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Abstract: Let S = K[x1, . . . , xn; y1, . . . , ym] be the polynomial ring in 2 sets of variables over a field K . We investigate

some classes of monomial ideals of S in order to classify ideals of the linear type.

Key words: Mixed products ideals, Veronese bi-type ideals, Rees algebra, ideals of linear type

1. Introduction

Let R = K[x1, . . . , xn] be the polynomial ring over a field K . The monomial ideals of R are ideals generated by

monomials and they have been intensively studied. Some problems arise when we would study good properties of

monomial ideals and the same properties for some algebras related to them. The most important of such algebras

is the Rees algebra ℜ(I) =
⊕

i≥0 I
iti ([1], §1.5, §4.5). In this paper we investigate the ideal of presentation N of

the Rees algebra associated to monomial ideals. If N is generated by linear relations, namely R -homogeneous

elements of degree 1, then the ideal is said to be of linear type. Our aim is to study monomial ideals of linear

type.

Let I be an ideal of R generated by polynomials f1, . . . , fs . Consider the presentation φ : R[T1, . . . , Ts] →
ℜ(I) = R[f1t, . . . , fst] of the Rees algebra ℜ(I) of I , defined by setting φ(Ti) = fit , i = 1, . . . , s . Let N

denote the kernel of φ and it is R -homogeneous. I is said to be of linear type if and only if N is generated

by R -homogeneous elements of degree 1. In other words, I is of linear type if and only if the canonical map

ψ : SymR(I) → ℜ(I), from the symmetric algebra of I to the Rees algebra of I , is an isomorphism. Several

classes of ideals of R of linear type are known. For instance, ideals generated by d-sequences and M -sequences

are of linear type [4], [12].

Set S = K[x1, . . . , xn; y1, . . . , ym] , the polynomial ring in 2 sets of variables over a field K . Recently

monomial ideals of S have been introduced and some properties have been studied [13], [10]. In this paper

we consider the ideals of mixed products L = IkJr + IsJt, where k + r = s + t and Ik (resp. Jr ) is the

monomial ideal of S generated by all square-free monomials of degree k (resp. r) in the variables x1, . . . , xn

(resp. y1, . . . , ym ) [10].

Moreover, we consider another class of monomial ideals of S , so-called Veronese bi-type ideals. They are

an extension of the ideals of Veronese type [11] in a polynomial ring in 2 sets of variables. The ideals of Veronese

bi-type are monomial ideals of S generated in the same degree: Lq,s =
∑

k+r=q Ik,sJr,s , with k, r ≥ 1, where
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Ik,s is the Veronese-type ideal generated on degree k by the set {xai1
1 · · ·xain

n |
∑n

j=1 aij = k, 0 ≤ aij ≤ s, s ∈

{1, . . . , k}} and Jr,s is the Veronese-type ideal generated on degree r by {ybi11 · · · ybimm |
∑m

j=1 bij = r, 0 ≤ bij ≤

s, s ∈ {1, . . . , r}} [5], [7].

In [6] and [8], the symmetric algebra of these classes of monomial ideals was studied. More precisely, the

authors investigated in which cases such ideals are generated by s -sequences. The notion of s-sequence has

been employed to compute the standard invariants of the symmetric algebra. In this paper we are interested in

studying the Rees algebra of these monomial ideals and we investigate in which cases they are of linear type,

generalizing the results stated in [9].

The paper is organized in the following way. The first section contains notations and terminology. In

the second section we study classes of monomial ideals generated by s -sequences of linear type. We investigate

the ideals of mixed products and the ideals of Veronese bi-type, and as results we state a classification of these

monomial ideals that are of linear type.

2. Preliminary notions

Let R be a Noetherian ring and let I = (f1, . . . , fs) be an ideal of R .

The Rees algebra ℜ(I) of I is defined to be the R -graded algebra
⊕

i≥0 I
i . It can be identified with the

R -subalgebra of R[t] generated by It , where t is an indeterminate on R . Let us consider the epimorphism of

graded R -algebras:

φ : R[T1, . . . , Ts] → ℜ(I) = R[f1t, . . . , fst],

defined by φ(Ti) = fit , i = 1, . . . , s .

The ideal N = kerφ of R[T1, . . . , Ts] is R -homogeneous and we denote Ni the R -homogeneous compo-

nent of degree i of N . The elements of N1 are called linear relations. If A = (aij), i = 1, . . . , r , j = 1, . . . , s

is the relation matrix of I , then gi =
∑s

j=1 aijTj , i = 1, . . . , r , belongs to N and R[T1, . . . , Ts]/J , with

J = (g1, . . . , gr), is isomorphic to the symmetric algebra SymR(I) of I . The generators gi of J are all linear

in the variables Tj .

The natural map ψ : SymR(I) → ℜ(I) is a surjective homomorphism of R -algebras. I is called of the

linear type if ψ is an isomorphism, that is, N = J .

Several classes of ideals of R of linear type are known. For instance, ideals generated by d-sequences are

of the linear type [4], [12].

Now, let K be a field, R = K[x1, . . . , xn] be the polynomial ring, and I ⊂ R be an equigenerated graded

ideal that is a graded ideal whose generators f1, . . . , fs are all of the same degree. Then the Rees algebra

ℜ(I) = ⊕j≥0I
iti = R[f1t, . . . , fst] ⊂ R[t]

is naturally bigraded with deg(xi) = (1, 0) for i = 1, . . . , n and deg(fit) = (0, 1) for i = 1, . . . , s .

Let R[T1, . . . , Ts] be the polynomial ring over R in the variables T1, . . . , Ts . Then we define a bigrading

by setting deg(xi) = (1, 0) for i = 1, . . . , n and deg(Tj) = (0, 1) for j = 1, . . . , s .

If I = (f1, . . . , fs) ⊂ R is a monomial ideal, for all 1 ≤ i < j ≤ s we set

fij =
fi

GCD(fi, fj)
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and
gij = fijTj − fjiTi,

and then J is generated by {gij}1≤i<j≤s in R[t1, . . . , Ts] .

In this paper our aim is to investigate classes of monomial ideals for which the linear relations gij form

a system of generators for kerφ (this means that J = kerφ and the ideals are of linear type).

In [2], Conca and De Negri introduced the monomial M -sequences and they proved that an M -sequence

is always of the linear type. An M -sequence is an s -sequence, but an ideal generated by an s -sequence need

not be of linear type [2], [3]. Now we study classes of monomial ideals generated by s -sequences of the linear

type. More precisely, we investigate the following classes of monomial ideals:

1) the ideals of mixed products;

2) the ideals of Veronese bi-type.

Let S = K[x1, . . . , xn; y1, . . . , ym] be the polynomial ring over a field K in 2 sets of variables with each

deg(xi) = 1, deg(yj) = 1, for all i = 1, . . . , n , j = 1, . . . ,m .

Given the nonnegative integers k,r,s,t such that k+r = s+t , in [10] the authors introduced the square-free

monomial ideals of S :
L = IkJr + IsJt,

where Ik (resp. Jr ) is the monomial ideal of S generated by all square-free monomials of degree k (resp. r)

in the variables x1, . . . , xn (resp. y1, . . . , ym ).

These ideals are called ideals of mixed products. Setting I0 = J0 = S , we then consider the following cases:

1) L = IkJr , with 1 ≤ k ≤ n , 1 ≤ r ≤ m

2) L = IkJr + Ik+1Jr−1 , with 1 ≤ k ≤ n , 2 ≤ r ≤ m

3) L = Jr + IsJt , with r = s+ t , 1 ≤ s ≤ n , 1 ≤ r ≤ m , t ≥ 1.

Example 2.1 1) S = K[x1, x2, x3; y1, y2] L = I2J1 = (x1x2y1, x1x3y1, x2x3y1, x1x2y2, x1x3y2, x2x3y2).

2) S = K[x1, x2; y1, y2, y3] L = I1J2 + I2J1 = (x1y1y2, x1y1y3, x1y2y3, x2y1y2, x2y1y3, x2y2y3, x1x2y1 ,

x1x2y2, x1x2y3).

In [5] the ideals of Veronese bi-type of degree q are defined as the monomial ideals of S :

Lq,s =
∑

r+k=q

Ik,sJr,s, r, k ≥ 1,

where Ik,s is the ideal of Veronese-type of degree k in the variables x1, . . . , xn and Jr,s is the ideal of Veronese-

type of degree r in the variables y1, . . . , ym .

Remark 2.1 In general Ik,s ⊆ Ik , where Ik is the Veronese ideal of degree k generated by all the monomials

in the variables x1, . . . , xn of degree k ([12]).

One has Ik,s = Ik for any k ≤ s . If s = 1, Ik,1 is the square-free Veronese ideal of degree k generated

by all the square-free monomials in the variables x1, . . . , xn of degree k . Similar considerations hold for

Jr,s ⊂ K[y1, . . . , ym] .
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Example 2.2 Let S = K[x1, x2; y1, y2] be a polynomial ring:

1) L2,2 = I1,2J1,2 = I1J1 = (x1y1, x1y2, x2y1, x2y2);

2) L4,2 = I3,2J1,2 + I1,2J3,2 + I2,2J2,2 = I3,2J1 + I1J3,2 + I2J2 = (x21x2y1, x
2
1x2y2, x1x

2
2y1, x1x

2
2y2,

x1y
2
1y2, x2y

2
1y2, x1y1y

2
2 , x2y1y

2
2 , x

2
1y

2
1 , x

2
1y1y2, x

2
1y

2
2 , x

2
2y

2
1 , x

2
2y

2
2 , x

2
2y1y2, x1x2y

2
1 , x1x2y

2
2 , x1x2y1y2).

3. Monomial ideals of linear type

In this section our aim is to investigate in which cases the ideals of mixed products and the ideals of Veronese

bi-type are of linear type.

At first we consider the ideal Ik in K[x1, . . . , xn] (resp. Jr in K[y1, . . . , ym]), that is, the square-free

Veronese ideal of degree k (resp. r).

Theorem 3.1 Let Ik ⊂ R = K[x1, . . . , xn] , n > 1 . Ik is of linear type if and only if k = n− 1 .

Proof ⇒ Let Ik = (xi1 · · ·xik |1 ≤ i1 < · · · < ik ≤ n) and f1, . . . , fq be its generators. We assume that Ik is of

linear type, i.e. N = (gij = fijTj−fjiTi|1 ≤ i < j ≤ q). This means that all the relations among the generators

of Ik are linear relations (in the variables Ti ). Supposing that the condition f1j = f2j = . . . = fn−1,j = xn−j+1 ,

for all j = 2, . . . , n , is not verified, then it is possible to compute not-linear relations among the generators

of Ik of the type TiTj − TlTs for some i, j, l, s ∈ {1, . . . , q} . It contradicts the assumption. Hence, one has

f1j = f2j = . . . = fn−1,j = xn−j+1 for all j = 2, . . . , n . It follows that the minimal set of generators of

Ik that satisfies this condition is: f1 = x1x2 · · ·xn−1 , f2 = x1x2 · · ·xn−2xn , f3 = x1x2 · · ·xn−3xn−1xn , . . . ,

fn−1 = x1x3 · · ·xn−1xn , fn = x2x3 · · ·xn . Then k = n− 1.

⇐ Let In−1 = (f1, . . . , fn), where f1 = x1 · · ·xn−1 , f2 = x1 · · ·xn−2xn , f3 = x1 · · ·xn−3xn−1xn , . . . ,

fn−1 = x1x3 · · ·xn , fn = x2 · · ·xn−1xn . We prove that the linear relations gij = fijTj − fjiTi form a Gröbner

basis of N with respect to a monomial order ≺ on the polynomial ring R[T1, . . . , Tn] . Denote by F the ideal

(fijTj : 1 ≤ i < j ≤ n). To show that the linear relations gij form a Gröbner basis of N we suppose that

the claim is false. Since the binomial relations are known to be a Gröbner basis of N , there exists a binomial

xaTα − xbT β , where xa = xa1
1 · · ·xan

n , xb = xb11 · · ·xbnn , Tα = Tα1
1 · · ·Tαn

n , T β = T β1

1 · · ·T βn
n , and the initial

monomial of xaTα − xbT β is not in F . More precisely, we assume that Tα, T β have no common factors and

that both xaTα and xbT β are not in F .

Let i be the smallest index such that Ti appears in T
α or in T β . Since xaTα−xbT β ∈ N , then fi divides

xbφ(T β), where φ(Ti) = fit . If fi|xb , then let Tj be any of the variables of T β . One has fijTj |fiTj |xbT β for

i < j . This is a contradiction by assumption (because xbT β /∈ F ).

Hence, fi ∤ xb . Let xi1 ≺ . . . ≺ xin−1 be a total term order on the variables of fi , and let fi =

xi1 · · ·xin−1 . Let ik be the minimum of the indices i1, . . . , in−1 such that xik does not divide xb . Then

xi1 , . . . , xik−1
divide xb . Since xik divides xbφ(T β) (because fi|xbφ(T β)), then there exists j such that Tj

appears in T β and xik |fj . By the structure of the generators f1, . . . , fn of In−1 if xik |fi and xik |fj with j

such that Tj is in T β , then fij |xit with it ∈ {i1, . . . , ik−1} (in fact, if a variable of the monomial fij is in the

monomial fh with h ̸= i , then such a variable belongs to any other generator fl for all l > h and l ̸= j ).

Hence, fij |xb and, as a consequence, fijTj |xbT β , that is, a contradiction (because xbT β /∈ F ). It follows

that N = (gij : 1 ≤ i < j ≤ n) = J , and hence In−1 is of linear type. 2
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Remark 3.1 k = n − 1 ⇔ Ik is generated by an s-sequence [8]. Hence, Ik is generated by an s -sequence if

an only if it is of linear type (by Theorem 3.1).

The following result states a classification of the ideal of mixed products L = IkJr + IsJt of linear type.

In the sequel we will suppose L = (f1, f2, . . . , fq) ⊂ S = K[x1, . . . , xn; y1, . . . , ym] , where f1 ≺ f2 ≺ · · · ≺ fq

with respect to the monomial order ≺Lex on the variables x1, . . . , xn; y1, . . . , ym and x1 ≺ x2 ≺ · · · ≺ xn ≺
y1 ≺ y2 ≺ · · · ≺ ym .

Theorem 3.2 Let S = K[x1, . . . , xn; y1, . . . , ym] , n,m > 1 . The following conditions hold:

1) L = IkJr is of linear type if and only if k = n − 1 and r = m or k = 1 and r = m (resp. k = n and

r = m− 1 or r = 1).

2) L = IkJr + Ik+1Jr−1 is of linear type if and only if k = n− 1 and r = m .

3) L = Jr + IsJt is of linear type if and only if r = m , s = n , t = 1 and m = n+ 1 .

Proof ⇒ Let L be an ideal of mixed products. Let G(L) be the set of generators of L ; then |G(L)| > 1.

Let f1, . . . , fq be the generators of L . We assume L is of linear type, i.e.

N = (gij = fijTj − fjiTi|1 ≤ i < j ≤ q).

This means that all the relations among the generators of L are linear in the variables Ti .

1) Let L = IkJr ⊂ K[x1, . . . , xn; y1, . . . , ym] ; then G(L) is

{xi1 · · ·xikyj1 · · · yjr |1 ≤ i1 < . . . < ik ≤ n, 1 ≤ j1 < . . . < jr ≤ m}.

If supposing that none of these conditions,

i. fij = xn−j+1 for all j = 2, . . . , n , i = 1, . . . , n− 1,

ii. fij = xi ,

are verified, then it is possible to compute not-linear relations among the generators of L of the type

TiTj − TlTs for some i, j, l, s ∈ {1, . . . , q} . It contradicts the assumption. Hence, one has fij = xn−j+1

for all j = 2, . . . , n , i = 1, . . . , n− 1 or fij = xi . It follows that the minimal set of generators of L that

satisfies these conditions is:

i. f1 = x1x2 . . . xn−1y, f2 = x1 . . . xn−2xny, f3 = x1 . . . xn−3xn−1xny, . . . , fn−1 = x1x3 . . . xny, fn =

x2x3 . . . xny , where y = y1 . . . yr . Then k = n− 1 and r = m ;
or

ii. f1 = x1y, f2 = x2y, . . . , fn = xny , where y = y1 . . . yr . Then k = 1 and r = m .

In a similar way we prove the thesis if k = n and r = m− 1 or r = 1.
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2) Let L = IkJr + Ik+1Jr−1 ⊂ K[x1, . . . , xn; y1, . . . , ym] ; then G(L) is

{xi1 · · ·xikyj1 · · · yjr , xi1 · · ·xik+1
yj1 · · · yjr−1

|1 ≤ i1 < . . . < ik+1 ≤ n,

1 ≤ j1 < . . . < jr ≤ m}.

If supposing that the conditions

fij = ym−j+1, i = 1, . . . ,m− 1, j = 2, . . . ,m

and
fij = xn+m−j+1, i = 1, . . . , n+m− 1, j = m+ 1, . . . ,m+ n.

are not verified, then it is possible to compute not-linear relations among the generators of L of the

type TiTj − TlTs for some i, j, l, s ∈ {1, . . . , q} . It contradicts the assumption. The minimal set of

generators of L that satisfies these conditions is: f1 = x1 · · ·xny1 · · · ym−1 , f2 = x1 · · ·xny1 · · · ym−2ym ,

f3 = x1 · · ·xny1 · · · ym−3ym−1ym , . . . , fm−1 = x1 · · ·xny1y3 · · · ym , fm = x1 · · ·xny2 · · · ym , fm+1 =

x1 · · ·xn−1y1 · · · ym , fm+2 = x1 · · ·xn−2xny1 · · · ym , fm+3 = x1 · · ·xn−3xn−1xny1 · · · ym , . . . , fm+n−1 =

x1x3 · · ·xny1 · · · ym , fm+n = x2 · · ·xny1 · · · ym . It follows L = InJm−1 + In−1Jm .

3) Let L = Jr + IsJt ⊂ K[x1, . . . , xn; y1, . . . , ym] . Then

G(L) = {yj1 · · · yjr , xi1 · · ·xisyj1 · · · yjt |1 ≤ i1 < . . . < is ≤ n,

1 ≤ j1 < . . . < jt ≤ m, 1 ≤ j1 < . . . < jr ≤ m}.

If supposing that the conditions

fij = yi, i = 1, . . . ,m− 1 j = i+ 1, . . . ,m,

fi,m+1 = x1 . . . xn, i = 1, . . . ,m,

are not verified, then it is possible to compute not-linear relations among the generators of L of the

type TiTj − TlTs for some i, j, l, s ∈ {1, . . . , q} . It contradicts the assumption. Hence, the minimal

set of generators of L that satisfies these conditions is: f1 = x1x2 · · ·xny1 , f2 = x1x2 · · ·xny2 , f3 =

x1x2 · · ·xny3 , . . . , fm = x1 · · ·xnym , fm+1 = y1 · · · ym . Then L = Jm + InJ1 .

⇐ Let L = (f1, f2, . . . , fq). We prove that the linear relations gij = fijTj−fjiTi form a Gröbner basis of

N with respect to a monomial order ≺ on the polynomial ring S[T1, . . . , Tn] . Denote F = (fijTj : 1 ≤ i < j ≤
q). To show that gij form a Gröbner basis of N , we suppose that the claim is false. Since the binomial relations

are known to be a Gröbner basis of N , there exists a binomial aTα − bT β , where a = xa1
1 · · ·xan

n yc11 · · · ycmm ,

b = xb11 · · ·xbnn y
d1
1 · · · ydm

m , Tα = Tα1
1 · · ·Tαq

q , T β = T β1

1 · · ·T βq
q , and the initial monomial of aTα − bT β is not

in F . More precisely, we assume that Tα, T β have no common factors and that both aTα and bT β are not in

F .

Let i be the smallest index such that Ti appears in Tα or in T β . Since aTα− bT β ∈ N , then fi divides

bφ(T β), where φ(Ti) = fit . If fi|b , then let Tj be any of the variables of T β . One has fijTj |fiTj |bT β for

i < j . This is a contradiction by assumption (because bT β /∈ F ).
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Hence, fi ∤ b . Replace the set of variables {x1, . . . , xn} with {z1, . . . , zn} and {y1, . . . , ym} with

{zn+1, . . . , zn+m} and let z1 ≺ . . . ≺ zn+m be a total term order on the variables of fi . Let k be the

minimum of the indices such that zik does not divide b . Then zi1 , . . . , zik−1
divide b . Since zik divides bφ(T β)

(because fi|bφ(T β)), then there exists j such that Tj appears in T β and zik |fj .
One has the following cases:

1) If L = In−1Jm or L = I1Jm , then, using the new variables zi , f1 = z1z2 · · · zn−1zn+1 · · · zn+m , f2 =

z1z2 · · · zn−2znzn+1 · · · zn+m , f3 = z1z2 · · · zn−3zn−1znzn+1 · · · zn+m , . . . , fn−1 = z1z3 · · · znzn+1 · · · zn+m ,

fn = z2z3 · · · znzn+1 · · · zn+m are the generators of L = In−1Jm and f1 = z1zn+1 · · · zn+m , f2 = z2zn+1 · · · zn+m ,

. . . , fn = znzn+1 · · · zn+m are the generators of L = I1Jm . By the structure of the generators of L if zik |fi
and zik |fj with j such that Tj is in T β , then fij |zit with it ∈ {i1, . . . , ik−1} (in fact, if a variable of the

monomial fij is in the monomial fh with h ̸= i , then such a variable belongs to any other generator fl for all

l > h and l ̸= j ). Hence, fij |b and, as a consequence, fijTj |bT β , that is, a contradiction (because bT β /∈ F ).

It follows that N = (gij : 1 ≤ i < j ≤ n) = J , and hence L is of the linear type.

In a similar way, the thesis follows if k = n and r = m− 1 or r = 1.

2) If L = In−1Jm+InJm−1 , the generators of L are: f1 = z1 · · · znzn+1 · · · zn+m−1 , f2 = z1 · · · znzn+1 · · ·
zn+m−2zn+m , f3 = z1 · · · znzn+1zn+2 · · · zn+m−3zn+m−1zn+m , . . . , fm−1 = z1 · · · znzn+1zn+3 · · · zn+m , fm =

z1 · · · znzn+2 · · · zn+m , fm+1 = z1 · · · zn−1zn+1 · · · zn+m , fm+2 = z1 · · · zn−2znzn+1 · · · zn+m , fm+3 = z1 · · ·
zn−3zn−1znzn+1 · · · zn+m , . . . , fm+n−1 = z1z3 · · · znzn+1 · · · zn+m , fm+n = z2 · · · znzn+1 · · · zn+m . By the

structure of the generators of L if zik |fi and zik |fj with j such that Tj is in T β , then fij |zit with it ∈
{i1, . . . , ik−1} (in fact, if a variable of the monomial fij is in the monomial fh with h ̸= i , then such a variable

belongs to any other generator fl for all l > h and l ̸= j ). Hence, fij |b and, as a consequence, fijTj |bT β , that

is, a contradiction (because bT β /∈ F ). It follows that N = (gij : 1 ≤ i < j ≤ n +m) = J , and hence L is of

linear type.

3) If L = Jm+InJ1 with m = n+1, then the generators of L are f1 = z1 · · · znzn+1 , f2 = z1 · · · znzn+2 ,

f3 = z1 · · · znzn+3 , . . . , fm = z1 · · · znzn+m , fm+1 = zn+1zn+2 · · · zn+m . By the structure of the generators of

L if zik |fi and zik |fj with j such that Tj is in T β , then fij |zit with it ∈ {1, . . . , ik−1} (in fact, if a variable

of the monomial fij is in the monomial fh with h ̸= i , then such a variable belongs to any other generator

fl for all l > h and l ̸= j ). Hence, fij |b and, as a consequence, fijTj |bT β , that is, a contradiction (because

bT β /∈ F ). It follows that N = (gij : 1 ≤ i < j ≤ m+ 1) = J , and hence L is of linear type. 2

Remark 3.2 L is generated by an s-sequence if and only if it is of linear type [8].

The following result classifies the Veronese bi-type ideals of linear type.

Theorem 3.3 Let S = K[x1, . . . , xn; y1, . . . , ym] be the polynomial ring over a field K . Lq,s is of linear type

if and only if q = s(n+m)− 1 .

Proof ⇒ Let Lq,s = (f1, f2, . . . , ft) where f1 ≺ f2 ≺ · · · ≺ ft with respect to the monomial order ≺Lex on the

variables of S . We assume that Lq,s is of linear type, i.e. N = (gij = fijTj − fjiTi|1 ≤ i < j ≤ t). This means
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that all the relations among the generators of Lq,s are linear relations (in the variables Ti ). Supposing that the

conditions f1j = f2j = . . . = fm−1,j = ym−j+1 for j = 2, . . . ,m , fmj = fm+1,j = . . . = fn+m−1,j = xn+m−j+1 ,

for j = m + 1, . . . ,m + n , are not verified, then it is possible to compute not-linear relations among the

generators of L of the type TiTj − TlTs for some i, j, l, s ∈ {1, . . . , t} . It contradicts the assumption. Hence,

one has f1j = f2j = . . . = fm−1,j = ym−j+1 for j = 2, . . . ,m , fmj = fm+1,j = . . . = fn+m−1,j =

xn+m−j+1 for j = m + 1, . . . ,m + n . It follows that the minimal set of generators of L that satisfies these

conditions is: f1 = xs1x
s
2 · · ·xsn−2x

s
n−1x

s
ny

s
1y

s
2 · · · ysm−1y

s−1
m , f2 = xs1x

s
2 · · ·xsn−2x

s
n−1x

s
ny

s
1y

s
2 · · · ys−1

m−1y
s
m , f3 =

xs1x
s
2 · · ·xsn−2x

s
n−1x

s
ny

s
1y

s
2 · · · ys−1

m−2y
s
m−1y

s
m , . . . , fn+m−1 = xs1x

s−1
2 · · ·xsn−2x

s
n−1x

s
ny

s
1y

s
2 · · · ysm−1y

s
m , fn+m =

xs−1
1 xs2 · · ·xsn−2x

s
n−1x

s
ny

s
1y

s
2 · · · ysm−1y

s
m .

Then q = s(n+m)− 1.

⇐ Let q = s(n +m) − 1. We prove that the linear relations gij = fijTj − fjiTi form a Gröbner basis

of N with respect to a monomial order ≺ on the polynomial ring S[T1, . . . , Tn+m] . Denote F = (fijTj :

1 ≤ i < j ≤ n + m). To show that gij form a Gröbner basis of N , we suppose that the claim is false.

Since the binomial relations are known to be a Gröbner basis of N , there exists a binomial aTα − bT β , where

a = xa1
1 · · ·xan

n yc11 · · · ycmm , b = xb11 · · ·xbnn y
d1
1 · · · ydm

m , Tα = Tα1
1 · · ·Tαn+m

n+m , T β = T β1

1 · · ·T βn+m

n+m , and the initial

monomial of aTα − bT β is not in F . More precisely, we assume that Tα, T β have no common factors and that

both aTα and bT β are not in F .

Let i be the smallest index such that Ti appears in Tα or in T β . Since aTα− bT β ∈ N , then fi divides

bφ(T β), where φ(Ti) = fit . If fi|b , then let Tj be any of the variables of T β . One has fijTj |fiTj |bT β for

i < j . This is a contradiction by assumption (because bT β /∈ F ).

Hence, fi ∤ b . Replace the set of variables {x1, . . . , xn} with {z1, . . . , zn} and {y1, . . . , ym} with

{zn+1, . . . , zn+m} and let z1 ≺ . . . ≺ zn+m be a total term order on the variables of fi . Let ik be the

minimum of the indices such that z
aik
ik

does not divide b , aik ∈ {s, s− 1} . Since zaik
ik

divides bφ(T β) (because

fi|bφ(T β)), then there exists j such that Tj appears in T β and zik |fj .

By the structure of the generators f1, . . . , fn+m of Lq,s if zik |fi and zik |fj with j such that Tj is in T β ,

then fij |z
ai1
i1

· · · z
aik−1

ik−1
, ai1 , . . . , aik−1

∈ {s, s − 1} (in fact, if a variable of fij is in degree D in the monomial

fh , with h ̸= i, j , then such variable in degree D belongs to any other generators fl for all l > h and l ̸= j ).

Hence, fij |b and, as a consequence, fijTj |bT β , that is, a contradiction (because bT β /∈ F ). It follows

that N = (gij : 1 ≤ i < j ≤ n+m) = J , and hence Lq,s is of linear type. 2

Remark 3.3 q = s(n + m) − 1 ⇔ Lq,s is generated by an s -sequence [6]. Hence, Lq,s is generated by an

s-sequence if and only if it is of linear type.

Example 3.1 R = K[x1, x2; y1, y2] .

L11,3 = (x31x
3
2y

3
1y

2
2 , x

3
1x

3
2y

2
1y

3
2 , x

3
1x

2
2y

3
1y

3
2 , x

2
1x

3
2y

3
1y

3
2) = (f1, f2, f3, f4)

φ : R[T1, T2, T3, T4] → R[f1t, f2t, f3t, f4t]
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Ti → fit, i = 1, . . . , 4

Kerφ = N = (x2T3 − x1T4, y1T2 − x1T4, y2T1 − x1T4) = J.

L11,3 is of linear type.
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