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Abstract: This paper presents the monophonic wirelength of circulant graph into wheels

and fans. Also we present a monophonic algorithm to find the monophonic wirelength of

family of circulant graphs into wheels and fans. Our monophonic algorithm produces the

monophonic wirelength and cover a wide range of interconnection networks.
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1. Introduction

By a graph Γ = (V,E), we mean a connected, finite, undirected graph with nei-
ther loops nor multiple edges. For notations and terminology, refer [4]. The dis-
tance d(x, y) between two vertices x and y in a graph G is the length of the short-
est path from x to y in G.An edge xixj is a chord of a path x0, x1, x2, · · · , xn
if j ≥ i + 2. A monophonic path is a path if it contains no chord. The length
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of the longest x − y monophonic path of a graph G is called the monophonic
distance dm(x, y) for every x, y vertices in G. A monophonic path from x to y
with length dm(x, y) is called an x− y monophonic.For this refer [14].Consider
a graph H,since other graphs or networks are embedded into it, as host graph
and graphs or networks which are embedded in H are called guest graph. The
embedding f of G to H is a bijective mapping from the vertex set of G to the
vertex set of H and every edge (x, y) ∈ E(G) is mapped to a path between
f(x) and f(y) in H For this refer [8, 11]. If we find an embedding of G into H
which produces the minimum wirelength WL(G,H), such problem is called the
wirelength problem. The wirelength of an embedding f of G into H is given
as

WLf(G,H) =
∑

(x,y)∈E(G)

dH(f(x), f(y)) =
∑

e∈E(G)

ECf (G,H(e)),

where ECf (G,H(e)) is the maximum number of edges of G that are embedded
on e known as the edge congestion of f of G into H.

2. Preliminaries

We use definitions, lemmas and theorems from [1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14] for this work.

Definition 1. [1] A graph denoted by Wn of order n is called a wheel
graph if it has an outer cycle of n-1 vertices and these n-1 vertices are con-
nected to a single vertex known as hub. Wheel graphs have an unique role in
interconnection network designs and circuit layout.

Definition 2. [1] A graph denoted by Fn of order n is called a fan graph
if it has an outer path of n-1 vertices and these n-1 vertices are connected to a
single vertex known as the core.

Lemma 3. (see [11], Congestion Lemma) Let G be an k-regular graph
and let f : G → H be an embedding.Let the graph H − E has the compo-
nents Hi, i=1,2 and Gi = f−1(Hi) then the edge cut E of H has the following
properties:

1. The path Pf (f(x), f(y)) has no edges in E for every edge (x, y) ∈ Gi, i =
1, 2.

2. The path Pf (f(x), f(y)) has exactly one edge in E for every edge (x, y)
in G with x ∈ G1 and y ∈ G2.
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3. G1 is a maximum subgraph of G.

Then ECf (E) is minimum and ECf (E) = k|V (G1)| − 2|E(G1)|.

Lemma 4. (see [11], Partition Lemma) Let f : G → H be an embedding.
Let {E1, E2, · · · , Ep} be a partition of E(H) such that each Ei is an edge cut

of H. Then WLf(G,H) =
p
∑

i=1
ECf (Ei).

Lemma 5. (see [1], k-partition Lemma) Let f be an embedding of G into
H. Let {E1, E2, · · · , Ep} be a partition of k[E(H)] such that each Ei is an edge

cut of H. Then WLf (G,H) = 1
k

p
∑

i=1
ECf (Ei).

Maximum Subgraph Problem (see [7]) The problem of finding a subset
of vertices of a given graph, such that the number of edges in the sub graph
induced by this subset is maximal among all induced sub graphs with the same
number of vertices. Mathematically, for a given m, if

IG(m) = maxA⊆V,|A|=m|IG(A)|,

where IG(A) = {(u, v) ∈ E : u, v ∈ A}, then the problem is to find A ∈ V such
that |A| = m and IG(m) = |IG(A)|.

Definition 6. [7] A connected undirected graph represented by G(m,±S)
where S ⊆ {1, 2, 3, · · · , [m/2]},m ≥ 3 is said to be a circulant graph if it consists
of the vertex set V = {0, 1, 2, · · · ,m−1} and the edge set E = {(x, y) : |x−y| ∼=
s(modm), s ∈ S}.

Theorem 7. [7]The number of edges in a maximum sub graph on k
vertices of G(n,±S) where S ⊆ {1, 2, 3, · · · , j}, 1 ≤ j ≤ [n/2], n ≥ 3 is given by

ζ =











k(k − 1)/2, k ≤ j + 1,

kj − j(j + 1), j + 1 < k ≤ n− j,
1
2{(n − k)2 + (4j + 1)k − (2j + 1)n}, n− j < k < n.

Theorem 8. [7] A set of k consecutive vertices of G(n,±1); 1 ≤ k ≤ n
induces a maximum subgraph of G(n,±S) where S = {1, 2, 3, · · · , j}, 1 ≤ j ≤
[n/2], n ≥ 3.

Theorem 9. [8] The maximum subgraph on the set of all k vertices of
G(n, {1, 2, · · · , j}) for k < j is complete graph on k vertices.
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3. Monophonic Wirelength Problem

Definition 10. Let G(V,E) and H(V,E) be finite graphs with n vertices.
An embedding fm : G → H is called a monophonic embedding if fm maps
each vertex of G into a vertex of H and each edge (x, y) of G is mapped to a
monophonic path between fm(x) and fm(y) in H.

Definition 11. Let fm : G → H be a monophonic embedding. The
monophonic edge congestion of fm of G into H is the maximum number of
edges of the graph G that are embedded on an edge e ∈ H and is given by
MECfm(G,H) = maxMECfm(G,H(e)).

The monophonic wirelength problem of a graph G into H is the problem of
finding a monophonic embedding fm : G → H that produces the monophonic
wire length MWL(G,H).

Definition 12. Let fm : G → H be a monophonic embedding. The
monophonic wirelength MWL(G,H)of fm is given as

MWLfm(G,H) =
∑

(x,y)∈E(G)

dm(fm(x), fm(y)).

Lemma 13. (Monophonic Congestion Lemma) Let G be a k-regular graph
with n vertices. Let H be a finite graph with n vertices. Let fm : G → H be
a monophonic embedding of G into H. Let the graph H − Ej, j = 1, 2, · · · , p
have the components Hi, i =1,2 and Gi = f−1

m (Hi),where E
′
js are the edge cuts

of H, form a partition in H and have the following properties:

1. For m ≥ 0, there are m edges (x, y) ∈ Gi, i = 1, 2,such that the mono-
phonic path Pfm(fm(x), fm(y)) has exactly two edges in Ej .

2. The monophonic path Pfm(fm(x), fm(y)) has exactly one edge in Ej for
every (x, y) ∈ G with x ∈ G1&y ∈ G2.

where G1 is a maximum subgraph of G. Then MECfm(Ej) is monophonic and
the monophonic wirelength of fm of G into H is given by MWLfm(G,H) =
p
∑

i=1
MECfm(Ej) where MECfm(Ej) = r|V (G1)| − 2|E(G1)|+ 2m,m ≥ 0.

Result 14. If there are partitions {E1, E2, · · · , Ep} of kE(H), then by
Lemma 5 MECfm(Ej) =

1
k
[r|V (G1)| − 2|E(G1)|+ 2m],m ≥ 0, j = 1, 2, · · · , p.
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4. Monophonic Wirelength into Wheels and Fans

Theorem 15. Let fm : G → H be a monophonic embedding where G is an
r-regular circulant graph G(n,±S), S ⊆ {1, 2, 3, · · · , [n/2]} and H is the wheel
graph Wn. Then the wirelength of G into H induced by fm is monophonic.

Proof. Excluding the hub vertex ofWn, let Pp ={(p−1, p), (p+1, p+2), (n−
1, p), (n − 1, p + 1)}, 1 ≤ p ≤ n − 1,where the vertices are taken mod(n − 1).
Consider the edge set {(p− 1, p), (n− 1, p)/1 ≤ p ≤ n− 1} which represents the
edges of Wn exactly once. Therefore {P1, P2, · · · , Pn−1} form a partition of the
edge set of Wn twice.

Let Ap1 and Ap2 be the components of Wn − Pp for every p. Let us take
Ap1 = {p, p+1}. Under the monophonic embedding fm, let Gp1 = f−1

m (Ap1) and
Gp2 = f−1

m (Ap2). Then an edge of G is induced by Gp1 . Hence each Pp satisfies
the properties stated in Lemma 14. Therefore MECfm(Pp) is monophonic and
hence by Lemma 5 the wirelength of fm from G to Wn is monophonic.

Theorem 16. The monophonic wirelength of an r-regular graph G with
n vertices, into the wheel graph Wn is given by MWL[G,Wn] = WL[G,Wn] +
m,m ≥ 0.

Proof. As explained in Theorem 15, the cut edge {P1, P2, · · · , Pn−1} is a
partition of edge set of Wn twice.Hence by Lemma 5,

MECfm(Ej) =
1

2
[r|V (G1)| − 2|E(G1)|+ 2m]

=
1

2
[r|V (G1)| − 2|E(G1)|] +

1

2
2m

Hence MWL[G,Wn] = WL[G,Wn] +m,m ≥ 0, j = 1, 2, · · · , p

Monophonic Embedding Algorithm I
Aim: To find a monophonic embedding fm : G → H that produces the

monophonic wirelengthMWLfm(G,H) whereG is the family of circulant graph
with 2n vertices of r-regular and H is the wheel graph W2n.

Monophonic Algorithm: Case (i) Name the vertices of G[2n,±S], S ⊆
{1, 2, 3, · · · , n} as a cycle from 0, 1, 2, · · · , 2n − 1.

Case (ii) Name the vertices of W2n as an outer cycle from 0, 1, 2, · · · , 2n−2
and the hub vertex 2n− 1.

Case(i).
Input: *Preimage- The family of circulant graphs

G[2n, {1, 2, 3, · · · , n− 1}], n ≥ 3.
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Image- The family of wheel graphs W2n.

Output: A monophonic embedding fm of G[2n, {1, 2, 3, · · · , n−1}] into W2n

is given by fm(x) = x with monophonic wirelength.

MWL[G[2n, {1, 2, 3, · · · , n− 1}],W2n] = WL[G[2n, {1, 2, 3, · · · , n− 1}],W2n]

+
1

2
[(3|S| − 2)(|S|(2n − 5)− 1) + 2].

Proof. By Theorem 15, fm is monophonic and hence the proof follows from
Theorem 16, as here k =2 and

m =
1

2
[(3|S| − 2)(|S|(2n − 5)− 1) + 2].

Case(ii). Input: Preimage. The family of circulant graphs

G[2n, {1, 2, 3, · · · , n− 2}], n ≥ 4.

Image. The family of wheel graphs W2n.

Output: A monophonic embedding fm of G[2n, {1, 2, 3, · · · , n−2}] into W2n

is given by fm(x) = x with monophonic wirelength

MWL[G[2n, {1, 2, 3, · · · , n−2}],W2n] = WL[G(2n, {1, 2, 3, · · · , n−2}),W2n]

+
1

2
[(3|S| − 2)(2|S|2 − 1) + (4n− 1)|S| − 2)].

Proof. By Theorem 15, fm is monophonic and hence the proof follows from
Theorem 16 as k = 2 and m = 1

2 [(3|S| − 2)(2|S|2 − 1) + (4n − 1)|S| − 2)].

Case(iii). Input: Preimage. The family of circulant graphs

G[2n, {1, 2, 3, · · · , n}], n ≥ 3.

Image. The family of wheel graphs W2n.

Output: A monophonic embedding fm of G[2n, {1, 2, 3, · · · , n}] into W2n is
given by fm(x) = x with monophonic wirelength

MWL[G[2n, {1, 2, 3, · · · , n}],W2n] = WL[G(2n, {1, 2, 3, · · · , n}),W2n]

+ (2n − 1)[(3|S|2 − 17|S|+ 25)].

Proof. By Theorem 15, fm is monophonic and hence the proof follows from
Theorem 16, as here k = 2 and m = (2n − 1)[(3|S|2 − 17|S|+ 25)].
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Theorem 17. Let fm : G → H be a monophonic embedding where G is
an r-regular circulant graph G(n,±S), S ⊆ {1, 2, 3, · · · , [n/2]} and H is the fan
graph Fn. Then the wirelength of G into H induced by fm is monophonic.

Proof. Excluding the core vertex of Fn, let

Rq ={(q − 1, q), (q + 1, q + 2), (n − 1, q), (n − 1, q + 1), 1 ≤ q ≤ n− 4},

Rn−3 ={(n− 4, n − 3), (n − 1, n − 3), (n − 1, n− 2)},

Rn−2 ={(1, 2), (n − 1, 0), (n − 1, 1)},

Rn−1 ={(n− 3, n − 2), (n − 1, n − 2), (n − 1, 0)}

represents the edges of Fn exactly once. Also,the edge set

{(q + 1, q + 2), (n − 1, q + 1)/1 ≤ q ≤ n− 4} ∪Rn−2 ∪ {(n− 1, n − 2), (0, 1)}

represents all edges of Fn exactly once.
Therefore {R1, R2, · · · , Rn} is a partition of the edge set of Fn twice. Let

Bq1 and Bq2 be the two components of Fn−Rq for every 1 ≤ q ≤ n−3. Assume
Bq1 = {q, q+1}. Under the monophonic embedding fm,let Bq1 = f−1

m (Gq1) and
Bq2 = f−1

m (Gq2). Then an edge of G is induced by Gq1 . Thus each Rq satisfies
the properties given in Lemma 13 and by Lemma 5,MECfm(Rq) is monophonic
and hence the wirelength of fm from G to Fn is monophonic.

Monophonic Embedding Algorithm II Aim:To find a monophonic em-
bedding fm : G → H that produces the monophonic wirelengthMWLfm(G,H),
where G is the family of circulant graph with 2n vertices of r-regular and H is
the fan F2n.

Monophonic Algorithm: Case (i) Name the vertices of G[2n,±S], S ⊆
{1, 2, 3, · · · , n} as a cycle from 0, 1, 2, · · · , 2n − 1.

Case (ii) Name the vertices of F2n as an outer cycle from 0, 1, 2, · · · , 2n− 2
and the core vertex 2n− 1.

Case(i). Input: *Preimage- The family of circulant graphs

G[2n, {1, 2, 3, · · · , n− 1}], n ≥ 3.

Image. The family of fan graphs F2n.
Output: A monophonic embedding fm of G[2n, {1, 2, 3, · · · , n−1}] into F2n

is given by fm(x) = x with monophonic wirelength.

MWL[G[2n, {1, 2, 3, · · · , n− 1}], F2n] = WL[G(2n, {1, 2, 3, · · · , n − 1}), F2n]
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+
1

3
(n− 1)[(4|S|2 − 9|S|+ 5)].

Proof. The proof is obvious from Theorems 16 & 17 as k = 2 and m =
1
3 [(4|S|

2 − 9|S|+ 5)].
Case (i) Name the vertices of G[2n,±S], S ⊆ {1, 2, 3, · · · , n} as a cycle from

0, 1, 2, · · · , 2n − 1.
Case (ii) Name the vertices of F2n as an outer cycle from 0, 1, 2, · · · , 2n− 2

and the core vertex 2n− 1.
Case(ii). Input: *Preimage- The family of circulant graphs

G[2n, {1, 2, 3, · · · , n− 1}], n ≥ 3.

Image. The family of fan graphs F2n.
Output:A monophonic embedding fm of G[2n, {1, 2, 3, · · · , n− 2}] into F2n

is given by fm(x) = x with monophonic wirelength.

MWL[G[2n, {1, 2, 3, · · · , n− 2}], F2n] = WL[G(2n, {1, 2, 3, · · · , n − 2}), F2n]

+
1

3
(n− 3)[(4|S|2 + |S| − 6)].

Proof. The proof is obvious from Theorems 16 & 17 as k = 2
and m = 1

3(n− 3)[(4|S|2 + |S| − 6)].
Case(iii). Input: *Preimage- The family of circulant graphsG[2n, {1, 2, 3, · · · ,

n}], n ≥ 2.
Image. The family of fan graphs F2n.
Output: A monophonic embedding fm of G[2n, {1, 2, 3, · · · , n}] into F2n is

given by fm(x) = x with monophonic wirelength.

MWL[G[2n, {1, 2, 3, · · · , n}], F2n] = WL[G(2n, {1, 2, 3, · · · , n}), F2n]

+
1

6
(n− 1)[(2|S|2 − 7|S|+ 6)].

Proof. The proof is obvious from Theorems 16 & 17 as k = 2 and m =
1
6(n− 1)[(2|S|2 − 7|S|+ 6)].
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