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Abstract 
 

 
A family of lanthanide metal complexes with general formula [Ln(H2O)3(18-crown-6)](ClO4)3  

(Ln: TbIII, DyIII, ErIII and YbIII) has been synthesized. Their magnetic properties have been 

characterized by DC and AC SQUID measurements and analyzed with the help of CASSCF-type 

calculations. The DyIII and YbIII compounds show slow relaxation of the magnetization under an 

external magnetic field. The analysis of the dependence of the relaxation time with the temperature 

and external magnetic field reveals that the main contributions are respectively the quantum 

tunneling and the Raman term, respectively. The analysis of the beta electron density and 

electrostatic potentials indicate that the axial ligands (three water molecules) generate a relatively 

small repulsion with the lanthanide electron density being the reason of the moderate magnetic 

anisotropy found in these systems. 

 

Keywords: Magnetic Anisotropy, Single-Molecule Magnets, Molecular Magnetism, Lanthanides, 

ab initio Calculations 
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INTRODUCTION  

During last years, many research groups have made many different new molecular compounds 

using lanthanide atoms that behaves as single-molecule magnets (SMMs).1-5 Recently, a 

breakthrough SMM behavior was detected in a dysprosium metallocene showing a blocking 

temperature of 60 K.5 The main feature of this kind of compounds is to present a slow spin 

relaxation because the inversion of the spin is controlled by a relatively high energy barrier, 1760 

K in the case of this dysprosocenium compound. However, there is not a unique parameter. Even 

higher barrier (1815 K) has been detected in a near-perfect pentagonal bipyramidal DyIII 

compound but with a blocking temperature of 14 K.6 There are different mechanisms that can 

provide the inversion of the spin: thermal jumping of the energy barrier through the spin-phonon 

interaction with the environment (Orbach mechanism), direct mechanism (coupling with one 

phonon), Raman mechanism (coupling with two phonons) and quantum tunneling in the ground or 

excited states. The slow relaxation mechanism is detected by two fingerprints: hysteresis loops 

showing steps due to the tunneling effects;7 and the imaginary part of the magnetic susceptibility 

measured with AC magnetic fields presents a dependence with the frequency.8 The latest is the 

usual employed approach because it does not required very low temperatures  as the hysteresis 

measurements. 

 

Since the paper of Ishikawa and coworkers published in 2003 presenting the first lanthanide 

mononuclear complex9 (a TbIII double decker showing slow spin relaxation) a large number of 

mononuclear lanthanide complexes exhibiting such behavior have been reported.10-12 Among the 

lanthanide cations, the DyIII systems are those showing more often single-molecule magnet 

behavior because they have a Kramers doublet ground state with a relatively high J value J = 15/2 
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and few electrons in the beta f shell that facilitates to adopt a more anisotropy shape of the electron 

density (in comparison with ErIII also with Kramers doublet ground state with J=15/2). Despite 

such requirement, there are widely studied single-molecule magnets with integer J values with 

high-symmetric coordination modes as the phtalocyaninato TbIII systems mentioned above. It 

worth to mention that furthermore of the zero-field SMMs, many compounds exhibit slow 

relaxation of the magnetization under an external field.13-16 Such magnetic field breaks the 

degeneracy of the up and down spin states by reducing the spin relaxation through quantum 

tunneling mechanism. Such systems are usually called field-induced single-molecule magnets, in 

contrast with those showing such behavior at zero field (zero-field single-molecule magnets). 

 

Regarding the design of optimal mononuclear SMMs, a large number of crown ether complexes 

with lanthanides have been reported. Due to the cation size, the 18-crown-6 ether is the most 

adequate and a search in the Cambridge Structural database17 gives 88 hits18-60 being the most 

common lanthanides LaIII, EuIII, NdIII, CeIII and GdIII with 18, 13, 12, 10 and 10 complexes, 

respectively. Among these compounds as it can be seen for the lanthanide cations, most of the 

described systems correspond to non-magnetic systems or light lanthanides. In the latest, slow 

magnetic relaxation was observed with CeIII and NdIII compounds.61 Concerning the heavy 

lanthanides, they are expected to show larger magnetic anisotropy because J=L+S, instead of J=L-

S for the early lanthanides. Despite this fact, the reported TbIII systems, for instance [Tb(18-crown-

6)(NCS)3] complex (CSD refcode WUHVUS) has not slow spin relaxation.62 However, Ding and 

coworkers have characterized two DyIII complexes showing slow relaxation [Dy(18-crown-

6)(NO3)2]X (X: ClO4 and BPh4) with energy barriers of 63 and 43 K, respectively.63 It is worth to 

mention also that in some cases, the lanthanide cation remains out of a central cavity of the crown 

ether, resulting in a symmetrical “sandwich” if the metal is between two crown ethers while a non-

symmetrical “sandwich” system is obtained when other ligands are coordinated to the metal.64-65 
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Here, the key point to have high magnetic anisotropy in such lanthanide complexes is that the 

spatial ligand distribution is able to accommodate the metal electron density in a localized region 

of the space with the minimal metal-ligand electron repulsion.66-68 Some qualitative attempts have 

been made to establish basic criteria of how to reduce the electronic repulsion; thus, the analysis of 

the shape (prolate and oblate) of the ground-state electron density of the lanthanide cations 

together with the spatial distribution of the ligands proposed by Long and coworkers allows us to 

make useful predictions.66 For instance, for the oblate DyIII complexes, the disc shape electron 

density should be placed in a space region free of ligands (as for instance in the dysprosium 

complex) or with neutral ligands with relatively large metal-ligand distances in order to reduce the 

electrostatic repulsion. Thus, the electron density is concentrated in such region, adopting a non-

distorted disc shape resulting in a highly anisotropy system with a very large perpendicular 

magnetic moment.  

Taking into account the above ligand requirements, we have considered the use of the neutral 18-

crown-6 to synthesize heavy lanthanide complexes that could be good candidates to have 

appealing magnetic properties. In this regard, computational methods based on CASSCF69 

calculations including spin-orbit effects are extremely helpful to understand the magnetic 

properties of this kind of complexes70-78 because they can determine the relative importance of the 

different spin relaxation mechanisms (i.e, direct, tunneling, Raman and Orbach.79 

 

EXPERIMENTAL SECTION  

Synthesis of [Tb(H2O)3(18-crown-6)](ClO4)3 (1). Tb(ClO4)3·6H2O (400 l, 200 mg, 0.44 mmol) 

wt. 50 % in water were dissolved in 10 ml acetonitrile, and 10 ml of acetonitrile solution of 18-

crown-ether (115 mg, 0.44 mmol) was added. The reaction was heated to 40 ºC for 8 h. After slow 

evaporation of the filtrate over 3 days provided x-ray quality colorless crystals. The crystals were 

washed with diethyl ether to remove residues. The yield was 62 %. IR (cm-1) 3414, 1656, 1471, 
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1290, 1253, 1050, 950, 885, 838, 627. Caution! perchlorate salts of metal complexes with organic 

ligands are potentially explosive. 

 

Synthesis of [Dy(H2O)3(18-crown-6)](ClO4)3 (2). Dy(ClO4)3·6H2O (400 l, 200 mg, 0.44 mmol) 

wt. 50 % in water was dissolved in 10 ml acetonitrile, and another 10 ml acetonitrile solution of 

18-crown-ether (114 mg, 0.43 mmol) was added to it. The reaction was heated to 40 oC for 8 h. 

After cooling, the solution was filtered to remove insoluble substances and left to slow evaporate 

at room temperature. After few days a microcrystalline precipitate appeared. The crystalline 

materials and was dissolved in 5 ml of dry acetonitrile and after one week suitable colorless single 

crystals for X-ray crystallography were obtained. The crystals were washed with diethyl ether. The 

yield of product was 73 %. IR (cm-1) 3442, 2929, 1714, 1483, 1447, 1336, 1105, 1029, 978, 924, 

875, 737, 698. Caution! perchlorate salts of metal complexes with organic ligands are potentially 

explosive. 

 

Synthesis of [Er(H2O)3(18-crown-6)](ClO4)3 (3). Er(ClO4)3·6H2O (400 l, 200 mg, 0.43 mmol) 

wt. 50% in water was dissolved in 10 ml acetonitrile, and 10 ml acetonitrile solution of 18-crown-

ether (114 mg, 0.43 mmol) was added to the first. The reaction was heated to 40ºC for 8 h. After 

cooling, the solution was filtered. Clear, pink crystals were obtained via slow evaporation after 4 

days. The crystals were washed with diethyl ether. The yield was 82 %. IR (cm-1) 3420, 2345, 

1648, 1410, 1348, 1070, 965, 872, 833. Caution! perchlorate salts of metal complexes with organic 

ligands are potentially explosive. 

 

Synthesis of [Yb(H2O)3(18-crown-6)](ClO4)3 (4). Yb(ClO4)3·6H2O (400 l, 200 mg, 0.43 mmol) 

wt. 50% in water was dissolved in 10 ml acetonitrile, where a 10 ml acetonitrile solution of 18-

crown-ether (112 mg, 0.42 mmol) was added following a similar treatment as previous complexes. 

The reaction was heated to 40ºC for 8 h. After cooling, the solution was filtered and left open at 
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room temperature. After 5 days colorless single crystals suitable for X-ray crystallography were 

obtained. The crystals were washed with diethyl ether (yield = 89 %). IR (cm-1) 3418, 2350, 1641, 

1403, 1352, 1067, 964, 875, 831. Caution! perchlorate salts of metal complexes with organic 

ligands are potentially explosive. 

 

X-ray Crystallography. A Bruker D8 Venture (Mo Kα radiation, λ = 0.71073 Å, Photon 100 

CMOS detector) diffractometer has been employed to measure single-crystals of 1-4. Data 

collection, refinement parameters and crystal details are collected in Supporting Information 

(Table S1-S4). Once the data were processed (raw data integration, merging of equivalent 

reflections and empirical correction of the absorption), the structures were solved by either 

Patterson or Direct methods and refined by full-matrix least-squares on weighted F2 values using 

the SHELX suite of programs.  

 

Magnetic Measurements. Susceptibility measurements (Direct (DC) and alternating (AC) 

current) were carried out with a Quantum Design SQUID MPMS device. An oscillating ac field of 

4 Oe were used in the Ac measurements and frequencies ranging from 1 to 1500 Hz and the 

external DC field indicated in the text. Polycrystalline species were mounted in a capillary tube 

made of polyimide. Samples of approximately 20 mg were not fixed within the sample tube and 

then they aligned along the magnetic field direction.  

 

Computational Details. CASSCF method was used to calculated the state energies without spin-

orbit effects for mononuclear complexes consisting of one LnIII cation surrounded by coordination 

sphere while the effect of spin–orbit coupling was taken into account perturbatively in a second 

step by using the restricted active space state interaction method (RASSI).80 Dynamic correlation 

contributions are not essential due to the relative large ionic character of the Ln-O bonds. The 

MOLCAS ANO-RCC basis set81-83 was used for all the atoms. The following contractions were 



 
 

      
 

7 

used: Tb, Dy, Er and Yb [9s8p6d4f3g2h]; O [4s3p1d]; N [4s3p1d]; S [4s3p1d]; F [3s2p]; C [3s2p] 

and H [2s]. (8,7), (9,7), (11,7) and (13,7) active spaces were used for TbIII, DyIII, ErIII and YbIII 

systems respectively. For the TbIII system 7 septuplets and 140 quintuplets were used; for the DyIII 

system 21 sextets, 128 quadruplets and 98 doublets were used; for the ErIII system 35 quadruplets 

and 112 doublets were used; finally, for the YbIII system 7 doublets were used. The direction and 

magnitude of the magnetic moment of the final states were evaluated using the SINGLE_ANISO 

routine implemented in MOLCAS 8.0.71, 84 The matrix elements of the transition magnetic 

moments have been calculated to have an estimation about the probability of transition between 

two different states of the molecules.85 Such matrix elements are calculated an integral between the 

two involved states, as it is proposed by the golden Fermi rule using a magnetic moment operator. 

DFT calculations were performed to obtain the electrostatic potentials of the ligand environment of 

the complexes using a model structure in which the metal atom is removed, using the B3LYP86 

functional with a TZVP basis set87using the Gaussian 09 package.88  

 

 

RESULTS AND DISCUSSION 

Crystal Structures of 1-4. The single-crystal X-ray diffraction of these four complexes (see 

Figure 1) were performed and the crystallographic data is reported in Table S1-S4. The crystal 

systems are quite different for this family of compounds: 1 is hexagonal, 2 orthorhombic while 3 

and 4 are monoclinic. The molecules adopt different dispositions depending on the coordinated 

axial water molecules which, in addition, have several O-H···O hydrogen bonds with the 

perchlorate counteranions. Also, it is important to remark that this affects the packing causing 

changes in the crystal symmetries of the four crystals, where intermolecular interactions between 

the mononuclear lanthanide complexes are rather different. Thus, each TbIII compound (1) shows 

ten Tb···Tb intermolecular distances below 10 Å (2*8.482 Å, 2*9,752 Å, 6*9.857 Å) while the 
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other three complexes only six, being the DyIII compound the case with the longest intermolecular 

Ln···Ln contacts (1*8.548 Å, 1*8.587 Å, 2*8.934 Å, 2*9.985 Å). These differences are 

emphasized because intermolecular magnetic dipolar interactions are crucial for the spin relaxation 

through tunneling mechanism.89 

 

 

1 

 

2 

 

3 

 

4 

 

Figure 1 Two representations of the 1-4 lanthanide [Ln(H2O)3(18-crown-6)](ClO4)3 (Ln: TbIII, 

DyIII, ErIII and YbIII) complexes. 

 



 
 

      
 

9 

The use of the SHAPE code90 allows the calculation of the coordination modes of the lanthanide 

cations. The lowest S values for the four systems (1.592, 1.561, 1.128 and 1.105, respectively for 

1-4) correspond to a muffin structure, this structure is relatively unusual, but it is adopted due to 

the slightly-distorted flat position of the six donor oxygen atoms of the crown ether. 

 
 

 
 

Figure 2 (top) Distortion of the crown-ether structure for the four lanthanide complexes 1-4. 

(down) Representation of the crown-ether distortion estimated using the SHAPE program by 

comparing the position of the oxygen atoms with the hexagon of the symmetric crown-ether 

(lower S values higher symmetry).  

 

To analyze the distortion of the crown-ethers due to the interaction with the lanthanide atoms, we 

have compared the adopted structure in the four systems with a symmetric crown-ether having a 

regular hexagonal disposition of the oxygen atoms (see Figure 2). The contraction of the heaviest 

lanthanide atoms results in a large distortion of the crown-ether to adopt the adequate structure to 
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interact with the metal. Furthermore, the analysis of the Ln-O bond distances (see Table S5) 

indicates that the complex with more similar bond distances is the DyIII system indicating that such 

cation has the most appropriate size to fit inside the 18-crown-6 cavity to keep highest symmetry 

for the lanthanide complex. This compound also shows relatively large axial Dy-O bond distances 

with the water molecules (the average value is longer than Tb-O ones against the lanthanide 

contraction behavior, see Table S5). The analysis of the intermolecular hydrogen bond interactions 

shows that the shortest O···O distances, between the isolated axial water molecule (with the 

longest axial Dy-O distance) and the perchlorate counteranions, happen in the case of the DyIII 

compound. Hence, for such system the enhancement of the intermolecular hydrogen bond 

interactions involving the axial water molecules could be the reason of the increase of the axial 

Dy-O distances. 

 
Magnetic measurements. The thermal variation of the DC magnetic data (χMT vs. T plots) for 

complexes 1 – 4 (Figures S1-S4) shows χMT values at T = 300 K of 11.02 cm3·K·mol-1 (1), 13.01 

cm3·K·mol-1 (2), 11.10 cm3·K·mol-1 (3) and 2.40 cm3·K·mol-1 (4) which are close to the 

theoretical value of 11.82, 14.17, 11.48 and 2.88 cm3·K·mol-1, respectively for each LnIII ions in 

the free-ion approximation. The larger difference for TbIII and DyIII systems could be due to a 

more shorter intermolecular Ln-O-H···O-Cl-O···H-O-Ln exchange pathway than in the other two 

compounds.  Upon cooling, the χMT products decrease continuously down to reach values of 6.0 

cm3 K mol-1 (1), 7.7 cm3 K mol-1(2), 4.8 cm3 K mol-1 (3) and 1.48 cm3 K mol-1 (4) at 1.8 K. The M 

vs H plots (Figures S1-S4) at 1.8 K for complexes 1 – 4 show a rapid increase of the magnetization 

below 1 T and then a very slow linear increase to reach values of 4.7 NμB (1), 4.9 NμB (2), 4.3 NμB 

(3) and 1.6 NμB (4) at 5 T. These values are much lower than the expected saturation values (9.72, 

10.65, 9.58 and 4.54 NμB, respectively) and are compatible with the existence of strong crystal-

field effects.  
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The analysis of AC magnetic susceptibility signal without an external applied static DC field 

indicates that no maximum in the ´´ signal was found for the four systems. Under a non-zero 

external field, DyIII and YbIII compounds show frequency-dependence with a maximum in the ´´ 

curves. Thus, when different small DC fields are applied, for instance 500 Oe in the case of DyIII 2 

compound (Figure 3a), the ´´ versus frequency signal at 1.8 K shows a maximum and a Cole-

Cole diagram can be determined (Figure 3b). 

 
 

Figure 3 (a) Dependence for the [Dy(H2O)3(18-crown-6)](ClO4)3 complex of the out-of-phase 

susceptibility with the frequency at different static fields at 1.8 K. See Figure S5 for frequency 

dependence at different temperatures. (b) Cole-Cole diagram determined at 1.8 K and 500 Oe.  

 

The Cole-Cole plots were fitted for the DyIII compound and the relaxation times (see Figure 4) and 

 parameters calculated. The spin-lattice relaxation rate  parameter was determined at each 

given temperature (see Table S6) that can be employed to analyze the spin relaxation mechanism 

by analyzing the  vs. T dependence, following Equation 1: 
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   (1)  
 
The terms in Equation 1 refer to direct relaxation, quantum tunneling, Raman and Orbach 

relaxation mechanisms, in that order.79 Orbach processes are not considered because the ab initio 

calculations (see next section) indicate that the first excited state (46.6 cm-1) is much higher in 

energy than the determined with the last term of Equation 4 (12.9 cm-1) and the representation of 

ln vs. 1/T (not shown) does not present a clear linear dependence. Furthermore, the 

decrease of the values by increasing the external magnetic field (see Figure 4a) reveals that 

the direct term must be practically negligible. Thus, the spin relaxation is controlled by the 

quantum tunneling and Raman terms that can be used to fit the experimental data (red curves in 

Figures 4a and 4b). Recently, Ding and coworkers have proposed an approach to analyze the 

different relaxation processes for DyIII complexes.91 

The Raman term has usually n values between 4 and 9 being important at higher temperatures. 

From the dependence with the temperature (Figure 4b) with the Raman term, we can extract C= 

0.432 s-1 K-8.23, n = 8.23 and 𝜏𝑄𝑇𝑀−1 = 579 s-1 (constant term added because quantum tunneling 

contribution has not temperature-dependence, Equation 2).  

      (2)
 

Additionally, from the dependence with the field at 1.8 K (Figure 4a) it is possible to fit the 

experimental data with the B1= 1089.2 s-1, B2= 426 T-2 with a constant value that depends of the 

temperature K(T) = 54.8 s-1 (Equation 3) coming from the Raman term. 

     (3) 

t - 1 = AH 4T + B1

1+B2H
2 +CT n + t 0

- 1 exp
-Ueff

kT

æ
èç

ö
ø÷

t - 1 =
B

1

1+ B2H
2

+ K(T )
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Figure 4 Dependence of the inverse of the spin relaxation time for the [Dy(H2O)3(18-crown-

6)](ClO4)3 complex (a) with an static external field and (b) with the temperature. The red curves 

correspond to the fitting using the quantum tunneling (Equation 2) and Raman (Equation 3), 

respectively. 

 

As mentioned above, also the YbIII compound shows a well-defined maximum in the ´´ signal 

(see Figure 5a) with an external field of 500 Oe. From the Cole-Cole diagram (Figure 5b) it is 

possible to extract the spin relaxation times by a fitting procedure (see Table S6 and Figure 6). In 

this case, despite to have only one unpaired electron, due to the 4f13 configuration on the YbIII 

center, the Equation 1 must be applied due to the J = 7/2 value for its ground state. As in the case 

of the DyIII compound, the dependence with the external field is due to the quantum tunneling 

while the temperature-dependence is slightly different with two regions (above and below 2.5 K, 

see Figure 6a). Thus, it is expected that in the lowest temperature region, we have an Orbach 
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mechanism while at higher temperatures, due to the exponential dependence, the system follows a 

Raman mechanism. Again here, the Orbach term shows a fitted energy barrier from the 

experimental data (around 5 cm-1) considerably smaller than the first excited energy determined 

with CASSCF calculations (63.3 cm-1). 

 

 
 

Figure 5 (a) Dependence for the [Yb(H2O)3(18-crown-6)](ClO4)3 complex of the out-of-phase 

susceptibility 𝜒" with the frequency at different static fields at 1.8 K. See Figure S6 for frequency 

dependence at different temperatures. (b) Cole-Cole diagram determined at 1.8 K and 500 Oe 

(down). 

 

Due to the large number of parameters in the temperature dependence (by considering the Raman 

and Orbach) we fitted first the external field dependence, see Figure 6a, B1 = 3272.9 s-1 and B2 = 

458.8 s-1T-2 with K(T) = 989.8 s-1. Then, for the temperature dependence we fitted first the low 

temperature region with an Orbach contribution. The fitted   and Ueff parameters were 

employed in the starting set of values for the full optimization (Orbach and Raman terms together) 



 
 

      
 

15 

with a small variation of such parameters. The values found for the Orbach contribution are 

=38339 s-1 and Ueff = 5.9 K (4.1 cm-1) while for the Raman contribution from the temperature 

dependence are C= 0.3289 s-1 K-5.80, n=5.80 and 𝜏𝑄𝑇𝑀−1 = 1330 s-1 (see Eq. 1).  

 

Figure 6 Dependence of the inverse of the spin relaxation time for the [Yb(H2O)3(18-crown-

6)](ClO4)3 complex (a) with an static external field and (b) with the temperature. The red curves 

correspond to the fitting using the quantum tunneling (Equation 2) and Raman (Equation 3), 

respectively. 

The comparison of the fitted values for the DyIII and YbIII systems (see Table S6) allows the 

extraction of few interesting conclusions concerning the spin relaxation mechanisms: (i) The 

Raman exponent is smaller in the YbIII case, thus, at low temperature the Orbach mechanism 

cannot be neglected. (ii) From the spin relaxation time values, the relaxation is one order of 

magnitude slower in the case of the DyIII compound than for the YbIII one. (iii) Quantum tunneling 

mechanism is much more important in the case of YbIII as it is reflected in the larger B1 value. (iv) 

The two parameters of Raman term (C and n) are very different for both systems. C value for the 

YbIII compound is similar to that of the DyIII one, but the n value of DyIII is close to the 
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hypothetical limit of 9 while for YbIII compound is a value is close to 6. Hence, Raman mechanism 

is the dominating spin relaxation in the whole range of temperatures for the DyIII system while it is 

only at high temperatures for the YbIII one. 

Multiconfigurational calculations. High-level calculations based on the CASSCF methodology 

by including spin-orbit effects with the RASSI approach (see Computational details section) have 

been employed to study the magnetic properties of the four synthesized compounds. From the 

analysis of the energy state distributions and the J values involved (see Figure 7 and Table S7), we 

can remark that the TbIII system is the unique case with an integer J value (J = 6), thus, the ground 

state is not a Kramers doublet. Despite that the first excitation energy is only 4.78 cm-1 (see Figure 

7 and Table S7), this situation is not the most efficient to show large magnetic anisotropy because 

ground states with integer J values have stronger relaxation through quantum tunneling.92  

 

 

Figure 7 Energy distribution of the states including spin-orbit effects for the four studied 

complexes at CASSCF+RASSI level. 

 

The DyIII and ErIII systems have in principle the same J = 15/2 value and similar state energy 

distributions (see Figure 7). However, the ErIII complex is less axial (gx=1.87, gy=3.33 and 

gz=12.09) in comparison with the DyIII system (gx=0.10, gy=0.40 and gz=18.51) and also has a very 

efficient spin relaxation mechanism through the quantum tunneling effect in the ground state (see 

Figure 8). Hence, such system does not display slow spin relaxation even under an external field. 
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In the case of the YbIII complex, the calculations show a relatively small axial character (gx=0.23, 

gy=2.38 and gz=5.49). The larger quantum tunneling also found in the calculations (see green 

arrows in the ground state in Figure 8) agrees well with the much larger fitted B1 parameter from 

the experimental data; thus, the best SMM among these compounds is the DyIII system. 

 
 

Figure 8 States energies as a function of their magnetic moment, Mz, along the main anisotropy 

axis for DyIII (a), ErIII (b) and YbIII (c) systems. The green arrows correspond to the quantum 
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tunneling mechanism of ground and first excited states while purple arrow shows the hypothetical 

Orbach relaxation process. The red arrow indicates the transition between the ground and first 

Kramers doublets. The values close to the arrows indicate the matrix elements of the transition 

magnetic moments85 (above 0.1 an efficient spin relaxation mechanism is expected, see 

Computational details). 

 

In a previous paper,68 we have analyzed the magnetic anisotropy of DyIII complexes using the 

calculated CASSCF (spin-free) first and second excitation energies and the (E2-E1)/E1 parameter. 

Such parameter can be considered as a figure of merit, thus, high values indicate large magnetic 

anisotropy. The calculated (E2-E1)/E1 parameter for 2 is only 1.03 while values larger than 10 are 

expect for zero-field SMM; thus, the requirement of an external field to show slow spin relaxation 

is justified. The magnetic anisotropy in DyIII complexes can be analyzed in terms of the oblate 

shape of the electron density expected for an axially-compressed shape equivalent to a disc (6H15/2 

mJ = 15/2 ground state). This is closely related to the (E2-E1)/E1 parameter, because the ground 

state and the first excited states have a similar disc-shape electron density while the second excited 

state has a different shape. Relatively large E2 values are required to avoid the mixing with the 

second excited states when the spin-orbit effect is included, thus, the spin-orbit ground state will 

keep the disc-shape electron density, and consequently, it will show large magnetic anisotropy.  

 

The electron density shape is basically controlled by the effect of the electrostatic potential of the 

ligands. In Fig. 9, the electrostatic potential generated by the ligands and the shape of the beta 

electron density (the alpha one is spherical) for 2 are plotted. The range of electrostatic potential 

values is very narrow, only 0.014 a.u., due to the presence of very similar oxygen donor atoms of 

the water molecules and from the crown-ether ligand. The potential is slightly more negative in the 

region with only one axial water ligand because the deformation of the crown-ether causes a 

concentration of donor oxygen atoms pointing towards such region. Thus, this lack of anisotropy 

in the electrostatic potential results in an isotropic electron density and the shape of the beta 
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electron density is considerably different of the oblate shape predicted for highly anisotropic DyIII 

compounds. The presence of anions in the axial position would improve the magnetic anisotropy 

of such system. The beta electron densities for the other three lanthanide complexes are 

represented in Fig. S7. 

 

 

Figure 9 (left) Electrostatic potential projection (a range of 0.014 a.u. was adopted with the limit 

values in red and blue color, respectively, values) on a sphere of 1 Å of radius centered in the Dy 

position caused by the ligands fixed for the system 2. (right) Isosurface of the calculated beta 

electron density of 2 calculated as the difference between the total density and the sum of the spin 

density of the seven alpha active electrons with the density of all doubly-occupied levels. 

 

CONCLUSIONS 

We reported the synthesis and characterization of a family of four lanthanide compounds with 18-

crown-6 ether ligand and three axial water molecules. The crystal structures obtained using X-ray 

diffraction indicates a relatively large distortion of the 18-crown-6 ether ligand for the heavy 

lanthanide systems due to the lanthanide contraction. The study of dynamic magnetic properties 

reveals that the TbIII and ErIII compounds do not show slow spin relaxation while the DyIII and 

YbIII complexes do, but in the presence of an external field. In the case of the TbIII complex, such 

behavior is hindered by a non Kramers doublet ground state. The lack of perfect degeneracy in the 
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ground state difficults the existence of large magnetic anisotropy due to greater quantum tunneling 

contributions. However, in the ErIII complex, CASSCF calculations indicate large gx and gy 

components that denote small axial character and a large quantum tunneling contribution. The 

magnetic properties of the DyIII and YbIII complexes were studied using squid AC measurements 

and theoretical CASSCF calculations. Both approaches show that the DyIII complex has a larger 

magnetic anisotropy, as expected for the larger J=15/2 ground state in comparison with J=7/2 for 

the YbIII system. The fitting of the relaxation time parameters with the external field can be 

performed using the quantum tunneling contribution, showing either experimental or theoretically 

a larger tunneling term for the YbIII system. Moreover, the dependence of the relaxation time with 

temperature is mostly reproduced through a Raman expression, however in the case of the YbIII 

system, the smaller exponent n of the Raman term (see Equation 2) makes that the Orbach 

mechanism is non-negligible at low temperatures. A deeper theoretical analysis was performed in 

the case of the DyIII system. The analysis of the calculated electrostatic potential created by the 

ligands and the shape of the electron density indicates that the similarities in the donor character 

between the oxygen atoms of the crown-ether and the water molecules results in an isotropic 

electrostatic potential around the metal where the electron density loses the anisotropic oblate 

character expected for an axial mJ=15/2 ground state. Thus, the inclusion of charge axial ligands 

would help to increase the magnetic anisotropy of such systems.  
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Synthesis and structural and magnetic characterization of [Ln(H2O)3(18-crown-6)](ClO4)3  

(Ln: TbIII, DyIII, ErIII and YbIII) has been performed. Ab initio CASSCF-type calculations 

were carried out to understand the existence of slow spin relaxation under an external 

magnetic field only in DyIII and YbIII compounds. The analysis of the spin relaxation times 

reveals that quantum tunneling and Raman relaxation are predominant. 
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