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Monopole operators in Abelian N = 4 Chern-Simons theories described by circular quiver
diagrams are investigated. The magnetic charges of non-diagonal U(1) gauge symmetries
form the SU(p) × SU(q) root lattice where p and q are numbers of untwisted and twisted
hypermultiplets, respectively. For monopole operators corresponding to the root vectors, we
propose a correspondence between the monopole operators and states of a wrapped M2-brane
in the dual geometry.
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§1. Introduction

Since the proposal of Bagger-Lambert-Gusstavson (BLG) model,1)–5) three-
dimensional supersymmetric Chern-Simons theories have attracted considerable in-
terest as low-energy effective theories of multiple M2-branes in various backgrounds.
BLG model is SU(2)×SU (2) Chern-Simons theory with bifundamental matter fields
that possesses N = 8 supersymmetry. This is the first example of interacting Chern-
Simons theory with N ≥ 4 supersymmetry. Following the BLG model, various
Chern-Simons theories with N ≥ 4 have been constructed,6)–13) and their properties
have been studied extensively.

In this paper, we discuss a field-operator correspondence in AdS4/CFT3. In gen-
eral, field-operator correspondence claims that there is one-to-one correspondence be-
tween gauge-invariant operators in CFT and fields in the AdS space, and is one of the
most important claims of AdS/CFT correspondence. For the N = 6 Chern-Simons
theory, Aharony-Bergman-Jafferis-Maldacena (ABJM) model,9) we need to take ac-
count of monopole operators to reproduce the desired moduli spaces.9) Namely, some
of Kaluza-Klein modes on the gravity side correspond to local operators carrying
magnetic charges. (See also Refs. 14) and 15) for similar analyses for BLG model.)
Monopole operators in ABJM model are further investigated in Refs. 16)–18).

This is also the case in theories with less supersymmetries. In the case of N = 2
quiver gauge theories that describe M2-branes in toric Calabi-Yau four-folds, the
relation between mesonic operators and holomorphic monomial functions, which are
specified by the charges in toric U(1) symmetries, was proposed in Ref. 19). In
the reference, a simple prescription to establish concrete correspondence between
Kaluza-Klein modes and mesonic operators is given by utilizing brane crystals.19)–21)

When this method was proposed, it had not been realized that the quiver gauge
theories are actually quiver Chern-Simons theories. After the importance of the
existence of Chern-Simons terms was realized, this proposal was confirmed22)–24) for
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a special kind of brane crystal, which can be regarded as “M-theory lift” of brane
tilings.25)–27) Monopole operators enter the correspondence again as well as the case
of ABJM model. The results in Refs. 22)–24) indicate, however, that the set of
primary operators corresponding to the supergravity Kaluza-Klein modes includes
only a special kind of monopole operators, “diagonal” monopole operators, which
carry only the diagonal U(1) magnetic charge and are constructed by combining
the dual photon fields and chiral matter fields. (We now consider Abelian quiver
Chern-Simons theories and assume that the gauge group for each vertex is U(1).)

The other monopole operators, which we call nondiagonal monopole operators,
have no correspondents in the bulk Kaluza-Klein modes. In Ref. 28), it is suggested
that such nondiagonal monopole operators correspond to M2-branes wrapped on two-
cycles in the internal space. The purpose of this work is to study this correspondence
in more detail for N = 4 Abelian quiver Chern-Simons theories described by circular
quiver diagrams.8),13)

Because we consider Abelian Chern-Simons theory, whose gauge group is the
product of U(1), the dual geometry has large curvature. By this reason, we mainly
focus only on the charges of global symmetries, which are quantized and are hope-
fully reproduced on the gravity side correctly. We do not attempt to reproduce the
conformal dimension of monopole operators by using the gravity description.

This paper is organized as follows. In the next section, we briefly explain the
relation between the dual photon field and monopole operators in quiver Chern-
Simons theories. In §3, we review the radial quantization method used in Refs. 29)
and 30) to compute the conformal dimension and global U(1) charges of monopole
operators. After explaining the N = 4 Chern-Simons theory in §4 and the structure
of the dual geometry in §5, we discuss the duality between nondiagonal primary
monopole operators and wrapped M2-branes in §6. The last section is devoted to
conclusions and discussion.

§2. Monopole operators and the dual photon field

To briefly review the basic facts about monopole operators, let us consider a
generic N = 2 quiver Chern-Simons theory described using a connected quiver di-
agram with n vertices. We label vertices and edges by a and I, respectively. We
assume that the gauge group of every vertex is U(1). We denote the gauge group
for vertex a by U(1)a, and its Chern-Simons level by ka. We impose the constraint

n∑
a=1

ka = 0, (2.1)

on the levels to obtain moduli space, which can be regarded as the background of
an M2-brane. The action includes the following Chern-Simons terms.

SCS =
n∑

a=1

ka

4π
AadAa. (2.2)
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We define another basis for n U(1) gauge fields. We recombine Aa into n gauge fields

AD, AB , A
′
1, . . . , A

′
n−2. (2.3)

AD is the gauge field of U(1)D, the diagonal U(1) subgroup. When we represent Aa

as linear combinations of gauge fields in (2.3), AD enters all of them with coefficient
1:

Aa = AD + · · · , (2.4)

where · · · represents linear combinations of AB and A′
i. By substituting this into

(2.2), we obtain

SCS =
n∑

a=1

1
2π
ADdAB + · · · , (2.5)

where · · · does not include AD. Thanks to (2.1) we do not have ADdAD term. AB

in (2.3) is defined by this equation as the gauge field appearing in the linear term of
AD, and is given by

AB =
n∑

a=1

kaAa. (2.6)

The diagonal gauge field AD does not couple to matter fields and appears only in
the Chern-Simons term (2.5), and the equation of motion of AD is

dAB = 0. (2.7)

Owing to the “pure gauge” constraint (2.7), we can define the dual photon field a
by

AB = da. (2.8)

The dual photon field is a periodic field with the period 2π,31) and it is convenient
to define operators in the form

eima, m ∈ Z. (2.9)

Because the U(1)D field strength FD is the canonical conjugate of the operator a,
the operator (2.9) shifts the U(1)D flux by m. In other words, this operator carries
the magnetic charge m for every U(1)a. We call such operators diagonal monopole
operators. General diagonal monopole operators can be constructed by combining
eima and other magnetically neutral operators.

The relations (2.6) and (2.8) indicate that the dual photon field a is transformed
under a gauge transformation δAa = dλa by

δa =
n∑

a=1

kaλa. (2.10)

This means that the operator eima carries electric U(1)a charge mka.
There also exist monopole operators that carry nondiagonal magnetic charges.

Let ma be the U(1)a magnetic charge of an operator. The equation of motion of Aa

is
kaFa + ja = 0, (2.11)
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where ja is the matter contribution to the electric U(1)a current. By integrating this
equation over a sphere enclosing the operator, we obtain

kama +Qa = 0, (2.12)

where Qa is the matter contribution to the U(1)a charge of the operator. This is the
Gauss law constraint guaranteeing the gauge invariance of the operator. (Because
we consider only rotationally invariant operators, this integrated form is sufficient
to guarantee their gauge invariance.)

The magnetic charges are constrained by the equation

n∑
a=1

kama = 0, (2.13)

which is obtained by integrating (2.7) or summing up (2.12) over a. Because of this
constraint, the number of independent nondiagonal monopole charges is n−2. In the
case of N = 4 theory, this number is indeed the same as two-cycles in the internal
space.28)

§3. Radial quantization method

We use the radial quantization method29),30) to compute the conformal dimen-
sion and global U(1) charges of monopole operators. We want to look for operators
saturating the BPS-bound

Δ ≥ R, (3.1)

where R is the charge of U(1)R subgroup of the N = 2 superconformal group.
We map a Euclidean three-dimensional CFT in R

3 to the theory in S2 × R

by a conformal transformation. A monopole operator with magnetic charges ma

corresponds to a state in the Hilbert space defined in S2 with fluxma through it. The
conformal dimension of the operator is computed as the energy of the corresponding
state. We can also obtain U(1) charges of monopole operators as the charges of the
corresponding states.

The fields in vector multiplets are treated as classical background fields. We
expand fields in the chiral multiplets into spherical harmonics, and define creation
and annihilation operators, which are used to construct the Hilbert space. Mode
expansion of scalar and spinor fields in BPS monopole backgrounds is given in Ref.
30). Let μ ∈ Z be the number of flux coupling to a chiral multiplet Φ = (φ, ψ). The
scalar component φ and the fermion component ψ are expanded by

φ =
∞∑

l=
|μ|
2

l∑
m=−l

αl,me
−(l+1/2)τY 0

l,m +
∞∑

l=
|μ|
2

l∑
m=−l

β†
l,me

(l+1/2)τY 0
l,m, (3.2)

ψ =
∞∑

l=
|μ|+1

2

l∑
m=−l

al,me
−(l+1/2)τY +

l,m +
∞∑

l=
|μ|−1

2

l∑
m=−l

b†l,me
(l+1/2)τY −

l,m, (3.3)
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where Y 0
l,m and Y ±

l,m are spherical harmonics of scalar and spinor on the S2 with flux.
Refer to Ref. 30) for more detail. To obtain the expansion above, we used the free
field equations. The radial quantization method with the expansions (3.2) and (3.3)
gives the tree level conformal dimensions for φ and ψ, and this cannot be justified
in general N = 2 theories in which the conformal dimension receives large quantum
corrections. In the N = 4 theory, the conformal dimensions of primary operators
are protected by the non-Abelian R-symmetry, and we assume the applicability of
the free field approximation in the computation below.

All the oscillators αl,m, βl,m, al,m, and bl,m have the same indices l (angular
momentum) and m (magnetic quantum number) associated with the rotational sym-
metry of S2. l must be non-negative, and when μ = 0, the term including b†−1/2,m

should be omitted. The energy of a quantum for each oscillator is

El = l +
1
2
, (3.4)

for any of the four kinds of oscillator.
The conformal dimension of the monopole operator corresponding to the Fock

vacuum is computed as the zero-point energy. By using an appropriate regulariza-
tion, we obtain the contribution of the oscillators of φ and ψ as

Δ0 =
|μ|
4
. (3.5)

We can also compute U(1) charges of the monopole operator. If a U(1) charge
of the fermion ψ in a chiral multiplet is q, the contribution of the chiral multiplet to
the zero point charge is

Q0 = −|μ|q
2
. (3.6)

Excited states are constructed by acting creation operators on the Fock vacuum.
If we assume that the R-charge of chiral multiplets is not corrected from the classical
value, only creation operator saturating the BPS-bound (3.1) is β†

0,0, and it exists
only when μ = 0. We can use only this operator to construct excited BPS states.

Δ0 andQ0 in a quiver gauge theory are obtained by summing up the contribution
of all chiral multiplets. Let QaI be the U(1)a charge of chiral multiplet ΦI . We
consider a monopole operator with magnetic U(1)a charge ma. The flux coupling to
ΦI is given by

μI =
n∑

a=1

maQaI . (3.7)

The energy of the Fock vacuum is

Δ0 =
1
4

∑
I

|μI |. (3.8)

The summation is taken over all the bifundamental chiral multiplets. For a U(1)
symmetry, if the charge of chiral multiplet ΦI is qI , the zero-point charge of the U(1)
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symmetry is

Q0 = −1
2

∑
I

|μI |qI . (3.9)

For the R-symmetry, qI = −1/2, and Q0 coincides with Δ0. Namely, the BPS-
bound (3.1) is saturated by the vacuum state. General BPS states are constructed
by exciting the Fock vacuum with the creation operators β†

I,0,0, which exist only for
chiral fields with μI = 0.

§4. N = 4 Chern-Simons theory

Let us consider an Abelian N = 4 Chern-Simons theory described using a cir-
cular quiver diagram8),13) with period n shown in Fig. 1.

We label hypermultiplets by the integer I in order in the quiver diagram. I
is defined only modulo n and I = 1 and I = n + 1 are identified. In terms of
the language of N = 2 supersymmetry, a hypermultiplet I consists of two chiral
multiplets, hI and h̃I . We use half odd integers to label vertices, and denote U(1)
gauge symmetry coupling to hI and hI+1 by U(1)I+ 1

2
. U(1)I+ 1

2
× U(1)I− 1

2
charges

of hI and h̃I are (+1,−1) and (−1,+1), respectively.
There are two kinds of hypermultiplet, which are called untwisted and twisted

hypermultiplets.8) Let us define numbers sI associated with hypermultiplets, which
are 0 for untwisted hypermultiplets and 1 for twisted hypermultiplets.

sI = 0: untwisted hypermultiplet, sI = 1: twisted hypermultiplet. (4.1)

We use indices a, b, . . . to label untwisted hypermultiplets and ȧ, ḃ, . . . for twisted
hypermultiplets. Namely, a (ȧ) runs over the integers I such that sI = 0 (sI = 1).

This theory possesses the R-symmetry

Spin(4)R = SU(2)A × SU(2)B, (4.2)

and flavor symmetry
U(1)A × U(1)B. (4.3)

We denote the generators of SU(2)A, SU(2)B, U(1)A, and U(1)N by Ti, T̃i (i =
1, 2, 3), P , and P̃ , respectively.

Fig. 1. A part of a circular quiver diagram of an N = 4 supersymmetric Chern-Simons theory is

shown. Arrows represent chiral multiplets.
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Table I. The conformal dimension and charges of scalar components of multiplets are shown.

Δ T3 P eT3
eP

ha
1
2

1
2

1 0 0
eha

1
2

1
2

−1 0 0

hȧ
1
2

0 0 1
2

1
ehȧ

1
2

0 0 1
2

−1

Scalar fields in untwisted and twisted hypermultiplets are transformed by SU(2)A

and SU(2)B, respectively. We can form the doublets as

hα
a =

(
ha

h̃∗a

)
, hα̇

ȧ =
(
hȧ

h̃∗ȧ

)
, (4.4)

where α and α̇ are SU(2)A and SU(2)B spinor indices, respectively. The conformal
dimension Δ and the charges T3, P , T̃3, and P̃ of scalar fields are shown in Table I.
The R-charge of the N = 2 superconformal subgroup is

R = T3 + T̃3, (4.5)

and all the scalar components of the chiral multiplets saturate the BPS-bound

Δ ≥ T3 + T̃3. (4.6)

In order for the theory to possess N = 4 supersymmetry, the levels should be
given by

kI+ 1
2

= k(sI+1 − sI), k ∈ Z. (4.7)

We refer to the integer k simply as the “level” of the theory.
The Higgs branch moduli space of this theory is analyzed in Ref. 32). See also

Refs. 33) and 34). When k = 1, it is the product of two orbifolds

Mp,q = C
2/Zp × C

2/Zq, (4.8)

where p and q are the numbers of untwisted and twisted hypermultiplets, respectively.
The complex coordinates of the C

2/Zp factor can be spanned by

M = hah̃a, X = e−ia
∏
a

ha, X̃ = eia
∏
a

h̃a. (4.9)

The operator M is independent of the index a due to the F-term conditions. By
definition, these three operators satisfy Mp = XX̃, and this is nothing but the
defining equation of the orbifold C

2/Zp. The generator of the orbifold group Zp,
which keeps the operators in (4.9) invariant, is

e2πiP/p ∈ U(1)A. (4.10)

The other factor C
2/Zq in (4.8) is parameterized by

N = hah̃a, Y = eia
∏
ȧ

hȧ, Ỹ = e−ia
∏
ȧ

h̃ȧ, (4.11)
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and these satisfy N q = Y Ỹ , the defining equation of C
2/Zq. The generator of Zq is

e−2πi eP/q ∈ U(1)B. (4.12)

When k ≥ 2, the electric charges of the operator eia become k times those for
k = 1. In this case, we formally define (M,X, Y ) and (M̃, X̃, Ỹ ) by (4.9) and (4.11)
with e±ia replaced by e±ia/k. Because e±ia/k is ill-defined owing to the fractional
coefficient in the exponent, we need to combine these formal operators so that the
coefficient in the exponent becomes integral. This is equivalent to imposing the
invariance under

(X,Y, X̃, Ỹ ) → (ωkX,ω
−1
k Y, ω−1

k X̃, ωkỸ ). (4.13)

This transformation is realized by

e2πi(P/kp− eP/kq) ∈ U(1)A × U(1)B. (4.14)

This means that the moduli space is orbifold of (4.8) divided by Zk generated by
(4.14). As the result, we obtain the orbifold

Mp,q,k = ((C2/Zp) × (C2/Zq))/Zk. (4.15)

§5. Internal space

The gravity dual of the N = 4 Chern-Simons theory is AdS4 ×X7 with

X7 = Mk,p,q|r=1 = (S7/(Zp × Zq))/Zk. (5.1)

The homologies Hi(X7,Z) of this manifold are28)

H0 = Z, H1 = Zk, H2 = Z
p+q−2, H3 = (Zq−1

kp × Z
p−1
kq × Zkpq)/(Zp × Zq),

H4 = 0, H5 = Z
p+q−2 × Zk, H6 = 0, H7 = Z. (5.2)

To discuss the relation between monopole operators and wrapped M2-branes in X7,
we need to know where the two- and three-cycles are in the manifold X7. For this
purpose, it is convenient to represent X7 as a T 2 fibration over B = S5 by using the
global symmetry U(1)A × U(1)B to define T 2 fibers as orbits.

Let us first describe the covering space X̃7 = S7 as T 2 fibration over B. Each of
U(1)A and U(1)B has fixed submanifold S3 ⊂ S7. We denote those for U(1)A and
U(1)B by S3

A and S3
B, respectively. S3

A and S3
B are projected into two S2 ⊂ B, S2

A

and S2
B , linking with each other. By the Zp ⊂ U(1)A orbifolding and blowing up

the resultant orbifold singularity, S2
A is split into p loci in B, which we refer to as

xa (a = 1, . . . , p). Similarly, the Zq ⊂ U(1)B orbifolding and the blow-up generate
q loci, yȧ (ȧ = 1̇, . . . , q̇). (Fig. 2) (Although we blew up the singularities to define
the loci xa and yȧ, we only consider the singular limit.) We use indices a and ȧ for
the loci just like the two types of hypermultiplets. As mentioned in Ref. 28), by a
certain duality between M2-branes in the orbifold and a D3-fivebrane system in type
IIB string theory, the loci are mapped to fivebranes, and each hypermultiplet arises
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Fig. 2. The loci xa and yȧ in the base manifold S5 are shown. On the loci xa, SU(2)A × U(1)A

acts as isometry, while SU(2)B × U(1)B does as transverse rotations. For yȧ, the roles of these

symmetries are exchanged.

at the intersection of each fivebrane and D3-branes. Through this duality, we have
a natural one-to-one correspondence between the loci and the hypermultiplets.

We define α-, β-, and γ-cycles in the T 2 fiber, as cycles corresponding to the
generators e2πiP/p in (4.10), e−2πi eP/q in (4.12), and e2πi(P/kp− eP/kq) in (4.14), re-
spectively. The α- (β-)cycle shrinks on the loci xa (yȧ). The two-cycle homology
H2(X7,Z) is generated by

[xa, xb]α, [yȧ, yḃ]
β, (5.3)

where [xa, xb] represents a segment in B connecting two loci, xa and xb, and the
superscript α means the lift of the segment to the two-cycle in X7 by combining the
α-cycle. [yȧ, yḃ]

β is defined similarly. It is convenient to define the formal bases xa

and yȧ by [xa, xb] = xa − xb and so on. The general two-cycles are in the form

Σ2 =
∑

a

cax
α
a +

∑
ȧ

cȧy
β
ȧ , ca, cȧ ∈ Z, (5.4)

with the coefficients satisfying ∑
a

ca =
∑

ȧ

cȧ = 0. (5.5)

A set of generating three-cycles of H3(X7,Z) is

[xa, xb]αγ = xαγ
a − xαγ

b , [yȧ, yḃ]
αγ = yαγ

ȧ − yαγ

ḃ
, [xa, yḃ]

αγ = xαγ
a − yαγ

ḃ
. (5.6)

The superscripts “αγ” denote the lift of segments to three-cycles by combining α-
and γ-cycles with the segments. The three-cycle homology group is defined as the
set of elements in the form

Σ3 =
∑

nax
αγ
a +

∑
nȧy

αγ
ȧ , na, nȧ ∈ Z, (5.7)

with the coefficients constrained by∑
a

na +
∑

ȧ

nȧ = 0, (5.8)
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and the identification relations

kvαγ
a = kwαγ

ȧ = 0, (5.9)

where va and wȧ are defined by

va = −qxa +
q̇∑

ḃ=1̇

yḃ, wȧ =
p∑

b=1

xb − pyȧ. (5.10)

§6. Monopole operators and M2-branes

Monopole operators are labeled by n magnetic charges mI+ 1
2
∈ Z. We define the

group of nondiagonal magnetic charges as the set of charges mI+ 1
2

with identification

(m 1
2
, · · · ,mn− 1

2
) ∼ (m 1

2
+ 1, · · · ,mn− 1

2
+ 1) (6.1)

removing the diagonal U(1) charge. To realize this identification automatically, we
use the relative charges μI defined by

μI = mI+ 1
2
−mI− 1

2
. (6.2)

This can be regarded as the effective flux for hypermultiplet I. By definition, μI is
constrained by ∑

I

μI = 0. (6.3)

Equation (2.13) imposes further constraint

0 =
∑

I

kI+ 1
2
mI+ 1

2
= −k

∑
I

sIμI . (6.4)

Equations (6.3) and (6.4) can be rewritten as∑
a

μa =
∑

ȧ

μȧ = 0. (6.5)

The integer μI satisfying (6.5) forms the SU(p) × SU(q) root lattice.
There are n−2 independent charges and we would like to identify these with the

wrapping charges of M2-branes. Indeed, the two-cycle Betti number of the internal
space X7 is b2 = n − 2 and coincides with the number of nondiagonal magnetic
charges. We want to establish not only the coincidence of the numbers of charges
but also the one-to-one correspondence between the magnetic charge μI and two-
cycles in (5.4). A natural guess consistent with (5.5) is

Σ2[μI ] =
∑

a

μax
α
a +

∑
ȧ

μȧy
β
ȧ . (6.6)

Let us consider magnetic operators that are primary in the sense of N = 2
superconformal symmetry. This means that we look for operators saturating (4.6).
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Table II. The conformal dimension and global U(1) charges of monopole operators mab and mȧḃ

are shown.

Δ T3 P eT3
eP

mab 1 1 0 0 0

mȧḃ 1 0 0 1 0

The zero-point contribution to the conformal dimension and the R-charge are

Δ0 = R0 =
1
2

∑
I

|μI |. (6.7)

For simplicity, we consider operators with minimum values of R0. Because μI is
constrained by (6.5), the minimum R0 is 1 for monopoles with one relative charge
+1 and one relative charge −1. The indices of the two nonvanishing relative charges
should be both undotted or both dotted. Namely, the following are the two sets of
monopole operators

mab : μc = −δca + δcb, μċ = 0, (6.8)
mȧḃ : μc = 0, μċ = −δċȧ + δċḃ. (6.9)

The conformal dimensions and global U(1) charges of these operators are given in
Table II.

Because two sets are discussed in a parallel manner, we focus only on the oper-
ators mab in the following.

The magnetic charges of monopole operators mab form SU(p) root system. In-
deed, the intersection among the cycles (6.6) for mab forms the SU(p) Cartan ma-
trix. In the dual geometry, this SU(p) can be identified with the gauge symmetry
on the coincident p D6-branes, which arises from the C

2/Zp singularity through the
U(1)A orbit compactification to type IIA string theory. If we identify the wrapped
M2-branes with the nondiagonal components of the SU(p) vector multiplets on the
D6-branes, we can interpret the charge T3[mab] = 1 as the R-charge of a scalar field
in the vector multiplet. Because SU(2)A from the type IIA perspective is the trans-
verse rotation around the D6-branes, the scalar components of the vector multiplet
belong to the SU(2)A triplet. There is one component with T3 = 1, and is identified
with the operator mab.

In general, the vacuum state does not give the gauge-invariant operators. For
the operator to be gauge-invariant, the Gauss law constraint (2.12) must be satisfied.
The (absolute) magnetic charge mI+ 1

2
of the monopole operator mab is given by

mI+ 1
2
[mab] = d+

[
a > I +

1
2
> b

]
, (6.10)

where d is an arbitrary integer representing the diagonal magnetic charge, and the
inequality in the bracket stands for 1 (0) if it is true (false). Because the quiver
diagram is circular, we cannot say which of the given two indices, say a and b, is
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greater or smaller. However, we can say if three indices are in the descending order
or not. In this sense, the bracket in (6.10) is well defined.

To satisfy (2.12), we need to add an appropriate set of chiral multiplets. Gauge
invariant monopole operators are given by

Mab =

⎧⎪⎪⎨
⎪⎪⎩

mabOneutral

∏
a>ċ>b

h
k(d+1)
ċ

∏
b>ċ>a

hkd
ċ , (d ≥ 0)

mabOneutral

∏
a>ċ>b

h̃
−k(d+1)
ċ

∏
b>ċ>a

h̃−kd
ċ , (d ≤ −1)

(6.11)

where Oneutral is an electrically and magnetically neutral operator. The products
are taken with respect to ċ satisfying the inequalities in the sense that we mentioned
above. Note that we cannot use ha and hb because when μI �= 0 the corresponding
chiral multiplet does not include oscillators saturating the BPS-bound. Owing to
the F-term conditions, Oneutral can be written in terms of M in (4.9) and N in (4.11)
as

Oneutral = MmNn, m, n = 0, 1, 2, . . . . (6.12)

By using charges given in Tables I and II, we obtain the following charges of Mab:

T3[Mab] =1 +m, m =0, 1, 2, . . . , (6.13)
P [Mab] =0, (6.14)

T̃3[Mab] =
1
2
|P̃ [Mab]| + n, n =0, 1, 2, . . . , (6.15)

P̃ [Mab] =
(
d+

q[a,b]

q

)
kq, d =0,±1,±2, . . . , (6.16)

where q[a,b] is the number of twisted hypermultiplets between untwisted hypermul-
tiplets a and b in the quiver diagram. Namely, by using the bracket used in (6.10),
q[a,b] is given by

q[a,b] =
∑

ċ

[a > ċ > b]. (6.17)

Let us interpret these charges in terms of wrapped M2-branes in the dual geom-
etry. Wrapped M2-branes are localized on the U(1)A fixed submanifold. It is the
Lens space Lkq = S3

A/Zkq, the γ-cycle fibration over S2
A. The symmetry group

SU(2)B ×U(1)B acts on Lkq as isometry. The interval kq of P̃ eigenvalues in (6.16)
is explained from the Zkq orbifolding by the operator (4.14). The fractional shift
q[a,b]/q in (6.16) is interpreted as the contribution of the Wilson line

q[a,b]

q
=

1
2π

∮
xαγ

a −xαγ
b

C3 mod 1, (6.18)

where C3 is the three-form field in the 11-dimensional supergravity. For this relation
to be acceptable, the torsion must be quantized by

1
2π

∮
xαγ

a −xαγ
b

C3 ∈ 1
q
Z. (6.19)



Monopole Operators in N = 4 Chern-Simons Theories 1185

The geometry of the internal space, however, does not guarantee (6.19). Because
the three-cycle xαγ

a − xαγ
b generates Zkq subgroup of the homology H3(X7,Z), the

right-hand side of (6.18) is quantized by

1
2π

∮
xαγ

a −xαγ
b

C3 ∈ 1
kq

Z, (6.20)

but this is not sufficient to guarantee (6.19).
The quantization (6.19) is explained in the following manner. The discrete

torsion of C3 represents the fractional M2-branes.28),35) Because we consider the
case in which all the gauge groups are U(1) and there are no fractional M2-branes,
we should restrict the torsion to the ones corresponding to such situations. In Ref.
28), the relation between the torsion and the numbers of fractional M2-branes in
the case of N = 4 Chern-Simons theories is studied, and the result shows that the
absence of the fractional M2-branes requires

1
2π

∫
vαγ

a

C3 ∈ Z,
1
2π

∫
wαγ

ȧ

C3 ∈ Z. (6.21)

Because va − vb = −q(xa − xb) follows from (5.10), the first quantization condition
in (6.21) guarantees (6.19).

We can easily see that the spectrum of T̃3 in (6.15) is reproduced using a scalar
wave function of the M2-brane collective motion in the Lens space Lkq. The spherical
harmonics in Lkq is obtained from S3 spherical harmonics Yl,m,m′ by restricting P̃
eigenvalues by (6.16). Yl,m,m′ has three indices, one angular momentum l and two
magnetic quantum numbers m and m′, which satisfy

−l ≤ m,m′ ≤ l. (6.22)

Yl,m,m′ belongs to the spin (l, l) representation of the S3 rotational group SO(4) ∼
SU(2)2, and m and m′ are acted by two SU(2) factors separately. Let us choose
SU(2)B ×U(1)B ⊂ SO(4) so that SU(2)B and U(1)B act on m and m′, respectively.
Thenm′ is identified with the half of the U(1)B charge P̃ , and (l,m) with the SU(2)B

quantum numbers. The inequality (6.22) means that for a given P̃ , allowed SU(2)B

angular momenta are

l =
1
2
|P̃ |, 1

2
|P̃ | + 1,

1
2
|P̃ | + 2, . . . , (6.23)

and this correctly reproduces (6.15).
Because SU(2)A×U(1)A acts on the Lkq as transverse rotations, the correspond-

ing charges T3 and P should be interpreted as spins of M2-branes. For m = 0, we
interpreted this above as the R-charge of a scalar field on the D6-branes. Thus, it
seems natural to expect that the spectrum with m ≥ 1 is also reproduced as the spin
of the M2-brane in excited states.

Because the charge P , which is the D-particle charge from the type IIA perspec-
tive, vanishes, it may be possible to regard the excited M2-brane as an excited open
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string on the D6-branes. Indeed, if we approximate the D6-branes by the flat ones,
there is the unique lowest energy state for each T3 ≥ 1, and this seems consistent
with (6.13). This is of course a very rough argument because the D6-branes and the
background geometry have large curvature.

§7. Conclusions and discussion

In this paper, we computed the conformal dimensions and the global U(1)
charges of primary monopole operators Mab, which carry nondiagonal magnetic
charges corresponding to roots of the SU(p) algebra. In addition to the nondi-
agonal monopole charges, the operators are labeled by three integers d, m ≥ 0, and
n ≥ 0. We identified these operators with M2-branes wrapped on two-cycles in the
internal space, and we interpreted d and n with the quantum numbers associated
with the orbital motions of wrapped M2-branes. We also proposed that the quantum
number m may represent the spin of excited M2-branes.

In this paper, we considered Abelian Chern-Simons theories only. It is important
to generalize the analysis to non-Abelian case. Then, we can take the large N limit,
and more reliable analysis on the gravity side becomes possible. Furthermore, such a
generalization enables us to study the relation between general discrete torsion and
spectrum of monopole operators. If we take a general discrete torsion quantized by
(6.20), the quantization of the momentum P̃ is changed. This should be realized as
the monopole spectrum.

A more challenging issue is the generalization to theories with less supersym-
metries. In the case of N ≤ 2, the large quantum corrections are expected and the
R-charges may be largely corrected. On the gravity side, two-cycles have in general a
nonvanishing area, and in such a case, the computation on the gravity side predicts
the conformal dimension of order N1/2. It would be very interesting if we could
explain this behavior as a result of dynamics in Chern-Simons theories.
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