complished by wrapping it in Maybe. One might therefore expect
to turn an instance of Semigroup into an instance of Monoid by
wrapping it in Maybe. Sadly, Data.Monoid does not define semi-
groups, and has a Monoid instance for Maybe which requires a
Monoid constraint on its argument type:

instance Monoid a⇒Monoid (Maybe a) where
ε = Nothing
Nothing �b = b
a �Nothing = a
(Just a) � (Just b) = Just (a�b)

This is somewhat odd: in essence, it ignores the identity ele-
ment of a and replaces it with a different one. As a workaround,
the semigroups package defines an Option type, isomorphic to
Maybe, with a more sensible Monoid instance:

newtype Option a =Option {getOption ::Maybe a}
instance Semigroup a⇒Monoid (Option a) where

. . .

The implementation is essentially the same as that for Maybe,
but in the case where both arguments are Just, their contents are
combined according to their Semigroup structure.

Variation I: Dualizing diagrams
Recall that since Diagram is (so far) just a list, it has a Monoid
instance: if d1 and d2 are diagrams, then d1 � d2 is the diagram

2 http://hackage.haskell.org/package/semigroups

containing the primitives from d1 followed by those of d2. This
means that d1 will be drawn first, and hence will appear beneath
d2. Intuitively, this seems odd; one might expect the diagram which
comes first to end up on top.

Let’s define a different Monoid instance for Diagram, so that
d1 �d2 will result in d1 being on top. First, we must wrap [Prim] in
a newtype. We also define a few helper functions for dealing with
the newtype constructor:

newtype Diagram=Diagram [Prim]

unD ::Diagram → [Prim]
unD (Diagram ps) = ps
prim ::Prim→Diagram
prim p = Diagram [p]
mkD :: [Prim]→Diagram
mkD =Diagram

And now we must tediously declare a custom Monoid instance:

instance Monoid Diagram where
ε =Diagram ε

(Diagram ps1)� (Diagram ps2) =Diagram (ps2 �ps1)

. . . or must we? This Monoid instance looks a lot like the instance
for Dual. In fact, using the GeneralizedNewtypeDeriving ex-
tension along with Dual, we can define Diagram so that we get the
Monoid instance for free again:

newtype Diagram=Diagram (Dual [Prim])
deriving (Semigroup,Monoid)

unD (Diagram (Dual ps)) = ps
prim p =Diagram (Dual [p])
mkD ps =Diagram (Dual ps)

The Monoid instance for Dual [Prim] has exactly the semantics we
want; GHC will create a Monoid instance for Diagram from the
instance for Dual [Prim] by wrapping and unwrapping Diagram
constructors appropriately.

There are drawbacks to this solution, of course: to do anything
with Diagram one must now wrap and unwrap both Diagram and
Dual constructors. However, there are tools to make this some-
what less tedious (such as the newtype package3). In any case,
the Diagram constructor probably shouldn’t be directly exposed to
users anyway. The added complexity of using Dual will be hid-
den in the implementation of a handful of primitive operations on
Diagrams.

As for benefits, we have a concise, type-directed specification
of the monoidal semantics of Diagram. Some of the responsibility
for writing code is shifted onto the compiler, which cuts down on
potential sources of error. And although this particular example is
simple, working with structurally derived Semigroup and Monoid
instances can be an important aid in understanding more complex
situations, as we’ll see in the next variation.

Variation II: Envelopes
Stacking diagrams via (�) is a good start, but it’s not hard to imag-
ine other modes of composition. For example, consider placing two
diagrams “beside” one another, as illustrated in Figure 2.

It is not immediately obvious how this is to be implemented. We
evidently need to compute some kind of bounding information for
a diagram to decide how it should be positioned relative to others.
An idea that first suggests itself is to use bounding boxes—that
is, axis-aligned rectangles which completely enclose a diagram.
However, bounding boxes don’t play well with rotation (if you
rotate a bounding box by 45 degrees, which bounding box do you

3 http://hackage.haskell.org/package/newtype

107

⇓

Figure 2. Placing two diagrams beside one another

Figure 3. Envelope for an ellipse

get as a result?), and they introduce an inherent left-right-up-down
bias—which, though it may be appropriate for something like TEX,
is best avoided in a general-purpose drawing library.

An elegant functional solution is something I term an envelope.4
Assume there is a type V2 representing two-dimensional vectors
(and a type P2 representing points). Then an envelope is a func-
tion of type V2 → R.5 Given a vector v, it returns the minimum
distance (expressed as a multiple of v’s magnitude) from the ori-
gin to a separating line perpendicular to v. A separating line is one
which partitions space into two half-spaces, one (in the direction
opposite v) containing the entirety of the diagram, and the other (in
the direction of v) empty. More formally, the envelope yields the
smallest real number t such that for every point u inside the dia-
gram, the projection of u (considered as a vector) onto v is equal to
some scalar multiple sv with s 6 t.

Figure 3 illustrates an example. Two query vectors emanate
from the origin; the envelope for the ellipse computes the distances
to the separating lines shown. Given the envelopes for two dia-
grams, beside can be implemented by querying the envelopes in
opposite directions and placing the diagrams on opposite sides of a
separating line, as illustrated in Figure 4.

Fundamentally, an envelope represents a convex hull—the locus
of all segments with endpoints on a diagram’s boundary. However,
the term “convex hull” usually conjures up some sort of intensional
representation, such as a list of vertices. Envelopes, by contrast, are
an extensional representation of convex hulls; it is only possible to
observe examples of their behavior.

4 The initial idea for envelopes is due to Sebastian Setzer. See http://
byorgey.wordpress.com/2009/10/28/collecting-attributes/
#comment-2030.
5 It might seem cleaner to use angles as input to envelopes rather than
vectors; however, this definition in terms of vectors generalizes cleanly to
higher-dimensional vector spaces, whereas one in terms of angles would
not.

Figure 4. Using envelopes to place diagrams beside one another

Figure 5. Composing envelopes

Here’s the initial definition of Envelope. Assume there is a way
to compute an Envelope for any primitive.

newtype Envelope= Envelope (V2→ R)
envelopeP ::Prim→ Envelope

How, now, to compute the Envelope for an entire Diagram? Since
envelopeP can be used to compute an envelope for each of a dia-
gram’s primitives, it makes sense to look for a Monoid structure on
envelopes. The envelope for a diagram will then be the combination
of the envelopes for all its primitives.

So how do Envelopes compose? If one superimposes a diagram
on top of another and then asks for the distance to a separating line
in a particular direction, the answer is the maximum of the distances
for the component diagrams, as illustrated in Figure 5.

Of course, we must check that this operation is associative
and has an identity. Instead of trying to check directly, however,
let’s rewrite the definition of Envelope in a way that makes its
compositional semantics apparent, in the same way we did for
Diagram using Dual in Variation I.

Since distances are combined with max, we can use the Max
wrapper defined in Data.Semigroup:

newtype Envelope= Envelope (V2→Max R)
deriving Semigroup

The Semigroup instance for Envelope is automatically derived
from the instance for Max together with the instance that lifts
Semigroup instances over an application of ((→) V2). The result-
ing binary operation is exactly the one described above: the input
vector is passed as an argument to both envelopes and the results
combined using max. This also constitutes a proof that the oper-
ation is associative, since we already know that Max satisfies the
Semigroup law and ((→) V2) preserves it.

We can now compute the envelope for almost all diagrams: if
a diagram contains at least one primitive, apply envelopeP to each
primitive and then combine the resulting envelopes with (�). We

108

Figure 6. Negative distance as output of an envelope

don’t yet know what envelope to assign to the empty diagram, but
if Envelope were also an instance of Monoid then we could, of
course, use ε .

However, it isn’t. The reason has already been explored in the
Interlude: there is no smallest real number, and hence no identity el-
ement for the reals under max. If envelopes actually only returned
positive real numbers, we could use (const 0) as the identity en-
velope. However, it makes good sense for an envelope to yield a
negative result, if given as input a vector pointing “away from” the
diagram; in that case the vector to the separating line is a negative
multiple of the input vector (see Figure 6).

Since the problem seems to be that there is no smallest real num-
ber, the obvious solution is to extend the output type of envelopes
to R∪{−∞}. This would certainly enable a Monoid instance for
envelopes; however, it doesn’t fit their intended semantics. An en-
velope must either constantly return −∞ for all inputs (if it corre-
sponds to the empty diagram), or it must return a finite distance for
all inputs. Intuitively, if there is “something there” at all, then there
is a separating line in every direction, which will have some finite
distance from the origin

(It is worth noting that the question of whether diagrams are
allowed to have infinite extent in certain directions seems related,
but is in fact orthogonal. If this was allowed, envelopes could return
+∞ in certain directions, but any valid envelope would still return
−∞ for all directions or none.)

So the obvious “solution” doesn’t work, but this “all-or-none”
aspect of envelopes suggests the correct solution. Simply wrap
the entire function type in Option, adding a special distinguished
“empty envelope” besides the usual “finite” envelopes imple-
mented as functions. Since Envelope was already an instance of
Semigroup, wrapping it in Option will result in a Monoid.

newtype Envelope= Envelope (Option (V2→Max R))
deriving (Semigroup,Monoid)

Looking at this from a slightly different point of view, the
most straightforward way to turn a semigroup into a monoid is to
use Option; the question is where to insert it. The two potential
solutions discussed above are essentially

V2→Option (Max R)
Option (V2→ Max R)

There is nothing inherently unreasonable about either choice; it
comes down to a question of semantics.

In any case, the envelope for any diagram can now be computed
using the Monoid instance for Envelope:

envelope ::Diagram→ Envelope
envelope = hom envelopeP◦unD

Recall that hom f = mconcat ◦map f expresses the lifting of a
function a→ m to a monoid homomorphism [a]→ m.

If we assume that there is a function

translateP ::V2→ Prim→ Prim

to translate any primitive by a given vector, we can concretely im-
plement beside as shown below. Essentially, it computes the dis-
tance to a separating line for each of the two diagrams (in opposite
directions) and translates the second diagram by the sum of the
distances before superimposing them. There is a bit of added com-
plication due to handling the possibility that one of the diagrams is
empty, in which case the other is returned unchanged (thus making
the empty diagram an identity element for beside). Note that the ?
operator multiplies a vector by a scalar.

translate ::V2→Diagram→Diagram
translate v = mkD◦map (translateP v)◦unD
unE ::Envelope→Maybe (V2→ R)
unE (Envelope (Option Nothing)) = Nothing
unE (Envelope (Option (Just f))) = Just (getMax◦ f)
beside ::V2→Diagram→Diagram→Diagram
beside v d1 d2 =

case (unE (envelope d1),unE (envelope d2)) of
(Just e1,Just e2)→

d1 � translate ((e1 v+ e2 (−v))? v) d2
→

d1 �d2

Variation III: Caching Envelopes
This method of computing the envelope for a Diagram, while el-
egant, leaves something to be desired from the standpoint of effi-
ciency. Using beside to put two diagrams next to each other requires
computing their envelopes. But placing the resulting combined dia-
gram beside something else requires recomputing its envelope from
scratch, leading to duplicated work.

In an effort to avoid this, we can try caching the envelope,
storing it alongside the primitives. Using the fact that the product
of two monoids is a monoid, the compiler can still derive the
appropriate instances:

newtype Diagram=Diagram (Dual [Prim],Envelope)
deriving (Semigroup,Monoid)

unD (Diagram (Dual ps,)) = ps
prim p =Diagram (Dual [p],envelopeP p)
mkD = hom prim
envelope (Diagram (,e)) = e

Now combining two diagrams with (�) will result in their primi-
tives as well as their cached envelopes being combined. However,
it’s not a priori obvious that this works correctly. We must prove
that the cached envelopes “stay in sync” with the primitives—in
particular, that if a diagram containing primitives ps and envelope
e has been constructed using only the functions provided above, it
satisfies the invariant

e = hom envelopeP ps.

Proof. This is true by definition for a diagram constructed with
prim. It is also true for the empty diagram: since hom envelopeP
is a monoid homomorphism,

hom envelopeP [] = ε.

The interesting case is (�). Suppose we have two diagram val-
ues Diagram (Dual ps1,e1) and Diagram (Dual ps2,e2) for which
the invariant holds, and we combine them with (�), resulting in
Diagram (Dual (ps2 ++ ps1),e1 � e2). We must show that the in-
variant is preserved, that is,

e1 � e2 = hom envelopeP (ps2 ++ps1).

109

Figure 7. Drawing a line between two shapes

Again, since hom envelopeP is a monoid homomorphism,

hom envelopeP (ps2 ++ps1)

= hom envelopeP ps2 �hom envelopeP ps1,

which by assumption is equal to e2 � e1.
But wait a minute, we wanted e1 � e2! Never fear: Envelope

actually forms a commutative monoid, which can be seen by noting
that MaxR is a commutative semigroup, and ((→)V2) and Option
both preserve commutativity.

Intuitively, it is precisely the fact that the old version of envelope
(defined in terms of hom envelopeP) was a monoid homomorphism
which allows caching Envelope values.

Although caching envelopes eliminates some duplicated work,
it does not, in and of itself, improve the asymptotic time complexity
of something like repeated application of beside. Querying the
envelope of a diagram with n primitives still requires evaluating
O(n) applications of min, the same amount of work as constructing
the envelope in the first place. However, caching is a prerequisite to
memoizing envelopes [Michie 1968], which does indeed improve
efficiency; the details are omitted in the interest of space.

Variation IV: Traces
Envelopes enable beside, but they are not particularly useful for
finding actual points on the boundary of a diagram. For example,
consider drawing a line between two shapes, as shown in Figure 7.
In order to do this, one must compute appropriate endpoints for
the line on the boundaries of the shapes, but having their envelopes
does not help. As illustrated in Figure 8, envelopes can only give the
distance to a separating line, which by definition is a conservative
approximation to the actual distance to a diagram’s boundary along
a given ray.

Consider instead the notion of a trace. Given a ray specified by
a starting point and a vector giving its direction, the trace computes
the distance along the ray to the nearest intersection with a diagram;
in other words, it implements a ray/object intersection test just like
those used in a ray tracer.

newtype Trace= Trace (P2→ V2→ R)
The first thing to consider, of course, is how traces combine. Since
traces yield the distance to the nearest intersection, given two
superimposed diagrams, their combined trace should return the
minimum distance given by their individual traces. We record this
declaratively by refining the definition of Trace to

newtype Trace= Trace (P2→ V2→Min R)
deriving (Semigroup)

Just as with Envelope, this is a semigroup but not a monoid, since
there is no largest element of R. Again, inserting Option will make

Figure 8. Envelopes are not useful for drawing connecting lines!

+∞

+∞

Figure 9. Returning +∞ from a trace

it a monoid; but where should the Option go? It seems there are
three possibilities this time (four, if we consider swapping the order
of P2 and V2):

P2→ V2→Option (Min R)
P2→Option (V2→ Min R)

Option (P2→ V2→ Min R)
The first represents adjoining +∞ to the output type, and the last
represents creating a special, distinguished “empty trace”. The sec-
ond says that there can be certain points from which the diagram
is not visible in any direction, while from other points it is not, but
this doesn’t make sense: if a diagram is visible from any point, then
it will be visible everywhere. Swapping P2 and V2 doesn’t help.

In fact, unlike Envelope, here the first option is best. It is
sensible to return +∞ as the result of a trace, indicating that the
given ray never intersects the diagram at all (see Figure 9).

Here, then, is the final definition of Trace:

newtype Trace= Trace (P2→ V2→Option (Min R))
deriving (Semigroup,Monoid)

Assuming there is a function traceP ::Prim→ Trace to compute
the trace of any primitive, we could define

trace ::Diagram→ Trace
trace = hom traceP◦unD

However, this is a monoid homomorphism since Trace is also a
commutative monoid, so we can cache the trace of each diagram as
well.

newtype Diagram
=Diagram (Dual [Prim],Envelope,Trace)
deriving (Semigroup,Monoid)

110

Variation V: Transformations and monoid actions
Translation was briefly mentioned in Variation II, but it’s time to
consider transforming diagrams more generally. Suppose there is
a type representing arbitrary affine transformations, and a way to
apply them to primitives:

data Transformation= . . .

transformP ::Transformation→ Prim→ Prim

Affine transformations include the usual suspects like rotation, re-
flection, scaling, shearing, and translation; they send parallel lines
to parallel lines, but do not necessarily preserve angles. However,
the precise definition—along with the precise implementations of
Transformation and transformP—is not important for our pur-
poses. The important fact, of course, is that Transformation is an
instance of Monoid: t1 � t2 represents the transformation which per-
forms first t2 and then t1, and ε is the identity transformation. Given
these intuitive semantics, we expect

transformP ε p = p (1)

that is, transforming by the identity transformation has no effect,
and

transformP (t1 � t2) p = transformP t1 (transformP t2 p) (2)

that is, t1 � t2 really does represent doing first t2 and then t1. (Equa-
tion (2) should make it clear why composition of Transformations
is “backwards”: for the same reason function composition is “back-
wards”.) Functions satisfying (1) and (2) have a name: transformP
represents a monoid action of Transformation on Prim. Moreover,
η-reducing (1) and (2) yields

transformP ε = id (1′)

transformP (t1 � t2) = transformP t1 ◦ transformP t2 (2′)

Thus, we can equivalently say that transformP is a monoid homo-
morphism from Transformation to endofunctions on Prim.

Let’s make a type class to represent monoid actions:

class Monoid m⇒ Action m a where
act :: m→ a→ a

instance Action Transformation Prim where
act = transformP

(Note that this requires the MultiParamTypeClasses extension.)
Restating the monoid action laws more generally, for any instance
of Action m a it should be the case that for all m1,m2 :: m,

act ε = id (MA1)
act (m1 �m2) = act m1 ◦act m2 (MA2)

When using these laws in proofs we must be careful to note the
types at which act is applied. Otherwise we might inadvertently
use act at types for which no instance of Action exists, or—more
subtly—circularly apply the laws for the very instance we are
attempting to prove lawful. I will use the notation A/B to indicate
an appeal to the monoid action laws for the instance Action A B.

Now, consider the problem of applying a transformation to an
entire diagram. For the moment, forget about the Dual wrapper and
the cached Envelope and Trace, and pretend that a diagram consists
solely of a list of primitives. The obvious solution, then, is to map
the transformation over the list of primitives.

type Diagram= [Prim]

transformD ::Transformation→Diagram→Diagram
transformD t = map (act t)
instance Action Transformation Diagram where

act = transformD

The Action instance amounts to a claim that transformD satisfies
the monoid action laws (MA1) and (MA2). The proof makes use
of the fact that the list type constructor [] is a functor, that is,
map id = id and map (f ◦g) = map f ◦map g.

Proof.

transformD ε

= { definition of transformD }
map (act ε)

= { Transformation/Prim }
map id

= { list functor }
id

transformD (t1 � t2)
= { definition }

map (act (t1 � t2))
= { Transformation/Prim }

map (act t1 ◦act t2)
= { list functor }

map (act t1)◦map (act t2)
= { definition }

transformD t1 ◦ transformD t2

As an aside, note that this proof actually works for any functor,
so

instance (Action m a,Functor f)
⇒ Action m (f a) where
act m = fmap (act m)

always defines a lawful monoid action.

Variation VI: Monoid-on-monoid action
The previous variation discussed Transformations and their monoid
structure. Recall that Diagram itself is also an instance of Monoid.
How does this relate to the action of Transformation? That is, the
monoid action laws specify how compositions of transformations
act on diagrams, but how do transformations act on compositions
of diagrams?

Continuing for the moment to think about the stripped-down
variant Diagram= [Prim], we can see first of all that

act t ε = ε, (3)

since mapping t over the empty list of primitives results in the
empty list again. We also have

act t (d1 �d2) = (act t d1)� (act t d2), (4)

since
act t (d1 �d2)

= { definitions of act and (�) }
map (act t) (d1 ++d2)

= { naturality of (++) }
map (act t) d1 ++map (act t) d2

= { definition }
act t d1 �act t d2

where the central step follows from a “free theorem” [Wadler 1989]
derived from the type of (++).

Equations (3) and (4) together say that the action of any partic-
ular Transformation is a monoid homomorphism from Diagram

111

to itself. This sounds desirable: when the type being acted upon
has some structure, we want the monoid action to preserve it. From
now on, we include these among the monoid action laws when the
type being acted upon is also a Monoid:

act m ε = ε (MA3)
act m (n1 �n2) = act m n1 �act m n2 (MA4)

It’s finally time to stop pretending: so far, a value of type
Diagram contains not only a (dualized) list of primitives, but also
cached Envelope and Trace values. When applying a transforma-
tion to a Diagram, something must be done with these cached
values as well. An obviously correct but highly unsatisfying ap-
proach would be to simply throw them away and recompute them
from the transformed primitives every time.

However, there is a better way: all that’s needed is to define an
action of Transformation on both Envelope and Trace, subject to
(MA1)–(MA4) along with

act t ◦ envelopeP = envelopeP◦act t (TE)
act t ◦ traceP = traceP◦act t (TT)

Equations (TE) and (TT) specify that transforming a primitive’s
envelope (or trace) should be the same as first transforming the
primitive and then finding the envelope (respectively trace) of the
result. (Intuitively, it would be quite strange if these did not hold;
we could even take them as the definition of what it means to
transform a primitive’s envelope or trace.)

instance Action Transformation Envelope where
. . .

instance Action Transformation Trace where
. . .

instance Action Transformation Diagram where
act t (Diagram (Dual ps,e, tr))

=Diagram (Dual (map (act t) ps),act t e,act t tr)

Incidentally, it is not a priori obvious that such instances can
even be defined—the action of Transformation on Envelope in
particular is nontrivial and quite interesting. However, it is beyond
the scope of this paper.

We must prove that this gives the same result as throwing away
the cached Envelope and Trace and then recomputing them directly
from the transformed primitives. The proof for Envelope is shown
here; the proof for Trace is entirely analogous.

As established in Variation III, the envelope e stored along with
primitives ps satisfies the invariant

e = hom envelopeP ps.

We must therefore prove that

act t (hom envelopeP ps) = hom envelopeP (map (act t) ps),

or, in point-free form,

act t ◦hom envelopeP = hom envelopeP◦map (act t).

Proof. We reason as follows:

act t ◦hom envelope P
= { definition }

act t ◦mconcat ◦map envelopeP
= { lemma proved below }

mconcat ◦map (act t)◦map envelopeP
= { list functor, (TE) }

mconcat ◦map envelopeP◦map (act t)
= { definition }

hom envelopeP◦map (act t)

Figure 10. Laying out a line of circles with beside

It remains only to prove that act t ◦ mconcat = mconcat ◦
map (act t). This is where the additional monoid action laws (MA3)
and (MA4) come in. The proof also requires some standard facts
about mconcat, which are proved in the Appendix.

Proof. The proof is by induction on an arbitrary list (call it l) given
as an argument to act t ◦mconcat. If l is the empty list,

act t (mconcat [])
= { mconcat }

act t ε

= { monoid action (MA3) }
ε

= { mconcat, definition of map }
mconcat (map (act t) [])

In the case that l = x : xs,

act t (mconcat (x : xs))
= { mconcat }

act t (x�mconcat xs)
= { monoid action (MA4) }

act t x�act t (mconcat xs)
= { induction hypothesis }

act t x�mconcat (map (act t) xs)
= { mconcat }

mconcat (act t x : map (act t) xs)
= { definition of map }

mconcat (map (act t) (x : xs))

Variation VII: Efficiency via deep embedding
Despite the efforts of the previous variation, applying transforma-
tions to diagrams is still not as efficient as it could be. The problem
is that applying a transformation always requires a full traversal
of the list of primitives. To see why this is undesirable, imagine a
scenario where we alternately superimpose a new primitive on a
diagram, transform the result, add another primitive, transform the
result, and so on. In fact, this is exactly what happens when using
beside repeatedly to lay out a line of diagrams, as in the following
code (whose result is shown in Figure 10):

unitx ::V2 — unit vector along the positive x-axis
hcat = foldr (beside unitx) ε

lineOfCircles n = hcat (replicate n circle)

Fully evaluating lineOfCircles n takes O(n2) time, because the kth
call to beside must map over k primitives, resulting in 1+ 2+ 3+
· · ·+n total calls to transformP. (Another problem is that it results
in left-nested calls to (++); this is dealt with in the next variation.)
Can this be improved?

Consider again the monoid action law

act (t1 � t2) = act t1 ◦act t2.

Read from right to left, it says that instead of applying two trans-
formations (resulting in two traversals of the primitives), one can

112

achieve the same effect by first combining the transformations and
then doing a single traversal. Taking advantage of this requires
some way to delay evaluation of transformations until the results
are demanded, and a way to collapse multiple delayed transforma-
tions before actually applying them.

A first idea is to store a “pending” transformation along with
each diagram:

newtype Diagram=
Diagram (Dual [Prim],Transformation,Envelope,Trace)

In order to apply a new transformation to a diagram, simply com-
bine it with the stored one:

instance Action Transformation Diagram where
act t′ (Diagram (ps, t,e, tr))

=Diagram (ps, t′ � t,act t′ e,act t′ tr)

However, we can no longer automatically derive Semigroup or
Monoid instances for Diagram—that is to say, we could, but the
semantics would be wrong! When superimposing two diagrams,
it does not make sense to combine their pending transformations.
Instead, the transformations must be applied before combining:

instance Semigroup Diagram where
(Diagram (ps1, t1,e1, tr1))� (Diagram (ps2, t2,e2, tr2))

=Diagram (act t1 ps1 �act t2 ps2,
ε,
e1 � e2,
tr1 � tr2)

So, transformations are delayed somewhat—but only until a call to
(�), which forces them to be applied. This helps with consecutive
transformations, but doesn’t help at all with the motivating scenario
from the beginning of this variation, where transformations are
interleaved with compositions.

In order to really make a difference, this idea of delaying trans-
formations must be taken further. Instead of being delayed only
until the next composition, they must be delayed as long as possi-
ble, until forced by an observation. This, in turn, forces a radical re-
design of the Diagram structure. In order to delay interleaved trans-
formations and compositions, a tree structure is needed—though a
Diagram will still be a list of primitives from a semantic point of
view, an actual list of primitives no longer suffices as a concrete
representation.

The key to designing an appropriate tree structure is to think
of the functions that create diagrams as an algebraic signature,
and construct a data type corresponding to the free algebra over
this signature [Turner 1985]. Put another way, so far we have a
shallow embedding of a domain-specific language for constructing
diagrams, where the operations are carried out immediately on
semantic values, but we need a deep embedding, where operations
are first reified into an abstract syntax tree and interpreted later.

More concretely, here are the functions we’ve seen so far with a
result type of Diagram:

prim ::Prim→Diagram
ε ::Diagram
(�) ::Diagram→Diagram→Diagram
act ::Transformation→Diagram→Diagram

We simply make each of these functions into a data constructor,
remembering to also cache the envelope and trace at every node
corresponding to (�):

data Diagram
= Prim Prim
| Empty
| Compose (Envelope,Trace)Diagram Diagram
| Act Transformation Diagram

There are a few accompanying functions and instances to define.
First, to extract the Envelope of a Diagram, just do the obvious
thing for each constructor (extracting the Trace is analogous):

envelope ::Diagram→ Envelope
envelope (Prim p) = envelopeP p
envelope Empty = ε

envelope (Compose (e,)) = e
envelope (Act t d) = act t (envelope d)

By this point, there is certainly no way to automatically derive
Semigroup and Monoid instances for Diagram, but writing them
manually is not complicated. Empty is explicitly treated as the
identity element, and composition is delayed with the Compose
constructor, extracting the envelope and trace of each subdiagram
and caching their compositions:

instance Semigroup Diagram where
Empty �d = d
d �Empty = d
d1 �d2

= Compose
(envelope d1 � envelope d2
, trace d1 � trace d2
)
d1 d2

instance Monoid Diagram where
ε = Empty

The particularly attentive reader may have noticed something
strange about this Semigroup instance: (�) is not associative!
d1 � (d2 � d3) and (d1 � d2) � d3 are not equal, since they result
in trees of two different shapes. However, intuitively it seems that
d1 � (d2 �d3) and (d1 �d2)�d3 are still “morally” the same, that is,
they are two representations of “the same” diagram. We can formal-
ize this idea by considering Diagram as a quotient type, using some
equivalence relation other than structural equality. In particular, as-
sociativity does hold if we consider two diagrams d1 and d2 equiv-
alent whenever unD d1 ≡ unD d2, where unD ::Diagram→ [Prim]
“compiles” a Diagram into a flat list of primitives. The proof is
omitted; given the definition of unD below, it is straightforward
and unenlightening.

The action of Transformation on the new version of Diagram
can be defined as follows:

instance Action Transformation Diagram where
act t Empty = Empty
act t (Act t′ d) = Act (t � t′) d
act t d = Act t d

Although the monoid action laws (MA1) and (MA2) hold by defini-
tion, (MA3) and (MA4) again hold only up to semantic equivalence
(the proof is similarly straightforward).

Finally, we define unD, which “compiles” a Diagram into a
flat list of Prims. A simple first attempt is just an interpreter that
replaces each constructor by the operation it represents:

unD ::Diagram→ [Prim]
unD (Prim p) = [p]
unD Empty = ε

unD (Compose d1 d2) = unD d2 �unD d1
unD (Act t d) = act t (unD d)

This seems obviously correct, but brings us back exactly where
we started: the whole point of the new tree-like Diagram type
was to improve efficiency, but so far we have only succeeded in
pushing work around! The benefit of having a deep embedding is
that we can do better than a simple interpreter, by doing some sort
of nontrivial analysis of the expression trees.

113

In this particular case, all we need to do is pass along an extra
parameter accumulating the “current transformation” as we recurse
down the tree. Instead of immediately applying each transformation
as it is encountered, we simply accumulate transformations as we
recurse and apply them when reaching the leaves. Each primitive is
processed exactly once.

unD′ ::Diagram→ [Prim]
unD′ = go ε where

go ::Transformation→Diagram→ [Prim]
go t (Prim p) = [act t p]
go Empty = ε

go t (Compose d1 d2) = go t d2 �go t d1
go t (Act t′ d) = go (t � t′) d

Of course, we ought to prove that unD and unD′ yield identical
results—as it turns out, the proof makes use of all four monoid
action laws. To get the induction to go through requires proving the
stronger result that for all transformations t and diagrams d,

act t (unD d) = go t d.

From this it will follow, by (MA1), that

unD d = act ε (unD d) = go ε d = unD′ d.

Proof. By induction on d.

• If d =Prim p, then act t (unD (Prim p)) = act t [p] = [act t p] =
go t (Prim p).

• If d =Empty, then act t (unDEmpty)= act t ε = ε = go tEmpty,
where the central equality is (MA3).

• If d = Compose c d1 d2, then

act t (unD (Compose c d1 d2))

= { definition }
act t (unD d2 �unD d1)

= { monoid action (MA4) }
act t (unD d2)�act t (unD d1)

= { induction hypothesis }
go t d2 �go t d1

= { definition }
go t (Compose c d1 d2)

• Finally, if d = Act t′ d′, then

act t (unD (Act t′ d′))
= { definition }

act t (act t′ (unD d′))
= { monoid action (MA2) }

act (t � t′) (unD d′)
= { induction hypothesis }

go (t � t′) d′

= { definition }
go t (Act t′ d′)

Variation VIII: Difference lists
Actually, unD′ still suffers from another performance problem
hinted at in the previous variation. A right-nested expression like
d1 � (d2 � (d3 � d4)) still takes quadratic time to compile, because
it results in left-nested calls to (++). This can be solved using dif-
ference lists [Hughes 1986]: the idea is to represent a list xs :: [a]
using the function (xs++) :: [a]→ [a]. Appending two lists is then
accomplished by composing their functional representations. The

“trick” is that left-nested function composition ultimately results in
reassociated (right-nested) appends:

(((xs++)◦ (ys++))◦ (zs++)) [] = xs++(ys++(zs++[])).

In fact, difference lists arise from viewing

(++) :: [a]→ ([a]→ [a])

itself as a monoid homomorphism, from the list monoid to the
monoid of endomorphisms on [a]. (H1) states that (++) ε = ε ,
which expands to (++) [] = id, that is, []++ xs = xs, which is true
by definition. (H2) states that (++) (xs � ys) = (++) xs � (++) ys,
which can be rewritten as

((xs++ ys)++) = (xs++)◦ (ys++).

In this form, it expresses that function composition is the correct
implementation of append for difference lists. Expand it a bit fur-
ther by applying both sides to an arbitrary argument zs,

(xs++ ys)++ zs = xs++(ys++ zs)

and it resolves itself into the familiar associativity of (++).
Here, then, is a yet further improved variant of unD:

unD′′ ::Diagram→ [Prim]
unD′′ d = appEndo (go ε d) [] where

go ::Transformation→Diagram→ Endo [Prim]
go t (Prim p) = Endo ((act t p):)
go Empty = ε

go t (Compose d1 d2) = go t d2 �go t d1
go t (Act t′ d) = go (t � t′) d

Variation IX: Generic monoidal trees
Despite appearances, there is nothing really specific to diagrams
about the structure of the Diagram data type. There is one construc-
tor for “leaves”, two constructors representing a monoid structure,
and one representing monoid actions. This suggests generalizing to
a polymorphic type of “monoidal trees”:

data MTree d u l
= Leaf u l
| Empty
| Compose u (MTree d u l) (MTree d u l)
| Act d (MTree d u l)

d represents a “downwards-traveling” monoid, which acts on the
structure and accumulates along paths from the root. u represents
an “upwards-traveling” monoid, which originates in the leaves and
is cached at internal nodes. l represents the primitive data which is
stored in the leaves.

We can now redefine Diagram in terms of MTree:

type Diagram
=MTree Transformation (Envelope,Trace) Prim

prim p = Leaf (envelopeP p, traceP p) p

There are two main differences between MTree and Diagram.
First, the pair of monoids, Envelope and Trace, have been replaced
by a single u parameter—but since a pair of monoids is again a
monoid, this is really not a big difference after all. All that is needed
is an instance for monoid actions on pairs:

instance (Action m a,Action m b)
⇒ Action m (a,b) where
act m (a,b) = (act m a,act m b)

The proof of the monoid action laws for this instance is left as a
straightforward exercise.

A second, bigger difference is that the Leaf constructor actually
stores a value of type u along with the value of type l, whereas

114

the Prim constructor of Diagram stored only a Prim. Diagram
could get away with this because the specific functions envelopeP
and traceP were available to compute the Envelope and Trace for
a Prim when needed. In the general case, some function of type
(l→ u) would have to be explicitly provided to MTree operations
—instead, it is cleaner and easier to cache the result of such a
function at the time a Leaf node is created.

Extracting the u value from an MTree is thus straightforward.
This generalizes both envelope and trace:

getU :: (Action d u,Monoid u)⇒MTree d u l→ u
getU (Leaf u) = u
getU Empty = ε

getU (Compose u) = u
getU (Act d t) = act d (getU t)
envelope = fst ◦getU
trace = snd ◦getU

The Semigroup and Action instances are straightforward gen-
eralizations of the instances from Variation VII.

instance (Action d u,Monoid u)
⇒ Semigroup (MTree d u l) where
Empty � t = t
t �Empty = t
t1 � t2 = Compose (getU t1 �getU t2) t1 t2

instance Semigroup d⇒ Action d (MTree d u l) where
act Empty = Empty
act d (Act d′ t) = Act (d �d′) t
act d t = Act d t

In place of unD, we define a generic fold for MTree, returning
not a list but an arbitrary monoid. There’s really not much differ-
ence between returning an arbitrary monoid and a free one (i.e.
a list), but it’s worth pointing out that the idea of “difference lists”
generalizes to arbitrary “difference monoids”: (�) itself is a monoid
homomorphism.

foldMTree :: (Monoid d,Monoid r,Action d r)
⇒ (l→ r)→MTree d u l→ r

foldMTree leaf t = appEndo (go ε t) ε where
go d (Leaf l) = Endo (act d (leaf l)�)
go Empty = ε

go d (Compose t1 t2) = go d t1 �go d t2
go d (Act d′ t) = go (d �d′) t

unD ::Diagram→ [Prim]
unD = getDual◦ foldMTree (Dual◦ (:[]))

Again, associativity of (�) and the monoid action laws only hold
up to semantic equivalence, defined in terms of foldMTree.

Variation X: Attributes and product actions
So far, there’s been no mention of fill color, stroke color, trans-
parency, or other similar attributes we might expect diagrams to
possess. Suppose there is a type Style representing collections of
attributes. For example, {Fill Purple,Stroke Red} ::Style might in-
dicate a diagram drawn in red and filled with purple. Style is then
an instance of Monoid, with ε corresponding to the Style contain-
ing no attributes, and (�) corresponding to right-biased union. For
example,

{Fill Purple,Stroke Red}�{Stroke Green,Alpha 0.3}
= {Fill Purple,Stroke Green,Alpha 0.3}

where Stroke Green overrides Stroke Red. We would also expect
to have a function

applyStyle ::Style→Diagram→Diagram

for applying a Style to a Diagram. Of course, this sounds a lot like
a monoid action! However, it is not so obvious how to implement a
new monoid action on Diagram. The fact that Transformation has
an action on Diagram is encoded into its definition, since the first
parameter of MTree is a “downwards” monoid with an action on
the structure:

type Diagram
=MTree Transformation (Envelope,Trace) Prim

Can we simply replace Transformation with the product monoid
(Transformation,Style)? Instances for Action Style Envelope and
Action Style Trace need to be defined, but these can just be trivial,
since styles presumably have no effect on envelopes or traces:

instance Action Style Envelope where
act = id

In fact, the only other thing missing is an Action instance defining
the action of a product monoid. One obvious instance is:

instance (Action m1 a,Action m2 a)
⇒ Action (m1,m2) a where
act (m1,m2) = act m1 ◦act m2

though it’s not immediately clear whether this satisfies the monoid
action laws. It turns out that (MA1), (MA3), and (MA4) do hold
and are left as exercises. However, (MA2) is a bit more interesting.
It states that we should have

act ((m11,m21)� (m12,m22))

= act (m11,m21)◦act (m12,m22).

Beginning with the left-hand side,

act ((m11,m21)� (m12,m22))

= { product monoid }
act (m11 �m12,m21 �m22)

= { proposed definition of act for pairs }
act (m11 �m12)◦act (m21 �m22)

= { m1 /a, m2 /a (MA2) }
act m11 ◦act m12 ◦act m21 ◦act m22

But the right-hand side yields

act (m11,m21)◦act (m12,m22)

= { proposed definition of act }
act m11 ◦act m21 ◦act m12 ◦act m22

In general, these will be equal only when act m12 ◦ act m21 =
act m21 ◦act m12—and since these are all arbitrary elements of the
types m1 and m2, (MA2) will hold precisely when the actions of
m1 and m2 commute. Intuitively, the problem is that the product of
two monoids represents their “parallel composition”, but defining
the action of a pair requires arbitrarily picking one of the two
possible orders for the elements to act. The monoid action laws hold
precisely when this arbitrary choice of order makes no difference.

Ultimately, if the action of Transformation on Diagram com-
mutes with that of Style—which seems reasonable—then adding
attributes to diagrams essentially boils down to defining

type Diagram=MTree (Transformation,Style)
(Envelope,Trace)
Prim

Coda
Monoid homomorphisms have been studied extensively in the pro-
gram derivation community, under the slightly more general frame-
work of list homomorphisms [Bird 1987]. Much of the presentation

115

here involving monoid homomorphisms can be seen as a particular
instantiation of that work.

There is much more that can be said about monoids as they
relate to library design. There is an intimate connection between
monoids and Applicative functors, which indeed are also known
as monoidal functors. Parallel to Semigroup is a variant of
Applicative lacking the pure method, which also deserves more
attention. Monads are (infamously) monoidal in a different sense.
More fundamentally, categories are “monoids with types”.

Beyond monoids, the larger point is that library design should
be driven by elegant underlying mathematical structures, and espe-
cially by homomorphisms [Elliott 2009].

Acknowledgments
Thanks to Daniel Wagner and Vilhelm Sjöberg for being willing
to listen to my ramblings about diagrams and for offering many
helpful insights over the years. I’m also thankful to the regulars
in the #diagrams IRC channel (Drew Day, Claude Heiland-Allen,
Deepak Jois, Michael Sloan, Luite Stegeman, Ryan Yates, and oth-
ers) for many helpful suggestions, and simply for making diagrams
so much fun to work on. A big thank you is also due Conal Elliott
for inspiring me to think more deeply about semantics and homo-
morphisms, and for providing invaluable feedback on a very early
version of diagrams. Finally, I’m grateful to the members of the
Penn PLClub for helpful feedback on an early draft of this paper,
and to the anonymous reviewers for a great many helpful sugges-
tions.

This material is based upon work supported by the National
Science Foundation under Grant Nos. 1116620 and 1218002.

References
R. S. Bird. An introduction to the theory of lists. In Proceedings of the

NATO Advanced Study Institute on Logic of programming and calculi of
discrete design, pages 5–42, New York, NY, USA, 1987. Springer-Verlag
New York, Inc.

M. Cole. Parallel programming with list homomorphisms. Parallel Pro-
cessing Letters, 5:191–203, 1995.

C. Elliott. Functional Images. In The Fun of Programming, “Cornerstones
of Computing” series. Palgrave, Mar. 2003. URL http://conal.net/
papers/functional-images/.

C. Elliott. Denotational design with type class morphisms (extended ver-
sion). Technical Report 2009-01, LambdaPix, March 2009. URL
http://conal.net/papers/type-class-morphisms.

R. Hinze and R. Paterson. Finger trees: a simple general-purpose data
structure. J. Funct. Program., 16(2):197–217, Mar. 2006.

R. J. M. Hughes. A novel representation of lists and its application to the
function reverse. Information Processing Letters, 22(3):141 – 144, 1986.

K. Matlage and A. Gill. ChalkBoard: Mapping Functions to Polygons. In
M. Morazán and S.-B. Scholz, editors, Implementation and Application
of Functional Languages, volume 6041 of Lecture Notes in Computer
Science, pages 55–71. Springer Berlin / Heidelberg, 2011.

D. Michie. “Memo” Functions and Machine Learning. Nature, 218:306,
Apr. 1968.

D. Piponi. Fast incremental regular expression matching with
monoids, January 2009. URL http://blog.sigfpe.com/2009/01/
fast-incremental-regular-expression.html.

D. Turner. Miranda: A non-strict functional language with polymorphic
types. In J.-P. Jouannaud, editor, Functional Programming Languages
and Computer Architecture, volume 201 of Lecture Notes in Computer
Science, pages 1–16. Springer Berlin / Heidelberg, 1985.

P. Wadler. Theorems for free! In Proceedings of the fourth international
conference on Functional programming languages and computer archi-
tecture, FPCA ’89, pages 347–359, New York, NY, USA, 1989. ACM.

Appendix
Given the definition mconcat= foldr (�) ε , we compute mconcat [] =
foldr (�) ε [] = ε , and

mconcat (x : xs)

= foldr (�) ε (x : xs)

= x� foldr (�) ε xs

= x�mconcat xs.

These facts are referenced in proof justification steps by the hint
mconcat.

Next, recall the definition of hom, namely

hom ::Monoid m⇒ (a→ m)→ ([a]→ m)
hom f = mconcat ◦map f

We first note that
hom f (x : xs)

= { definition of hom and map }
mconcat (f x : map f xs)

= { mconcat }
f x�mconcat (map f xs)

= { definition of hom }
f x�hom f xs

We now prove that hom f is a monoid homomorphism for all f .

Proof. First, hom f [] = (mconcat ◦map f) [] = mconcat [] = ε

(H1).
Second, we show (H2), namely,

hom f (xs++ ys) = hom f xs�hom f ys,

by induction on xs.

• If xs = [], we have hom f ([]++ys) = hom f ys = ε �hom f ys =
hom f []�hom f ys.

• Next, suppose xs = x : xs′:

hom f ((x : xs′)++ ys)
{ definition of (++) }

= hom f (x : (xs′++ ys))
{ hom of (:), proved above }

= f x�hom f (xs′++ ys)
{ induction hypothesis }

= f x�hom f xs′ �hom f ys
{ associativity of (�) and hom of (:) }

= (hom f (x : xs′))�hom f ys

As a corollary, mconcat (xs++ys) = mconcat xs++mconcat ys,
since hom id = mconcat ◦map id = mconcat.

116

