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Abstract

Generic structure of reachable and controllable positive linear systems is given in
terms of some characteristic components (monomial subdigraphs) of the digraph of a non-
negative pair. The properties of monomial subdigraphs are examined and used to derive
reachability and controllability criteria in digraph form for the general case when the sys-
tem matrix A may contain zero columns. The graph-theoretic nature of these criteria
makes them computationally more efficient than their known equivalents. The criteria not
only identify the reachability and controllability properties of positive linear systems but
also their reachable and controllable parts (subsystems) when the system does not possess
such properties.

Keywords: Positive linear systems; reachability; controllability; system structure; monomial
subdigraphs

1 Introduction
Positive discrete-time linear control systems are described by the equation

x(t + 1) = Ax(t) + Bu(t), t = 0, 1, 2, . . . (1)

where A = [aij] ∈ Rn×n
+ , B = [bij] ∈ Rn×m

+ , x ∈ Rn
+ is the state vector and u ∈ Rm

+ is the
control vector. The system (1) is denoted by the pair (A, B) and, when the system is positive,
by (A, B) ≥ 0.

A common property of positive systems is that their state evolution is always positive (or
at least nonnegative) whenever the initial state is positive (or at least nonnegative). Note that
A and B being nonnegative matrices is a necessary and sufficient condition for a discrete–time
linear system to have nonnegative state evolution for any nonnegative initial state, given that
the controls are also nonnegative.

The system (1) is said to be reachable (controllable from the origin) if, for any final state
xf ≥ 0, there exist k ∈ N and a nonnegative control sequence u(t) ≥ 0, t = 0, 1, 2, ..., k,
transferring the system from x0 = 0 at t = 0 to xf at t = k. System (1) is called null–
controllable (controllable to the origin) if, for any initial state xp ≥ 0, there exist k ∈ N and
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a nonnegative control sequence u(t) ≥ 0, t = 0, 1, 2, ..., k − 1, transferring the system from
x0 = xp at t = 0 to xf = 0 at t = k. The system (1) is controllable when it is reachable and
null–controllable, (see [11]). Controllability is a fundamental property of the system that shows
its ability to move in space. It has direct implications in many control problems such as optimal
control, feedback stabilization, nonnegative realizations and system minimality among others.

Characterizations of the reachability of the system (1) can be given in terms of the reacha-
bility matrix of the pair (A, B). The reachability matrix at time k is given by

Rk(A, B) = [B|AB|A2B| . . . |Ak−1B]. (2)

It is well-known that the pair (A, B) ≥ 0 is reachable if and only if the reachability matrix
Rk(A, B) has a monomial submatrix of order n, for some k ≤ n. We recall that an n-dimensional
vector is called i-monomial if it is a nonzero multiple of the ith-unit vector ei of Rn. A monomial
matrix consists of n linearly independent monomial vectors. Throughtout this paper we consider
nonnegative vectors only.

Different authors have contributed to the characterization of positive reachability and con-
trollability properties, these include Coxson and Shapiro [5], Coxson, Larson and Schneider [4],
Rumchev and James [11], Murthy [9], Muratori and Rinaldi [8], Bru, Romero and Sanchez [2]
and Caccetta and Rumchev [3]. At the same time, digraphs have been widely used in control
theory. It is sufficient to mention only that the notion of structural controllability of linear
systems [7] and the criteria to test this property have been formulated in terms of digraphs.
However, algebraic methods have been used for the same problems, see for example [5], [8] and
[11]. An overview of these results in both forms - algebraic and graph-theoretic, can be found
in the very recent monograph by Kaczorek [6]. Moreover, original results on reachability and
controllability of continuous-time positive linear systems are also provided in that monograph.

In this paper, in order to increase the understanding of the reachability and controllability
properties of positive linear systems, the generic structure of reachable and controllable pairs
(A, B) ≥ 0, for the general case when A may contain zero columns, is given in terms of the
digraph of A. In this way, all possible structures (subdigraphs) of the digraph of A that can
have a reachable or controllable pair (A, B) are detected and studied.

The paper is organized as follows. In section 2 some basic combinatorial concepts are given
as well as the reiteration of a basic but known lemma. The algebraic properties of all different
monomial subdigraphs, which can be in the digraph of a reachable pair, are studied in section 3.
The characterization of reachability and controllability properties of the system (1) is obtained
in section 4. Finally, section 5 contains the conclusions.

2 Some preliminaries
Let A = [aij] be an n× n nonnegative matrix. The digraph of A, denoted by D(A), is defined
as follows. The set of vertices of D(A) is denoted as N = {1, 2, . . . , n} and there is an arc in
D(A) from vertex i to vertex j if aji > 0. The set of all arcs is denoted by U . A walk in D(A),
from vertex i1 to vertex ik, is an alternating sequence of vertices and arcs, and we will denote
it by (i1, . . . , ik). A walk is called closed if the initial and final vertices coincide. The length
of a walk is the number of arcs it contains. A walk is said to be a path if all its vertices are
distinct, and a cycle if it is a closed path. The number of arcs directed away from a vertex i is
called the outdegree of i and is written od(i). The number of ingoing arcs of a vertex i is called
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the indegree of i and is denoted by id(i). Note that the number of nonzero entries in the ith
column of A is od(i), while id(i) coincides with the number of nonzero entries of the ith row.

The positive entries of the columns of matrix B are associated with the corresponding
vertices in D(A). Vertices associated with the monomial columns of B are referred to as
origins.

We have the following simple but basic result (see [3]).

Lemma 1. Let M be an n × n matrix whose jth column is i-monomial. Let b be an n-
dimensional j-monomial vector. Then, the product Mb is an i-monomial vector. In particular,
if M sb is j-monomial, then M s+1b will be i-monomial.

The above lemma tells us that if od(i) = 1 and b is an i-monomial vector then Mb is a
monomial vector as well. However, if od(i) > 1, then Mb is not monomial anymore; in fact,
the number of nonzero entries of that product is exactly od(i).

3 Monomial subdigraphs
In this section we construct special subdigraphs of the digraph D(A) called monomial subdi-
graphs. The common property of monomial subdigraphs is that from the column of B associated
with the initial vertex of a monomial subdigraph one can obtain a maximal sequence of linearly
independent monomial vectors b, Ab, A2b, . . . , Ap−1b, where p is the number of vertices of the
subdigraph. Now, given a nonnegative matrix A and a path (i1, i2, . . . , ip−1, ip) of length p− 1
of a digraph D(A), we will consider the following special paths.

Definition 1. (i) The above path is said to be an i1−monomial path if its vertices have
outdegree od(ij) = 1, for all j = 1, 2, . . . , p−1 and od(ip) is arbitrary, but ip cannot be connected
with any other vertex of the path.
(ii) When the last vertex of the monomial path has od(ip) = 0 then we have a single monomial
path.
(iii) The path (i1, i2, . . . , ip−1, ip) of length p− 1 with od(ik) = 1 for all k = 1, 2, . . . , p is called
a (monomial) cycle if i1 = ip.

A monomial path (i1, . . . , ip) of lenth p− 1 is represented in Figure 1.

When D(A) consists of a monomial path or a (monomial) cycle, we have the following result.
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Lemma 2. Let (A, B) ≥ 0 and let D(A) be a (single) monomial path, with vertices (i1, i2, . . . , ip)
of length p− 1, where p ≤ n and let B has an i1-monomial column b. Then,
(i) the p vectors

b, Ab, A2b, . . . , Ap−1b (3)

are linearly independent monomial vectors, and
(ii) these p vectors are the maximal number of linearly independent monomial vectors generated
by any column of B.

Proof. (i) Apply Lemma 1.
(ii) Since od(ip) = 0 (single monomial path) or od(ip) > 1 (monomial path), then the vector
Apb is a zero vector or has, respectively, more than one positive entry, that is it is not monomial
anymore. By Lemma 4 and Remark 6 of [3], any nonmonomial column b cannot generate in (3)
as many monomial vectors as the i1–monomial column. It is readily seen that the i1-monomial
column yields at least as many monomial columns as any other monomial column.

Remark. The results in Lemma 2 hold for monomial cycles. It is not difficult to see that
monomial cycles raise a p–periodic sequence (3). That is, Ak+lpb = Akb (up to a scalar),
0 ≤ k ≤ p− 1 and l = 0, 1, 2, . . .

Definition 2. A subdigraph T of a digraph D(A) is called a monomial tree if it is a union of
different monomial paths, originating at different vertices and connected one to the other from
the last vertices only (in D(A)) without forming cycles.

Note that the existence of at least a single monomial path in a monomial tree results from
the fact that there are no cycles. As cycles are not permitted in monomial trees, the monomial
paths of any monomial tree can be grouped in levels as follows. At level T1 we consider all single
monomial paths of that monomial tree. Any monomial path connected from its last vertex only
with that of a single monomial path will belong to level T2. Any monomial path connected
from its last vertex only with that of a monomial path from T2, and possibly T1, is in level T3.
By recursion, all levels in the monomial tree can be defined up to the last, which is denoted as
Tn−1. The following digraph is a monomial tree of three levels:

Let T be the index set of all initial vertices of all monomial paths of T . A similar result to
Lemma 2 can be obtained for a monomial tree.
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Lemma 3. Let (A, B) ≥ 0 and let D(A) be a monomial tree T . Suppose that B has the i-
monomial columns, for all i ∈ T . Then,
(i) the vectors generated along each monomial path, as in (3), form a set of linearly independent
monomial vectors; the union of all these sets is also linearly independent, and
(ii) this union is the maximal set of linearly independent monomial vectors generated by any
column of B.

Definition 3. Let a digraph D(A) contains at least one monomial path, one cycle and a tree T .
A subdigraph F ⊆ D(A) is said to be a flower if it consists of a monomial path (i1, i2, . . . , ip)
of length p− 1, linked to a (monomial) cycle (ip+1, ip+2, . . . , ip+k+1) with the arc (ip, ip+1), and
moreover, from the vertex ip of the monomial path, there are arcs (ip, t) for some t ∈ T .

Observe that there must be a tree in the digraph D(A) for a flower to exist, however the
flower itself contains only a monomial path and a connected (monomial) cycle. All vertices of
a flower have od(is) = 1, except for the vertex ip, in which case od(ip) ≥ 2. The figure below is
a flower.

Again, the following result is similar to Lemma 2.

Lemma 4. Let (A, B) ≥ 0 and let D(A) be the digraph of A containing a flower F connected to
a monomial tree T with q vertices. Assume that the flower has a monomial path (i1, i2, . . . , ip),
p ≤ n linked to the (monomial) cycle (ip+1, ip+2, . . . , ip+k+1), k ≤ n− p− q− 1. Suppose that B
has an i1-monomial column, namely b. Then,
(i) the p vectors {b, Ab, A2b, . . . , Ap−1b} are linearly independent and monomial. In addition,
the k+1 vectors {Aq+pb, Aq+p+1b, . . . , Aq+p+(k+1)b} are linearly independent and monomial, and
(ii) the union of both sets gives the maximal number of linearly independent monomial vectors
generated by any column of B along the flower F .

Proof. (i) Since od(ir) = 1, r = 1, 2, . . . , p−1, it is clear that the p vectors {b, Ab, A2b, . . . , Ap−1b}
are linearly independent monomial vectors, (see Lemma 2). The vector Apb will have at least
two positive entries since od(ip) ≥ 2. These positive entries correspond to the arcs present from
ip to a vertex of T , and to a vertex of the cycle. The vectors {Apb, Ap+1b, . . . , Ap+kb} will have
at least a positive entry in addition to the isth entry, s = p+1, p+2, . . . , p+k+1, produced by
the cycle. This additional positive entry, namely the jth, is yielded by the link from ip to the
monomial tree. However, the jth entry will eventually become zero, at least for the (q + p)th
power of A. This is because the entry will ultimately correspond to the final vertex of a single
monomial path of T . So, the k + 1 monomial vectors {Aq+pb, Aq+p+1b, . . . , Aq+p+(k+1)b} will be
linearly independent. Clearly, the set {b, Ab, A2b, . . . , Ap−1b, Aq+pb, Aq+p+1b, . . . , Aq+p+(k+1)b} is
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formed by linearly independent monomial vectors, since vertices in the flower are distinct.
(ii) Similar to the proof of part (ii) of Lemma 2.

Cycles associated with monomial columns of B produce linearly independent monomial
vectors, see Remark after Lemma 2. In addition, (monomial) cycles may yield similar periodic
sequences of linearly independent monomial vectors when they are associated with some special
columns of B, called proper, as stated in Lemma 5, the proof of which is similar to that of
Lemma 4.

Lemma 5. Let (A, B) ≥ 0 and let C be a (monomial) cycle with vertices (i1, i2 . . . , ip = i1),
where p < n. Also, let T be a monomial tree with q vertices in D(A). Suppose that B has a
proper column, which can be written as b = eik + w, where ik is one of the indices of the cycle,
e.g. ik = i1, and when wj > 0, then j is a vertex of the monomial tree T . Then,
(i) the p vectors {Aqb, Aq+1b, . . . , Aq+p−1b} are linearly independent monomial vectors, and
(ii) these p vectors are the maximal number of linearly independent monomial vectors generated
by any column of B associated with the cycle C.

We can weaken the definition of a monomial tree in order to obtain linearly independent
monomial vectors.

Definition 4. A subdigraph P of a digraph D(A) is called a palm if it is a path (i1, i2, . . . , ip),
such that od(ik) = 1, k = 1, 2, . . . , p− 1, and an arbitrary subset of arcs (ip, ik), k = 1, 2, . . . p.

It follows from Definition 4 that monomial paths can be considered as a special type of palm
without {(ip, ik), k = 1, 2, . . . , p}, but not any palm is a monomial path. If od(ip) = 0, the path
is, indeed, a single monomial path in a monomial tree. Note that any connection from ip−1 to
any monomial tree is excluded. It seems that a flower can be viewed as a particular type of
palm, in which the last vertex ip is connected with only one vertex ik, k = 2, . . . , p. For the
existance of flowers, the links (ik−1, t), t ∈ T must exist. But such links are not permitted in
the palm. For this reason, we have considered the digraph flower independently. In addition,
note that any monomial path or cycle that is not in a monomial tree, flower or (monomial)
cycle is considered as a palm.

A palm looks like:

The following properties can be deduced in a similar way as Lemma 2.

Lemma 6. Let (A, B) ≥ 0 and let D(A) be a palm with vertices i1, i2, . . . , ip, where p ≤ n.
Suppose that B has a column b which is i1-monomial. Then,
(i) the p vectors {b, Ab, A2b, . . . , Ap−1b} are linearly independent monomial vectors, and
(ii) the set of those p vectors is the maximal set of linearly independent monomial vectors
generated by any column of B.
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Palms can be linked among themselves by arcs (ip, p) for some vertex p of another palm P ,
forming a family of palms in which case other cycles can appear. Palms can also be linked to
any other i1-monomial subdigraph by arcs (ip, t) for some vertex t in a monomial tree or flower
or (monomial) cycle.

The above lemma is theorem 3 of [4]. In addition, for multi input systems (A, B) a com-
position of palms is used in [10] (theorem 1) to study the case where A does not have any null
columns.

4 Positive reachability and controllability
It is clear that when a pair (A, B) is such that D(A) is one of the monomial subdigraphs
introduced in the previous section and B contains all the columns needed to generate the
maximal number of linearly independent monomial vectors on D(A), then the pair (A, B) is
reachable. This is because one can obtain a monomial matrix of order n in the reachability
matrix.

With the above results, a characterization of reachable positive systems (A, B) is given in
this section.

For this purpose, consider the nonnegative pair (A, B) and the associated digraph D(A).
Recall that the positive entries of the monomial columns of B are identified with the corre-
sponding vertices in D(A) called origins. From these origins, construct the maximal monomial
subdigraphs, without repeating vertices, in the following order: (i) all possible monomial trees;
the initial vertices of all monomial paths of the monomial trees form the index set of origins
T ; (ii) all possible flowers; the initial vertices of all monomial paths of the flowers form the
index set of origins F ; (iii) all possible palms; the initial vertices of all paths of the palms
form the index set of origins P ; (iv) all possible (monomial) cycles from the proper columns
of B, blr = elr + w, where the indices of the positive components of vector w are vertices of a
monomial tree; indices lr form the set of origins C.

Let L = {(ip, t), ip ∈ F, t ∈ T and (ip, t), ip ∈ P, t ∈ T or t ∈ F or t ∈ P or t ∈ C} be the set
of all arcs linking the formed monomial subdigraphs. Define D′(A) = D(A) \ L = (N ′, U ′),
where N ′ = N and U ′ = U \ L. Thus, the monomial subdigraphs in D′(A) are disjoint. The
following characterization follows from this construction.

Theorem 1. Let A ≥ 0 and let D(A) be the associated digraph. Let T , F , P and C be the
index sets of origins of the monomial subdigraphs, respectively, monomial trees T , flowers F ,
palms P , and (monomial) cycles C of D(A) formed from the monomial and proper columns
of B. Then, the pair (A, B) is reachable if and only if D′(A) is a union of these monomial
subdigraphs, that is

D′(A) =
ct⋃

t=1

Tt

cf⋃
f=1

Ff

cp⋃
p=1

Pp

cp⋃
c=1

Cc, (4)

where ct,cf ,ck and cp stand for the number of monomial trees, flowers, palms and (monomial)
cycles, respectively.

Proof. Assume that all possible monomial subdigraphs are formed, without repeating vertices,
in the order stated above, from the origins T , F , P and C obtained from the monomial and
proper (blr = elr + w) columns of B.
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Suppose that D′(A) is a union of monomial subdigraphs:

D′(A) =
ct⋃

t=1

Tt

cf⋃
f=1

Ff

cp⋃
p=1

Pp

cp⋃
c=1

Cc.

Since B has the monomial columns corresponding to indices of T , F , and P , and columns
of the type blr = elr +wlr corresponding to C, then by Lemmas 3–6 we obtain for each monomial
subdigraph a maximal set of linearly independent monomial vectors. Since D′(A) is a union
of these monomial subdigraphs and it contains all the vertices of D(A), the union of all these
vectors is a set of n linearly independent monomial vectors. This occurs because each vertex of
D′(A) is in one and only one monomial subdigraph, and so the pair (A, B) is reachable.

Conversely, assume now that (4) does not hold, that is
ct⋃

t=1

Tt

cf⋃
f=1

Ff

cp⋃
p=1

Pp

cp⋃
c=1

Cc ⊂ D′(A).

Then, either D′(A) has at least one vertex or an arc not included in the union. Denote the
digraph formed by the union of those monomial subdigraphs by (N ′′, U ′′), where N ′′ is the
vertex set and U ′′ is the arc set.
Case 1. Suppose N ′′ ⊂ N ′. Hence, the number of vertices in the union is strictly less than the
n vertices of D′(A) and D(A). Then, the maximal number of linearly independent monomial
vectors produced by the union of all monomial subdigraphs is strictly less than n. Since the
monomial subdigraphs give the maximal number of such vectors, according to Lemmas 3–6
the reachability matrix Rn will not contain a monomial submatrix of order n. Columns of B,
which are not monomial or proper, are not used in the formation of the monomial subdigraphs
of the union. They might produce with columns of A (corresponding to vertices of a certain
subdigraphs, which are in D′(A) and not in the union of monomial subdigraphs) some linearly
independent monomial vectors in the sequence b, Ab, A2b, . . . , Akb. However, the number of
such vectors is less than the number of linearly independent monomial vectors generated by the
monomial column of B, corresponding to the origins, applied to the same subdigraph, see the
proof of Lemma 2. Therefore, Rn will not contain an n× n monomial submatrix and the pair
(A, B) is not reachable.
Case 2. Now U ′′ ⊂ U ′. Since all arcs connecting monomial subdigraphs are in L, the strict
inclusion is due to the existence of an arc not included in L. Such an arc has a vertex in D′(A),
but not in the union, that is N ′′ ⊂ N ′, and then we can proceed as in Case 1.

The following examples illustrate the monomial subdigraphs of the digraph of a pair (A, B) ≥
0.
Example 1. Let

A =



0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 1
0 1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0


and B1 =



0 0 0 0
0 0 0 0
0 1 0 0
0 0 1 1
0 0 0 0
0 0 0 1
0 0 0 0
1 0 0 0
0 0 0 0


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The digraph of A is

First note that the matrix B1 has the unit vectors e4, e8 and e3. It is clear that starting
from:

• vector e4 the single monomial path (4), of length zero, is found and it will be in the
monomial tree T ;

• vector e3 a flower, F , is found and it is formed by the monomial path (3), of length zero,
and the (monomial) cycle (7, 2); note that vertex 3 is connected with this cycle and there
is an arc from vertex 3 to T , the arc (3, 4);

• vector e8 the monomial path (8, 5, 1), of length two, is obtained and it will be in the set
of palms P ; it cannot be in T because this would produce a cycle in T ;

• vector b = e6 + w, where the positive components of w are just the 4th component and
this index is a vertex of T ; so, from that vector, one can consider the cycle (6, 9), which
is a (monomial) cycle C.

It is clear that D′(A) = T
⋃

P
⋃

F
⋃

C and thus the pair (A, B1) is reachable. The arcs of
D(A) not included in D′(A) are L = {(1, 4), (1, 6), (3, 4)}. It is worth noticing that the same
decomposition can be obtained if the matrix B1 has the monomial column e6 instead of the
column b4.
Example 2. Let A be the matrix of Example 1 and let

B2 =



0 0 0 1
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 1
0 0 0 0
1 0 0 1
0 0 0 0


In this case, the monomial tree T , the flower F and the palm P previously described are

obtained starting from the vertices which correspond to the first three columns of B2. However,
from the fourth column b = e6 + e8 + e1 one can not obtain monomial vectors because vectors
Akb, k = 0, 1, 2 . . . have more than one positive component. The cycle (6, 9) cannot be obtained
and T

⋃
P

⋃
F ⊂ D′(A). Hence, the pair (A, B2) is not reachable.
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Following the approach proposed in this paper we can identify reachable parts (monomial
trees, flowers, palms, cycles) of the system matrix A even when the pair (A, B) is not reachable.
The positive system can be made reachable by applying suitable controls (see Examples 1 and
2).

As it is well known, reachability from zero plus nilpotence is equivalent to controllability
(see [5] and [11]). It is thereby sufficient to eliminate all possible monomial subdigraphs of D(A)
with cycles for obtaining the controllability property. In fact, we can establish the following
result.

Theorem 2. Let (A, B) ≥ 0 and let D(A) be the associated digraph of A. Then, the pair
(A, B) is controllable if and only if, D(A) =

⋃cT

t=1 Tt and B contains all monomial columns
corresponding to the origins of the monomial trees.

5 Conclusion
In this paper, reachability and controllability properties of discrete–time positive linear systems,
in the more general case when the system matrix contains zero columns are established in terms
of the digraph of the pair (A, B). Monomial subgraphs of reachable and controllable nonnegative
pairs (A, B) are identified and their properties studied. Criteria in digraph form recognising
the reachability and controllability properties of such pairs are obtained in the paper. These
criteria give a better understanding of the structure of reachable and controllable discrete–time
positive linear systems than the corresponding criteria in algebraic form. The results obtained
in this paper can be used to develop computationaly efficient combinatorial algorithms for
revealing such fundamental properties of discrete–time positive linear systems as reachability
and controllability.
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