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Abstract

In wound healing, tissue growth, and certain cancers, the epithelial or the endothelial monolayer sheet expands. Within the
expanding monolayer sheet, migration of the individual cell is strongly guided by physical forces imposed by adjacent cells.
This process is called plithotaxis and was discovered using Monolayer Stress Microscopy (MSM). MSM rests upon certain
simplifying assumptions, however, concerning boundary conditions, cell material properties and system dimensionality. To
assess the validity of these assumptions and to quantify associated errors, here we report new analytical, numerical, and
experimental investigations. For several commonly used experimental monolayer systems, the simplifying assumptions
used previously lead to errors that are shown to be quite small. Out-of-plane components of displacement and traction
fields can be safely neglected, and characteristic features of intercellular stresses that underlie plithotaxis remain largely
unaffected. Taken together, these findings validate Monolayer Stress Microscopy within broad but well-defined limits of
applicability.
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Introduction

The human body is a cooperative of about 80 trillion cells, each

one of which receives constantly from its neighbors both chemical

and physical signals [1]. The individual cell then integrates these

signals and responds through apoptosis, proliferation, differentia-

tion, or migration. For example, pivotal events in the biology of

the stem cell, the differentiated cell, and the cancer cell are

increasingly understood to be of a mechanical nature [2–15].

These basic processes, in turn, underlie collective cellular processes

that include morphogenesis, injury and repair, growth, regener-

ation, and cancer.

In collective migratory processes, cells ordinarily move not as

individual entities but as collective sheets, ducts, strands, or clusters

[8]. It is well established that each individual cell can follow preset

chemical, adhesive, or mechanical gradients (chemotaxis, hapto-

taxis, and durotaxis, respectively [16–18]), but how each cell can

coordinate its migration with that of immediate neighbors has

defied full comprehension. For the cell-cell pair that is studied in

isolation, mechanical stress exerted across the cell-cell junction has

been recently quantified and is conceptually straightforward

[19,20]. For the integrated multicellular monolayer sheet, by

contrast, mechanical stresses exerted across the multiple cell-cell

junctions amongst numerous immediate neighbors have been

more difficult to quantify experimentally.

For the particular case of the cellular monolayer in vitro, the

stresses exerted between a cell and its neighbors can now be

mapped using the method called Monolayer Stress Microscopy

(MSM) [21,22]. Using MSM, Tambe et al. [22] have recently

shown that the stresses within and between cells comprising an

advancing monolayer sheet define a remarkably rugged stress

landscape. And within that landscape, the individual cell tends to

migrate along the local orientation of maximal principal stress in a

collective migratory process referred to as plithotaxis [21–25].

Collective cellular migration, a heterogeneous stress landscape,

and plithotaxis all arise in the context of multicellular cooperative

systems but logically cannot arise in single cells or in isolated cell-

cell pair interactions.

Implementation of MSM begins with recovery of local tractions

exerted by the monolayer upon its substrate. As originally

described [26,27], the traction recovery procedure is two-

dimensional in the sense that components of both the local

traction field and the local displacement field that are out of the

plane of the monolayer are assumed to be negligible. Others have

subsequently disputed the validity of this assumption on the

grounds that out-of-plane tractions and out-of-plane displacements

may be appreciable [28,29]. For estimation of in-plane tractions,

they have argued that three dimensional methods are necessary

because out-of-plane events invalidate two-dimensional methods

[28,29]. We disagree with this argument, and present in Results

and Discussion detailed supporting evidence.

Whether or not two-dimensional conditions might obtain, still

other assumptions are required. The distribution of internal
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stresses within the monolayer is computed from the recovered in-

plane tractions based on the two-dimensional balance of forces in

the cell plane as demanded by Newton’s laws [22]. As described

below, this balance of forces is expressed as a two-dimensional

elasto-static boundary value problem (BVP) with a source term

corresponding to the local substrate traction. To solve this

problem requires two key assumptions. The first involves the

physical conditions defined by stresses, displacements, or some

combination thereof at the monolayer boundary. The optical field-

of-view is sometimes limited to a small region of the monolayer,

and the boundary conditions at this limit are unknown. The

second involves the elastic properties of the monolayer itself. The

monolayer elastic properties are unknown as well. Concerning

these unknowns, Tambe et al. [22] made certain assumptions and

performed limited analysis supporting their plausibility.

Here we reexamine these assumptions quantitatively in detail.

We begin by formulating the problem in two dimensions and

highlighting the necessary assumptions. We go on to consider

boundary conditions and associated ambiguities, and then describe

our analytical, numerical, and experimental approaches. Taken

together, these approaches show quantitatively that errors

attributable to out-of-plane tractions and displacements, and to

cell material properties, are slight, and that errors attributable to

unknown boundary conditions, if suitably handled, are manage-

able.

Governing equations
We consider a monolayer comprising a collection of contiguous

cells which forms a sheet that is flat and thin (Fig. 1a). By flat and

thin we mean that, compared with the lateral span (L) of the

monolayer, its radius of out-of-plane curvature is large and its

height (h) is small. In that case, stresses within the monolayer (s)

and underlying tractions exerted by the monolayer upon its

substrate (T ) are taken to be planar with no out-of-plane

contributions (szz~szx~szy~Tz~0, Fig. 1b); the contribution

of out-of-plane tractions, and the accuracy of in-plane traction

recovery is assessed in Results and Discussion.

If inertial effects are negligible, then according to Newton’s

second law, the local traction must be balanced by local gradients

in monolayer stresses. This is simply a force balance argument,

which implies
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where T�
~{T=h. If the monolayer is homogeneous and

isotropic, then there are only two independent elastic constants,

which can be described by the Young’s modulus E and the

Poisson’s ratio n; we consider the viscous properties in Discussion.
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To ensure that displacements can be integrated from strains

yielding a single valued vector field, Saint-Venant’s compatibility

relation for strains must be satisfied, L2exx
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Together with Eqs. 1 and 2, we then obtain the Beltrami-Michell

compatibility equation,
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Eqs. 1 and 3 are sufficient to ensure local force balance; the source

terms arising from tractions and the boundary conditions then

determine stresses everywhere within the monolayer.

Since the monolayer always remains in mechanical equilibrium,

Newton’s laws demand that this force balance must be indepen-

dent of material properties of the monolayer. The recovered

stresses, however, are not independent of the specific material

properties. Tambe et al. [22] had asserted incorrectly that the

specific material properties of the monolayer have no effect on the

recovered distribution of intercellular stresses; while this statement

is indeed true for one-dimensional systems, it need not be true in

two-dimensional systems largely due to effects of Poisson’s ratio.

Eqs. 1 and 3 show that if the material properties are homogeneous,

then the distribution of internal stresses does not depend upon E

but does depend upon n. However, we show below that variations

in n in two dimensions can have at most only a small effect. Thus,

the prior assertion of Tambe et al. [22] that recovered stresses are

independent of specific material properties remains true in one

dimension and is approximately true in two dimensions.

In MSM, stresses are determined with standard finite element

procedures which use Eqs. 1 and 2. In this case, Eq. 3 is satisfied

automatically. Below we follow the standard approach and to do

so we assign values for n and E. In Results we assess the influence

of n on the recovered monolayer stresses. In contrast, the assigned

value for E is entirely arbitrary, and does not influence the

recovered monolayer stress distribution.

If the monolayer is neither isotropic, homogeneous, nor elastic,

then the Beltrami-Michell compatibility equation becomes more

complex, In Results and Discussion we deal with these cases as

well.

Boundary conditions
In most experimental monolayer systems, two types of

boundaries require consideration (Fig. 1c). The first is the edge

Figure 1. Balance of forces considered in MSM. (a) Cell monolayer
is considered as a thin sheet of cells. Each cell in the monolayer exerts
traction, T, on the substrate. According to the Newton’s second law, the
tractions are balanced by local monolayer stress, s, such that, in the
one dimensional force balance, Tdx~h½s(xzdx){s(x)�. (b) The force
balance is ensured only in the xy plane. Variation of stresses across the
thickness is assumed to be negligible. (c) In classical wound healing
assay, also referred to as case 2, the optical field-of-view has three
optical edges and a free edge. For boundary conditions, all edges have
shear stress to be zero. In addition, the free edge has normal stress to
be zero and the optical edge has normal displacement to be zero.
doi:10.1371/journal.pone.0055172.g001
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of the advancing monolayer front that is bounded by a cell-free,

traction-free region; we call this the free edge. The second is the

edge of the optical field-of-view that is bounded on one side by

cells that are outside the optical field-of-view, and on the other side

by cells that are inside the optical field-of-view; we call this the

optical edge. Boundary conditions at the free edge are known

(monolayer boundary stresses are zero), but boundary conditions

at the optical edge are unknown.

To overcome the difficulty posed by the boundary conditions at

the optical edge, Tambe et al. [22] assumed that along the optical

edges uini~0, sijnjti~0, (summation convention used) where u is

the displacement, n and t are the normal and tangent unit vectors

at the optical edge; we call this a symmetric boundary condition.

These boundary conditions imply that the region of interest

(Fig. 1c) is a repeatable unit of the monolayer; the free edge defines

the boundary of the monolayer, but the optical edge defines the

interior edge across which the unit repeats as a mirror image. As

such, Fig. 1c represents a monolayer that is infinite in extent along

the y-direction and twice the size of the region of interest along the

x-direction.

Recognizing that this assumption is ad hoc and might engender

errors, Tambe et al. [22] showed by experimental means that

these errors are largest in regions nearest the optical edge and

decay rapidly with distance from the optical edge, becoming

negligible beyond a distance of 20% of the length of the boundary.

In this connection, the subsequent work of Hur et al. [28] assumes

optical edges to be stress free (both normal and tangential stresses

are zero); in Discussion, we provide below a quantitative

comparison of the approach of Hur et al. [28] with that of

Tambe et al. [22].

At the optical edge, Tambe et al. [22] constrained the normal

displacements to be zero (Fig. 1c). In this case, a nonzero stress

along the x-direction will induce stress along the y-direction which

is partly artifactual. Although this induced stress along the y-

direction is associated with the boundary conditions, its magnitude

depends upon n. Therefore, in the approach of Tambe et al. [22],

boundary artifacts and material artifacts are coupled.

In the measurement of monolayers bounded by free edges alone

(Fig. S2c in File S1), there are no optical edges, and as such, there

are no unknown boundary conditions and no associated boundary

artifacts. We take advantage of this fact below.

Analysis

Based on geometric scaling arguments, we first estimate the

magnitude of out-of-plane tractions in comparison with in-plane

tractions; based on analytic arguments, we then quantify the errors

in recovered in-plane tractions when out-of-plane displacements

are neglected. This is followed by an analysis of the errors in

monolayer stresses attributable to the assumed simplified material

properties of the cells. We conclude by considering the distinction

between monolayers whose entire extent falls within the micro-

scopic field-of-view versus those that extend outside the field-of-

view.

Analytic assessments
Out-of-plane tractions and displacements. Concerning

traction recovery, we first consider the role of out-of-plane

tractions, Tz [27]. Based purely on geometric arguments, we

begin with a preliminary estimation of the error. For a semi-

infinite elastic medium, we then derive the full analytic Fourier

representation of substrate tractions and displacements in three

dimensions.

Experimental assessments
To assess the accuracy of recovered monolayer stresses

experimentally, we start by considering the monolayer bounded

by free edges alone; we call such a monolayer a cell island (Fig.

S2c, for experimental protocol see Supporting Information S1, in

File S1). Stresses computed over the entire cell island have two

useful properties. As noted above, the first property is the absence

of optical edges and resulting boundary artifacts; accordingly we

take these recovered stresses as being a gold standard. By

comparison, we can then assess boundary artifacts in subsystems

that include optical edges. The second property is that the absence

of boundary artifacts makes these stresses ideal to assess MSM’s

artifacts that might be attributable to the assumptions of material

incompressibility and homogeneity.

In this analysis, we compute local principal stress components

(smax and smin), and focus on the local average normal stress

(smaxzsmin)=2 (which is the average local tension), the local

maximum principal orientation (which is the axis of smax or local

highest tension), and the local maximum shear stress

(smax{smin)=2 (which is a measure of the local stress anisotropy).

Effects of material properties of the monolayer. For n,

reported values range from 0.3 to 0.5 [30]. To assess the influence

of choosing n on recovered monolayer stresses, we recomputed the

stress field using n~0:3 and then compared the two stress fields.

To assess the effect of heterogeneity of E, we first considered the

monolayer with homogeneous elastic properties where n~0:5 and

computed the local average normal stresses. Recognizing that the

cell stiffness is closely related to the cytoskeletal stress [31–33], we

amplified this effect by taking the map of average normal stress to

represent the non-uniform distribution of E, and then recalculated

the stress field. We then compared the stress field recovered using

homogeneous E with the stress field recovered using heteroge-

neous E.

Effects of boundary conditions. To quantify boundary

artifacts, as in the approach used by Tambe et al. [22], we

computed stresses using two different methods. In the first method,

stresses were computed by solving the equations of equilibrium

over the entire island; we call this case 1 (the gold standard). In the

second method, stresses were computed by following the approach

used by Tambe et al. [22], i.e., solving the equations of

equilibrium only in the region of interest that is bounded by

optical edges on three sides; we call this case 2 (Fig. 1c). The effect

of the assumed boundary conditions was quantified by comparing

the recovered stresses recovered from case 2 with those from the

artifact free stresses computed from case 1.

Numerical assessments
Propagation of the boundary artifacts. To analyze further

how boundary perturbations and associated artifacts propagate

into the region of interest, we imposed sinusoidal perturbations at

optical edges. For example, along the right optical edge in Fig. 1c,

we replaced the condition of zero normal displacements,

uini~un~0, with the condition of sinusoidal fluctuations,

un(y)~ûun sin(2py=l), where ûun is the amplitude, l is the

wavelength of the perturbation, and y is the distance along the

optical edge, with all other boundaries unchanged. We did so for

wave lengths l~L=2,L=8. A similar set of calculations were

performed with shear stress perturbations at the optical edge,

sxy(y)~ŝsxy sin(2py=l), where ŝsxy is the amplitude of the

perturbation. Each of the perturbations, induced stresses in the

monolayer. Spatial variation of these induced stresses is then

plotted as a function of distance from the optical edge (Supporting

Information S6 in File S1).

Monolayer Stress Microscopy
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Two other monolayer geometries are of interest. The first is the

monolayer bounded by two optical edges separated by two free

edges (Fig. S2a in File S1). The second is the monolayer bounded

by optical edges on all four sides (Fig. S2b in File S1). These cases

are treated in Supporting Information S4 in File S1.

Results

Analytic Results
Scaling analysis of out-of-plane tractions and their

effects. There are at least three important length scales in the

problem. (1) The lateral extent of in-plane traction fluctuations l,

quantified by the inverse of a typical wavenumber k in Fourier

space or an autocorrelation length in real space; (2) substrate

thickness H ; and (3) monolayer height h. The importance of the

relationship of substrate thickness to lateral extent of traction

fluctuations (kH or H=l) has been dealt with before [34,35].

The remaining dimensionless number is kh, or, equivalently

h=l. It is clear that if the monolayer height is large compared to

length scale for traction fluctuations, then nothing in the z

direction can be neglected. This might be the case for an isolated

cell that is cuboidal or rounded up with stress fibers draped over a

big nucleus. In this regime, errors associated with measuring in-

plane displacements alone cannot be neglected, and are not

treated here.

In the case of extended monolayers, by contrast, geometry alone

gives bounds on the errors. Suppose there are true traction vectors

of unit magnitude acting at two remote points separated by

lwwh; their angle q with respect to the x,y plane is at most

O(h=l). Since the recovered Tx and Ty carry a factor of

cos q~1{O(q2), it follows that they differ from their true values

only at second order in the ratio h=l. Tz carries a sin q~O(q)

dependence, implying an error that is first order in h=l.
If, for example, a typical lateral scale is 100 mm and the

monolayer cell height is 10 mm, then the geometric arguments

above imply errors on the order of 1% for in-plane tractions and

10% for out-of-plane tractions. The ratio of out-of-plane to in-

plane traction would then be of order 0.1, consonant with the

findings of Hur et al. [28], who reported 0.37.

Exact analysis of out-of-plane displacements and their

effects. If n=0:5, then neglecting the non-zero effects of the z

component of displacement, uz, introduces errors in Tx and Ty.

To quantify these errors we have extended the restricted two

dimensional work of Butler et al. [36] to three dimensional space.

A traction point source of unit force at the origin induces

displacements at a point (x,y) on the z~0 surface of a semi-

infinite medium, given by the classical Boussinesq solution

~uu~K~TT , where

K(x,y)~
A

r3
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~TT~~eed2(~rr) is the point source of traction,~ee is a (3 dimensional) unit

vector, and d(:) is the Dirac delta function. The prefactor is given

by A~(1zn)=pE, where E and n are Young’s modulus and

Poisson’s ratio of the substrate. It is important to note that the

classical Boussinesq solution is valid only when gradients of the

displacements (ux,uy,uz) are small.

In Supporting Information S2 (in File S1), we show that in two-

dimensional Fourier space, this becomes
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We use this formulation to quantify the errors in the recovered

tractions attributable to neglecting out-of-plane displacements. As

there is no intrinsic or independent length scale or preferred

direction, it suffices to examine in detail the behavior for, say,

kx~1,ky~0,k~1, in which case we have

~KK(~kk)~2pA

(1{n) 0 i(1{2n)=2
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The recovery of tractions is then given by ~TT~ ~KK{1 ~~uu~uu, where
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and where B~2(pA(3{4n)){1.

We now consider a unit displacement that has three-

dimensional components (cos q,0,sin q), the first two being in-

plane and last out-of-plane. The tractions are given by,
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The true in-plane traction is

T true
x ~B½(1{n)cosq{1=2i(1{2n)sin q�. The recovered in-plane

traction (neglecting the out-of-plane displacement) is

T rec
x ~B(1{n)cos q. The departures from unity of the ratio

DT rec
x D=DT true

x D quantifies the error in magnitude, while

Arg½T rec
x =T true

x � quantifies the error in phase. These quantities

are plotted in Fig. 2.

When n~0:5, these errors vanish as expected. However, even

when n departs from 0.5 substantially, the error in recovered

magnitude remains remarkably small (second order in q) and the

error in phase also remains small (first order in q). This behavior

parallels the geometric argument above.

For example, taking an extreme value for polyacrylamide gels

[37], n~0:4, and taking q~300, the error in magnitude would be

less than 1% and the error in phase would be approximately 5u.

Finally, we remark that for substrates of finite thickness, when

the tractions are smoothly distributed over distances larger than

gel thickness, the substrate deformation approximates pure

uniform shear, and in this case Poisson’s ratio in the substrate is

irrelevant.

Experimental Results
Case 1: The isolated cell island. In an island of rat

pulmonary microvascular endothelial (RPME) cells, tractions

demonstrated extreme spatial fluctuations (Tx, Fig. 3b; and Ty,

Fig. 3c). These fluctuations are comparable to those previously

reported [22,27]. Using these traction fields together with Eqs. 1

and 2, and assuming the monolayer elastic properties to be

homogeneous and incompressible (n~0:5), the resulting intercel-

Monolayer Stress Microscopy
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lular stress landscape demonstrated the same characteristic

ruggedness as observed previously by Tambe et al. [22] (Fig. 4a–c).

When we reduced the assumed value of n from 0.5 to 0.3, the

resulting stress landscape changed relatively little (Fig. 4d–f).

Similarly, when we introduced dramatic heterogeneities in E by

assuming that E is proportional to the average normal stress

(Fig. 4b), again the changes were modest (Fig. 4g–i). To quantify

these differences, we created scatter plots using stresses from every

grid point. On the E-axis we plotted stresses computed for the

monolayer where n is 0.5 and E is homogeneous, and on the y-axis

we plotted stresses computed for the monolayer under the other

two situations. Accordingly, Fig. 4j–l represent sensitivity of

stresses to the choice of n (red points) and to the heterogeneity

of E (blue points).

When n was reduced to 0.3, the three stress measures (average

normal stress, the maximum principal orientation, and the

maximum shear stress) each tracked closely the line of identity

and showed little variation (Fig. 4k–l, red points). Unlike changes

associated with the magnitude of n, changes associated with the

heterogeneity of E were somewhat greater (Fig. 4j–l, blue points).

For average normal stress, the relationship was slightly sigmoidal

(Fig. 4k, blue points); at low magnitudes the stresses were

underestimated and at high magnitudes the stresses were

overestimated. For maximum principal orientation, the points

were symmetrically scattered around the line of identity (Fig. 4j,

blue points). For maximum shear stress, the points were spread

asymmetrically about the line of identity (Fig. 4l, blue points); at

high magnitudes the stresses were overestimated.

Across all instances examined, the correlation coefficient r2 was

no smaller than 0.79; the slope m was close to unity (0.92 to 1.1);

the intercept c was (20:010 to 00) for orientation of maximum

principal orientation, and (20.23 Pa to 0.61 Pa) for average

normal stress and maximum shear stress.

Case 2: Subsystem bounded by optical edges on three

sides. Compared to the gold standard (Fig. 5a–c), the stresses

computed from case 2 were systematically different (Fig. 5d–f).

The stresses away from the optical edges were closely similar,

whereas the stresses close to the optical edges were appreciably

different (Fig. 5g–i). Moreover, as proposed by Tambe et al. [22],

the differences in the stresses were largely limited to a narrow band

whose width is 20% of the length of the optical edge, depicted by

the grey band in Fig. 5a–f.

When the entire stress map was compared, the agreement

between the gold standard and stresses from case 2 was weak, as

expected (Fig. 5j–l, blue points). But when the cropped maps

(which excluded the boundary region depicted by the grey band)

were compared, the agreement between stresses was far better

(Fig. 5j–l, red points). Nonetheless, average normal stresses were

slightly underestimated (Fig. 5k, red points), the maximum

principal orientations were slightly biased along a diagonal of

the monolayer geometry (Fig. 5j, red points), and the maximum

shear stresses were rather weakly correlated (Fig. 5l, red points).

Across all instances examined, in the region away from the

optical edge, the correlation coefficient r2 was no smaller than

0.66; the slope m was in the range 0.77 to 0.99; the intercept c was

(20:120 to 20:110) for orientation of maximum principal

orientation, and (25.5 Pa to 20.39 Pa) for average normal stress

and maximum shear stress.

Numerical Results
Propagation of the boundary artifacts. First, we consid-

ered an optical edge adjacent to the free edge, and imposed

boundary perturbation comprising sinusoidal normal displace-

ments un(y)~ûun sin(2py=l), where l~L=2 (Fig. 6a). These

normal displacements induced average normal stress which

decayed monotonically with distance from the boundary (Fig. 6b,

and Fig. 6f, blue lines marked with circle); when the wavelength of

the perturbation was smaller the decay was faster (Fig. 6d, and

Fig. 6f, red lines marked with circle). Indeed, the decay length in

each case was comparable to the wavelength of perturbation.

While the decay of average normal stress was monotonic, the

decay of maximum shear stress was not monotonic (Figs. 6c,e; and

Fig. 6f lines marked with cross). Finally, when the perturbed edge

was the optical edge away from the free edge, the stresses were

similar (Fig. 6h).

Next, we considered the boundary perturbations comprising

sinusoidal shear stress sxy(y)~ŝsxy sin(2py=l). Unlike the normal

displacements perturbations, the shear stress perturbations induce

stresses whose rate of decay depends on choice of the optical edge.

When the perturbed edge was the optical edge away from the free

edge, the induced stresses decayed faster (Fig. 6i, Supporting

Information S5; Fig. S8; in File S1).

Analysis of case 3 and 4 produced results that were qualitatively

similar to those of the analysis of case 2 (Supporting Information

S4; Figs. S3–S7 and Fig. S14; in File S1).

Discussion

Our principal findings are these. For in-plane traction recovery

and for in-plane monolayer stress recovery, the contributions of

out-of-plane components of tractions and displacements are

negligible. Second, optical edges cause artifacts that are mostly

confined to regions near the optical edge but are otherwise

homogeneous and small. Third, assumptions of homogeneity and

incompressibility of the monolayer material cause artifacts that are

also small. Finally, characteristic features of the recovered stress

maps that underlie plithotaxis are insensitive to these artifacts, thus

Figure 2. Accuracy of in-plane tractions as a function of
Poisson’s ratio when out-of-plane components of displace-
ments are neglected. q denotes the angle of the displacement vector
relative to the x,y plane. (a) Ratio of recovered in-plane traction to true
in-plane traction. (b) Error in the phase of the recovered in-plane
traction (degrees).
doi:10.1371/journal.pone.0055172.g002
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Figure 3. Substrate tractions for RPME cell island. (a) Island of RPME cells. (b,c) Two components of tractions, Tx and Ty respectively, applied
by these cells on the substrate. Size of the cell island: 4.2 mm62.6 mm.
doi:10.1371/journal.pone.0055172.g003
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demonstrating that the observation of plithotaxis is robust. Below

we discuss in greater detail monolayer stress recovery, associated

findings, and their implications.

Measurement of out-of-plane tractions and
displacements is not necessary
Recent reports have asserted that three dimensional methods

are necessary because the out-of-plane tractions or displacements

can be sufficiently large to invalidate tractions and monolayer

stresses recovered from two-dimensional methods [28,29]. To

assess the validity of this assertion we address three key questions.

First, to what degree do out-of-plane displacements, which are

unmeasured in MSM, impact recovery of in-plane tractions?

When the substrate is incompressible (n~0:5) and thick (Support-

ing Information S7; Fig. S10; in File S1), out-of-plane displace-

ments and in-plane tractions become decoupled [35,38]. In that

case errors attributable to ignoring out-of-plane events are

Figure 4. Sensitivity of the recovered monolayer stresses to change in the assumed elastic properties of the monolayer. (a) Map of
maximum principal orientation (for enlarged version of this image, see Supporting Information S8; Figs. S11–13; in File S1), (b) map of average normal
stress, and (c) map of maximum shear stress obtained by assuming monolayer elastic properties to be homogeneous with n~0:5. (d–f) The stress
maps with n~0:3 instead. (g–i) The stress maps when E is heterogeneous with n~0:5, here E was assumed to be proportional to the map of the
average normal stress (b). (j) Scatter plots for maximum principal orientation where, red points quantify effect of n on the maps (a) and (d), and blue
points quantify effect of heterogeneity of E on the (a) and (g). (k) Scatter plots for average normal stress, (l) scatter plots for maximum shear stress.
Regression parameters for a straight line fit, y~mxzc in (j–l): blue points, (j) m~0:96,c~{0:010,r2~0:93, (k) m~1:1,c~{0:23Pa,r2~0:91, and (l)
m~0:97,c~{0:02Pa,r2~0:79; red points, (j) m~1,c~00,r2~0:99, (k) m~0:92,c~{0:03Pa,r2~0:99, and (l) m~1:01,c~0:61Pa,r2~0:99.
doi:10.1371/journal.pone.0055172.g004
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Figure 5. Influence of the optical edges on the monolayer stresses recovered for case 2.Maps of (a) maximum principal orientation, (b) average
normal stress, and (c) maximum shear stress extracted from the region of interest (Fig. 4a–c, yellow rectangle). (d–f) Stress map obtained by limiting the
solution of equilibrium equations to the region of interest. (g) Map of difference between (a) and (d). (h) Map of (b) minus (e). (i) Map of (c) minus (f). The grey
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precisely zero. Accordingly, in that case both two-dimensional and

three-dimensional traction algorithms will recover in-plane trac-

tions that are identical. Remarkably, even when Poisson’s ratio

departs substantially from 0.5 and the out-of-plane displacements

are extreme, analysis shows that the errors in both magnitude and

phase of the recovered in-plane tractions remain negligible (Fig. 2).

Second, are the recovered in-plane tractions insensitive to the

difference between cells adhering tightly versus loosely to one

another, as asserted by [29] Notbohm et al. [29]? This assertion

stands in contrast with previously reported experimental data

obtained using the very same cell type (MCF10A) and demon-

strating the sensitivity of MSM to distinguish between control and

preparations where cell-cell junctions were disrupted with

cadherin antibodies ([22] [Fig. 4]). We reason that the contrary

conclusion of Notbohm et al. [29] follows from a very specific

feature of their model. In particular, Notbohm et al. [29] modeled

the interaction between cells and substrate by elastic springs

normal to the cell-substrate plane. In such a model, to first order

there is no shear stress (i.e. in-plane substrate tractions) applied by

the cells on the substrate. By construction, therefore, only in those

springs that depart from first order strain will there be any

transmission of in-plane tractions, and this occurs preferentially at

the island boundary.

Third, to what degree do nonzero out-of-plane displacements

and out-of-plane tractions affect the recovered in-plane monolayer

stresses? If out-of-plane tractions Tz, and displacements uz are

neglected, the accuracy of the in-plane monolayer stresses would,

in principle, be affected in two ways. (i) Neglecting the out-of-plane

components can have an indirect effect on the monolayer stresses

via the errors introduced in the in-plane tractions. However, Fig. 2

shows that the effect of neglecting uz on the recovered in-plane

tractions is remarkably small. Hence, the indirect effects on the

monolayer stresses are also expected to be small. (ii) Neglecting the

out-of-plane components can have a direct effect on the

monolayer stresses. In the limit of classical thin plate theory, Tz

will induce bending moments in the monolayer, whose contribu-

tion to sxx, syy, and sxy scale as zTzl
2=h3, where z has its origin at

the mid-plane of the monolayer. The thickness average of this

contribution is, however, identically zero. In connection with the

distribution of three-dimensional tractions, Notbohm et al. ([29];

Fig. 6a) propose a model, according to which both Tz and

associated bending moments are largely confined to the monolayer

boundary. Near the boundary, in the limit of classical plate theory

the thickness averaged monolayer stresses are negligible. Away

from the boundary, the monolayer stresses have even higher

accuracy. For example, beyond a distance proportional to the

height of the monolayer, according to St. Venant’s principle, the

bending moments and, therefore, the errors in monolayer stresses

will be negligible (Note that this argument is not restricted to the

classical thin plate theory). Taken together, the three-dimensional

traction model of Notbohm et al. [29] suggests that monolayer

stresses recovered by neglecting Tz would have associated errors

that are negligible.

Moreover, it has been suggested in several reports that the

problem of intercellular stress recovery, given the traction field, is

mathematically intractable [19,28,39]. It is true that there are

boundary artifacts caused by optical edges which introduce slowly

varying but unknown additive terms. Measurements from an

island, which has no optical edge, suffer from no such artifact,

however, and, as such, monolayer stresses can be determined

uniquely. Further, direct comparison of stress distributions

computed for an entire island compared with stress distributions

computed for a sub-region of interest bounded by optical edges

(assuming appropriate boundary conditions) show only modest

differences after cropping (Figs. 5k, S3k, S5k). In summary, for

isolated islands the problem of recovery of stress distributions is

mathematically tractable; for monolayers extending outside the

field-of-view, the stress distributions can be estimated accurately

using MSM with suitable care.

Boundary artifacts are confined largely to the boundary
Ad hoc boundary conditions at the optical edge introduced

systematic artifacts in the recovered distribution of monolayer

stresses, especially near optical edges. Near the optical edge, these

artifacts were heterogeneous and large (Fig. 5g–i, region shaded in

grey, and Fig. 5j–l, blue points). However, away from the optical

edge these artifacts were largely homogeneous and quite small

(Fig. 5g–i, non-shaded region, and Fig. 5j–l, red points). These

findings confirm and extend the analysis of Tambe et al. [22].

Subsequent to Tambe et al. [22], Hur et al. [28] analyzed a

square monolayer region bounded on all four sides by optical

edges. At the optical edges, instead of assuming symmetric

boundary conditions (see Introduction, Boundary Conditions

and [22]), Hur et al. [28] assumed stress-free boundary conditions,

which mechanically uncouples the region of interest from the rest

of the monolayer. To avoid unknown influences of cells outside the

optical field-of-view, Hur et al. [28] then cropped their stress maps

but much less so (by a factor of six) than did Tambe et al. [22].

Monolayer stresses computed with the cropping and boundary

conditions of Hur et al. [28] had a poor correlation r2~0:58 with

artifact-free stresses computed from an entire island. By contrast,

monolayer stresses obtained using the cropping and boundary

conditions of Tambe et al. [22], were tightly correlated r2~0:98
with stresses computed from the entire island. (Fig. S5k, red points,

in File S1).

Artifacts attributable to material properties are small
On the one hand, a recent study [40] makes the striking

observation that across a monolayer the cell stiffness is extremely

homogeneous. On the other hand, in isolated cells we have

previously established a direct proportionality between cytoskeletal

stress and cytoskeletal stiffness [31–33], which we assumed here.

As regards heterogeneity of elastic cellular properties within a

monolayer, therefore, these extreme cases would seem to bound

the plausible possibilities.

If monolayer material properties are homogeneous, then stress

recovery using MSM is unaffected. If the properties are

heterogeneous (Fig. 4b), recovered stresses at high stress magni-

tudes were slightly underestimated, and at low stress magnitudes

were slightly overestimated (Fig. 4k, blue points). Therefore,

although the recovered stress landscape would be slightly flattened,

the ruggedness of the stress landscape remains a robust finding.

band in (a–i) represents cropped region; width of this region was 20% of the length of the optical edge. (j) Scatter plots of maximum principal orientations for
quantitative comparison between (a) and (d). For the blue points cropped region was included, for the red points cropped region was exclude. (k) Scatter plots
for average normal stress, (l) scatter plots for maximum shear stress. Regression parameters for a straight line fit, y~mxzc in (j–l): blue points, (j)
m~0:85,c~{0:110,r2~0:88, (k) m~1:01,c~{5:55Pa,r2~0:93, and (l) m~0:75,c~{0:55Pa,r2~0:61; red points, (j) m~0:77,c~{0:120,r2~0:76, (k)
m~0:99,c~{2:58Pa,r2~0:83, and (l) m~0:85,c~{0:39Pa,r2~0:66. Size of the region of interest is 830 mm|830 mm.
doi:10.1371/journal.pone.0055172.g005
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Figure 6. Propagation of boundary artifacts away from the optical edge. (a) A thin sheet subjected to sinusoidal perturbations in normal
displacements un(y)~ûun sin(2py=l) at one edge, and un~0 at two other edges. (b) Map of average normal stress, and (c) map of maximum shear
stress when l~L=2. (d–e) The stress maps when l~L=8. (f) Decay of dominant Fourier mode in the stresses induced by the boundary conditions
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The assumption of incompressibility caused no such artifacts,

however (Fig. 4j–l, red points). Moreover, the prediction of local

cell orientation by local maximum principal stress orientation was

robust (Supporting Information S3; Fig. S1; in File S1). As such,

recovered stresses depended upon assigned material properties, as

expected, but the magnitude of these effects was unexpectedly

small.

Although movement of the epithelial sheet has been shown to

respond to the viscosity of the substrate [41], here we take the

substrate to be simply and linearly elastic, as in traditional

polyacrylamide and PDMS. As for the cell monolayer itself, most

mathematical models of development assume that the dominant

mechanical stress in cells comprising the monolayer is viscous on

the slow time scales relevant to migration [42]. Recent experi-

mental data demonstrate, to the contrary, that the dominant

mechanical stress in cells comprising the monolayer is very nearly

elastic [23]. Moreover, since the monolayer stress recovery rests

not on dynamic but on instantaneous balance of the substrate

tractions, neglecting viscosity of the monolayer has no associated

artifact.

The observation of plithotaxis is robust
According to the principle of plithotaxis, the local orientation of

cell migration and the local orientation of maximum principal

stress are strongly associated [22]. Might the artifacts addressed

here impact this finding? The maximum principal orientation was

found to be largely insensitive to the artifacts addressed here

(Figs. 5j, S3j, and S5j), thus leaving the finding of plithotaxis

unaltered.

The association between the stress and the motion is related to

the local stress anisotropy; the higher is the anisotropy, the tighter

is the association [22]. Although the finding of plithotaxis was

insensitive to the artifacts addressed here, the anisotropy of the

stress (i.e. the maximum shear stress) was, however, affected by the

boundary artifacts (Fig. 5l, after data cropping, r2~0:66).
Nonetheless, in the regions where anisotropy was highest and

lowest, the degree of anisotropy was largely preserved (data not

shown). Hence, the observation that higher stress anisotropy lead

to tighter mechanical guidance is also robust.

Based upon this evidence and these arguments, we agree that

out-of-plane tractions may be present and are of some interest.

However, out-of-plane tractions are ordinarily uncoupled from,

and therefore have no appreciable effects upon, recovered in-plane

stresses.

Conclusions

For the cellular monolayer in vitro, MSM maps thickness-

averaged in-plane components of the complete two-dimensional

stress tensor [22]. Although MSM ignores out-of-plane stress

components, it recovers in-plane stress components with negligible

error and without the requirements for confocal microscopy and

computational resources required for three-dimensional recon-

structions [28,29]. MSM is not subject to the additional errors that

might be attributable to experimental imprecision in resolving z-

displacements, moreover, or to computational error in three-

dimensional finite element analysis. Stress recovery using MSM is

simpler than three dimensional approaches and is insensitive to

those artifacts that have been identified.

Supporting Information

File S1 Supporting Information S1–S8. Details of experi-

mental and mathematical approach and accuracy assessment for

two other monolayer geometries of interest. The supporting

information contains several topics which includes, protocol for

mapping stresses (S1), Fourier representation of three dimensional

Boussinesq solution (S2), data for alignment between maximum

principal orientation and cell orientation (S3), accuracy assessment

for two other monolayer systems of interest (S4), effect of adjacent

free edges on rate of decay of boundary artifacts (S5), procedure

for mapping decay of boundary artifacts (S6), effect of substrate

thickness on substrate tractions (S7), and enlarged images of

selected results (S8).
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