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1. Introduction

A non-perturbative duality in three dimensions is known as 3d mirror symmetry. It was

first proposed by K. Intriligator and N. Seiberg in ref. [1] and further studied in refs. [2]–

[18]. The mirror symmetry predicts quantum equivalence of two different theories in the

IR limit. In this regime a supersymmetric gauge theory is described by a strongly coupled

superconformal field theory. The duality exchanges masses and Fayet-Iliopoulos terms as

well as the Coulomb and Higgs branches implying that electrically charged particles in

one theory correspond to the magnetically charged objects (monopoles) in the other. Also,

since the Higgs branch does not receive quantum corrections and the Coulomb branch does,

mirror symmetry exchanges classical effects in one theory with quantum effects in the dual

theory. Many aspects of three-dimensional mirror symmetry have a string theory origin.

This paper extends the analysis of refs. [19, 20] to the non-abelian gauge theories. We

study monopole operators in the IR limit of SU(Nc) non-supersymmetric Yang-Mills theo-

ries as well as N = 4 SU(2) supersymmetric Yang-Mills models with large number of flavors

Nf . Conformal weight of a generic monopole operator in non-supersymmetric gauge theory

is irrational. On the other hand, supersymmetric gauge theories have monopole operators

which are superconformal (anti-)chiral primaries. The conformal dimensions of such op-

erators are uniquely determined by their R-symmetry representations. The R-symmetry

group of N = 4 supersymmetric theory is given by SU(2) × SU(2) and conformal dimen-

sions of the (anti-)chiral primary operators are integral. The mirror symmetry predicts
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the spectrum and quantum numbers of (anti-)chiral primary operators including the ones

with magnetic charges. We use 1/Nf expansion and the operator-state isomorphism of the

resulting conformal field theories to study transformation properties of monopole operators

under the global symmetries and verify the mirror symmetry predictions.

In refs. [21, 22, 23] it was demonstrated that three-dimensional gauge theories have

severe perturbative infrared divergences due to logarithms of the coupling constant. In

ref. [24] it was shown that for three-dimensional QCD, the 1/Nf expansion can be defined

in such a way that the infrared divergences are absent in each order of the expansion and

the theory has IR fixed point. For large Nf the non-abelian interactions of gluons are

suppressed and dynamics of the theory becomes similar to that of an abelian theory. In

refs. [24]–[27] it is claimed that for Nf smaller than a certain critical value the dynamical

fermion mass is generated. These conclusions were supported by the lattice simulations in

ref. [28]. The phase transition takes place at finite Nf and does not affect the dynamics

at large Nf which is studied in this paper. However, it indicates that 1/Nf expansion has

a finite radius of convergence. In the case of N = 4 supersymmetric Yang-Mills theories,

IR limit of the theory is given by an interacting superconformal field theory and there is

no evidence of the phase transitions at finite Nf . It is possible that 1/Nf expansion is

convergent all the way down to Nf = 1. Our analysis is performed in the origin of the

moduli space, thus extending results of ref. [7], where implications of the mirror symmetry

have been verified on the Coulomb branch of N = 2 supersymmetric Yang-Mills theories.

The paper is organized as follows. In section 2 we study monopole operators in the

IR limit of SU(Nc) gauge theories and determine their quantum numbers at large Nf .

Monopole operators in the IR limit of N = 4 SU(2) gauge theories are considered in

section 3. We discuss our results in section 4.

2. Monopole operators in SU(Nc) gauge theories

2.1 IR limit of SU(Nc) gauge theories

Consider a three-dimensional euclidean Yang-Mills action for Nf flavors of matter fermions

in the fundamental representation of the gauge group SU(Nc) with generators {T α},1 (α =

1, . . . , N 2
c − 1):

S =

∫

d3x





1

4e2
Tr VijV

ij + i

Nf
∑

s=1

ψ̄s~σ
(

~∇+ i~V
)

ψs



 , (2.1)

where ψ are complex two-component spinors, ~V = ~V αTα is gauge potential with a field-

strength Vij =
(

∂iV
α
j − ∂jV α

i − fαβγV β
i V

γ
j

)

Tα, fαβγ are the structure constants. To

avoid a parity anomaly, ref. [29], we choose Nf to be even. Action (2.1) is invariant under

the flavor symmetry U(Nf )flavor.

1We use Tr(TαT β) = 1
2
δαβ normalization.
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There are two ways to classify monopoles in non-abelian theories. A dynamical de-

scription of monopoles in terms of weight vectors of the dual of (unbroken) gauge group

was developed by Goddard, Nuyts, and Olive (GNO) in ref. [30]; topological classification

in terms of π1 was suggested by Lubkin in ref. [31], (see also ref. [32] for a review). It is well

known that in R1,3 the dynamical (GNO) monopoles with vanishing topological charges

are unstable in the small coupling limit. We will study the dynamical monopoles in the

IR limit of (2.1). The theory is free in the UV limit ( e
2

Λ → 0, where Λ is a renormalization

scale) and is strongly coupled in the IR ( e
2

Λ → ∞). In the strong coupling regime the

dominant contribution to the gauge field effective action is given by the matter fields and

stability analysis of GNO monopoles performed at weak coupling is no longer applicable.

Since matter fields belong to the fundamental representation, the effective gauge group

is given by SU(Nc). The corresponding π1 is trivial and all dynamical monopoles have

vanishing topological charges. The GNO monopoles of SU(Nc) are given by

V N = H(1− cos θ)dϕ , V S = −H(1 + cos θ)dϕ , (2.2)

where V N and V S correspond to gauge potentials on upper and lower hemispheres re-

spectively. H is a constant traceless hermitian Nc × Nc matrix, which can be assumed

to be diagonal. On the equator V N and V S are transformed into each other by a gauge

transformation with a group element exp (2iHϕ). This transformation is single-valued if

H =
1

2
diag(q1, q2, . . . , qNc) (2.3)

with integers qa, (a = 1, . . . , Nc),
Nc
∑

a=1

qa = 0 . (2.4)

Consider a path integral over matter and gauge fields on the punctured R3. Integration

over the gauge fields asymptotically approaching (2.2) at the removed point of R3 and cor-

responds to an insertion of a topology-changing operator with magnetic charge H. To com-

plete definition of the topology-changing operator we have to specify the behavior of mat-

ter fields at the insertion point. Thus topology-changing operators with a given magnetic

charge are classified by the behavior of the matter fields near the singularity. In the IR limit

the theory (2.1) flows to the interacting conformal field theory (CFT). In three-dimensional

CFT operators on R3 are in one-to-one correspondence with normalizable states on S2×R.
Namely, insertion of a topology-changing operator in the origin of R3 corresponds to a cer-

tain in-going state in the radially quantized theory on S2×R. Hamiltonian of the radially

quantized theory is identical to the dilatation operator on R3. In unitary CFT all physical

operators including topology-changing ones are classified by the lowest-weight irreducible

representations labelled by the primary operators. We will say that topology-changing

operator is a monopole operator, i.e., corresponds to the creation of the GNO monopole, if

such an operator has the lowest conformal weight among the topology-changing operators

with a given magnetic charge H. Since conformal transformations do not affect the mag-

netic charge, the monopole operators are conformal primaries. Our task is to determine

spin, conformal weight and other quantum numbers of the monopole operators.
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In the IR limit kinetic term for the gauge field can be neglected and integration over

matter fields produces effective action for the gauge field proportional to Nf . Although

IR theory is strongly coupled, the effective Planck constant is given by 1/Nf and in the

large Nf limit the CFT becomes weakly coupled. It is natural to assume that saddle

point of the gauge field effective action is invariant under rotations and corresponds to the

GNO monopole. Since fluctuations of the gauge field are suppressed, it can be treated as

a classical background. Thus, in the large Nf limit we have matter fermions moving in

a presence of the GNO monopole. Therefore, a monopole operator is mapped to a Fock

vacuum for matter fields moving in a monopole background on S2 ×R. Conformal weight

of the monopole operator is equal to Casimir energy of the corresponding vacuum state

relative to the vacuum state with vanishing monopole charge.

2.2 Radial quantization

Let us implement the procedure outlined in the previous section. Namely, we consider CFT

which appears in the IR limit of the theory (2.1). We neglect the kinetic term of a gauge

field, introduce a radial time variable τ = ln r and perform the Weyl rescaling to obtain

metric on S2 ×R:
ds2 = dτ2 + dθ2 + sin2 θdϕ2 .

Since a gauge potential of the GNO monopole (2.2) with H given by eqs. (2.3)–(2.4) is

diagonal in color indices we may use results of ref. [19]2 for fermionic energy spectra on

S2 × R. We conclude that for each ψsa, where s = 1, . . . , Nf and a = 1, . . . , Nc are flavor

and color indices respectively, the energy spectrum is given by

En = ±
√

|qa|n+ n2 , n = 1, 2, . . .

Each energy mode has a degeneracy 2|En| and spin j = |En| − 1
2 . In addition, there are

|qa| zero-energy modes which transform as an irreducible representation of the rotation

group SU(2)rot with spin j = 1
2 (|qa| − 1). In the large Nf limit leading contribution to the

conformal weight h{q} of the GNO SU(Nc) monopole is given by

h{q} = Nf

Nc
∑

a=1

(

1

6

√

1 + |qa| (|qa| − 2) +

+ 4Im

∫ ∞

0
dt





(

it+
|qa|
2

+ 1

)

√

(

it+
|qa|
2

+ 1

)2

− q2a
4





1

e2πt − 1

)

,

where branch of the square root under the integral is the one which is positive on the

positive real axis.

Let us specialize in the case of GNO monopole with minimum magnetic charge:

H =
1

2
(1,−1, 0, . . . , 0) , (2.5)

and denote the fermionic nonzero-energy mode annihilation operators by asakm, b
s
akm, where

k labels the energy level, and m accounts for a degeneracy. Fermionic zero-energy modes

2q in present paper equals twice that in ref. [19].

– 4 –



J
H
E
P
0
3
(
2
0
0
4
)
0
0
8

have vanishing spin and are present for ψs1 and ψs2 only. The corresponding annihilation

operators we denote as cs1 and cs2. Consider a Fock space of states obtained by acting

with creation operators on a state |vac〉, which is defined as a state annihilated by all

the annihilation operators. Those elements of the Fock space which satisfy the Gauss-law

constraints form the physical Fock space.

The background (2.2) with H given by eq. (2.5) breaks gauge group G = SU(Nc) to

Ḡ = U(1) for Nc = 2 and Ḡ = SU(Nc − 2)× U(1) × U(1) for Nc > 2, where generators of

the two U(1) groups are given by (1,−1, 0, . . . , 0) and (2−Nc, 2−Nc, 2, . . . , 2). Let T̄
ᾱ be

generators of Ḡ. In a quantum theory we impose Gauss-law constraints on physical states.

In the IR limit it implies that they are annihilated by the charge density operators ρᾱ.

Consider charges Qᾱ obtained by integration of ρᾱ over S2. The most general form of the

corresponding quantum operators is

Qᾱ = Qᾱ
+ +Qᾱ

0 ,

where Qᾱ
0 denote all terms that act within a zero-mode Fock space and Qᾱ

+ are assumed

to be normal-ordered. Using explicit form of zero-energy solutions we find

Qᾱ
0 = c+s1 T̄ ᾱ11c

s
1 + c+s2 T̄ ᾱ22c

s
2 + nᾱ ,

where C-numbers nᾱ account for operator-ordering ambiguities. Since zero modes are

rotationally invariant, the Gauss-law constraints in the zero-mode Fock space are translated

into requirements that the states are annihilated by Qᾱ
0 .

In the case of Nc = 2 we have

Q0 =
1

2

(

c+s1 cs1 − c+s2 cs2
)

+ n .

The zero-mode space in spanned by the 22Nf states

|vac〉 , c+s11 |vac〉 , c+s12 |vac〉 , . . . , c+s11 . . . c
+sNf
1 c+s12 . . . c

+sNf
2 |vac〉 .

A Fock vacuum state as well as completely filled state have Q0-charge given by n. Since

the monopole background is invariant under CP symmetry, we require CP -invariance of

the Q0 spectrum. Therefore, n = 0 and we have the following physical vacuum states

transforming as scalars under SU(2)rot

|vac〉 , c+s11 . . . c+sl1 c+p12 . . . c+pl2 |vac〉 , l = 1, . . . , Nf .

Each set of the physical vacuum states labelled by l transforms as a product of two rank-l

antisymmetric tensor representations under U(Nf )flavor.

For Nc > 2 we choose T̄ 1 and T̄ 2 to be generators of the two U(1) groups so that the

only zero-mode contributions are

Q1
0 =

1

2

(

c+s1 cs1 − c+s2 cs2
)

+ n1 , Q2
0 = −

1

2

√

Nc − 2

Nc

(

c+s1 cs1 + c+s2 cs2
)

+ n2 .
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In this case CP -invariance gives n1 = 0 and n2 = 1
2

√

Nc−2
Nc

Nf . Therefore, we have
(

Nf
1
2
Nf

)2

physical vacuum states

c+s11 . . . c
+sNf/2

1 c+p12 . . . c
+pNf/2

2 |vac〉 ,

transforming as scalars under SU(2)rot and as a product of two rank-Nf/2 antisymmetric

tensor representations of U(Nf )flavor.

3. Monopole operators in N = 4 SU(2) gauge theory

3.1 IR limit of N = 4 SU(2) gauge theory

Consider three-dimensional euclidean N = 4 supersymmetric theory of vector multiplet V
in the adjoint representation of the gauge group SU(2)gauge and Nf matter hypermultiplets

Qs, (s = 1, . . . , Nf ), transforming under the fundamental representation. The action in

terms of three-dimensional N = 2 superspace formalism is given in the appendix. Decom-

positions of N = 4 multiplets into N = 2 multiplets are given in the following table

N = 4 N = 2

Vector multiplet V Vector multiplet V = (Vi, χ, λ, λ̄,D),

Chiral multiplet Φ = (φ, η,K).

Hypermultiplet Q Chiral multiplets Q = (A,ψ, F ),

Q̃ = (Ã, ψ̃, F̃ ),

where Vi is a vector field in the adjoint representation of the gauge group, χ and φ are real

and complex adjoint scalars respectively, λ, λ̄, and η are the gluinos, whereas fields D and

K are auxiliary. Scalar A (Ã), spinor ψ (ψ̃), and auxiliary field F (F̃ ) transform according

to (anti-)fundamental representation of the gauge group:

Q→ eiω
αTαQ , Q̃→ Q̃e−iω

αTα ,

under the gauge transformation with parameters ωα(x). Since all representations of SU(2)

are pseudo-real, we may define a chiral superfield

Ψa =
1√
2

(

Qa − εabQ̃b
i[Qa + εabQ̃b]

)

,

where εab is antisymmetric tensor with ε12 = 1. Therefore kinetic term for a hypermultiplet

has the form
∫

d2θd2θ̄

2Nf
∑

I=1

Ψ+
I e

2VΨI ,

where we used the identities

εabT
αb
c εcd = −(T αad )T , εabε

bc = δca .
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The superpotential is

W = i
√
2

Nf
∑

s=1

Q̃sΦQs =
i√
2

2Nf
∑

I=1

Ψa
I εabΦ

b
cΨ

c
I .

The kinetic term is invariant under SU(2Nf ) flavor symmetry. The superpotential, however,

is invariant under SO(2Nf ) subgroup only.

4Nf − 6 dimensional3 Higgs branch is labelled by the mesons MIJ = Ψa
IεabΨ

b
J . Using

an identity

ε
I1...I2NfΨa

I1Ψ
b
I2Ψ

c
I3Ψ

d
I4 = 0 ,

we obtain the constraints ε
I1...I2NfMI1I2MI3I4 = 0. The F-flatness condition implies

M2
IJ = 0.

On the Coulomb branch adjoint scalars χ and Φ can have nonvanishing expectation

values. Let us make a gauge transformation to obtain χ = χ(3)T 3. Dualizing a photon

V (3) = ∗dσ(3) we construct a chiral superfield Υ = χ(3)+iσ(3)+· · · Potential energy density

for scalars χ and Φ is given by U = U1 + U2, with

U1 ∼ Tr
([

Φ,Φ+
])2

, U2 ∼ Tr
(

χ2
)

Tr
(

Φ+Φ
)

− |Tr (χΦ)|2 .

Vanishing of the potential gives Φ = Φ(3)T 3. Residual gauge symmetries are U(1)gauge
generated by T 3 and Weyl subgroup Z2 acting by (Υ,Φ(3))→ (−Υ,−Φ(3)). Moreover, we

have Υ ∼ Υ + 4πe2i. Let us introduce a pair of operators Y+ and Y− corresponding to

positive and negative expectation values of χ(3) respectively. For large positive (negative)

χ(3) we have Y+ ∼ eΥ/(2e
2) (Y− ∼ e−Υ/(2e

2)). We emphasize that none of the Y± is gauge

invariant. In fact, Y+ ↔ Y− under the Weyl subgroup Z2. The gauge invariant coordinates

on the Coulomb branch are

u = i(Y+ − Y−)Φ(3) , v = (Y+ + Y−) , w =
(

Φ(3)
)2
. (3.1)

In a semiclassical limit we have an equation

u2 + v2w = 0 . (3.2)

Since the Coulomb branch receives quantum corrections we expect modification of the

eq. (3.2).

Three-dimensional N = 4 theory has an R-symmetry group given by SU(2)R×SU(2)N .

There are SU(2)R and SU(2)N gluino doublets, scalars A (A+) and Ã+ (Ã) make a doublet

of SU(2)R and are singlets of SU(2)N , spinors ψ (ψ̄) and ¯̃ψ (ψ̃) transform as a doublet of

SU(2)N and singlets of SU(2)R. Scalars χ, φ, and φ+ form a triplet of SU(2)N and are

neutral under SU(2)R. In three-dimensional N = 2 superspace formalism only the maximal

torus U(1) × U(1) of the R-symmetry is manifest. Let us introduce a set of manifest R-

3Moduli space dimensions are assumed to be complex.
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symmetries denoted as U(1)N , U(1)B , and U(1)R with the corresponding charges given in

the table
N B R

Q 0 1 1/2

Q̃ 0 1 1/2

Φ 2 −2 1

It is easy to see that B-charge of the Grassmannian coordinates of the N = 2 superspace is

zero and R = N + 1
2B. The supercharge which is manifest in N = 2 superspace formalism

has R-charge one, whereas a nonmanifest supercharge has vanishing R-charge.

Let us consider topology-changing operators which belong to N = 4 (Anti)BPS mul-

tiplets. In the IR limit the theory flows to the interacting superconformal field theory and

(Anti)BPS representations are labelled by the (anti-)chiral primary operators. The confor-

mal dimensions of (anti-)chiral primary operators are smaller than those of other operators

in the same representation and are determined by their spin and R-symmetry representa-

tions [33, 34]. We define an (Anti)BPS monopole operator as a topology-changing operator

which is an (anti-)chiral operator with a lowest conformal weight among the (anti-)chiral

topology-changing operators with a given magnetic charge H. It follows that (Anti)BPS

monopole operators are (anti-)chiral primaries. Using arguments similar to those presented

in section 2.1 we conclude that in the large Nf limit we have matter fields in a background

of (Anti)BPS monopole. Our goal will be to determine the quantum numbers of (Anti)BPS

monopole operators in the limit of large Nf .

Now we will identify (Anti)BPS backgrounds corresponding to (Anti)BPS GNO mo-

nopoles in N = 4 supersymmetric gauge theory. Background values of ~V α, φα, φ∗α, and χα

preserve some of the manifest N = 2 supersymmetry parameterized by ξ, ξ̄ iff they satisfy

the equations

δλα = −i
(

σi
(

∂iχ
α + fαβγχβV γ

i

)

+
1

2
εijkσkV α

ij −Dα

)

ξ = 0 , (3.3)

δλ̄α = −iξ̄
(

σi
(

∂iχ
α + fαβγχβV γ

i

)

− 1

2
εijkσkV α

ij +Dα

)

= 0 , (3.4)

δηα =
√
2
(

fαβγχβφγ + iσi
(

∂iφ
α + fαβγφβV γ

i

))

ξ̄ +
√
2ξKα = 0 , (3.5)

δη̄α = −
√
2ξ
(

fαβγχβφ∗γ + iσi
(

∂iφ
∗α + fαβγφ∗βV γ

i

))

+
√
2ξ̄K∗α = 0 . (3.6)

The other set of supersymmetry transformations is obtained from (3.3)–(3.6) by the re-

placements λ → η, η → −λ. Consider a background with Φ = 0. Let us set Dα = 0 and

introduce Eα
i = −∂iχα − fαβγχβV γ

i , B
αi = 1

2ε
ijkV α

jk. Equations (3.3)–(3.6) imply

( ~Eα − ~Bα)~σξ = 0 , ξ̄( ~Eα + ~Bα)~σ = 0 .

For ~B = ~BαTα = H
r3
~r we have the following backgrounds, each preserving half of the

manifest N = 2 supersymmetry:

(i) BPS background
~Eα = − ~Bα , ∀ξ̄ , ξ = 0 .

– 8 –
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(ii) AntiBPS background
~Eα = ~Bα , ∀ξ , ξ̄ = 0 .

We choose χ = χαTα = ∓H/r with H = qT 3 = 1
2(q,−q), where upper (lower) sign

corresponds to the (Anti)BPS monopole backgrounds.4 These backgrounds are invariant

under SU(2)R symmetry, break N = 4 to N = 2 supersymmetry, SU(2)gauge group to

U(1)gauge subgroup, and SU(2)N to U(1)N . We mention that contrary to monopoles in

U(1) gauge theory, SU(2) monopoles specified by H and −H are gauge equivalent.

3.2 Dual theory

The dual theory is a twisted N = 4,
[

U(2)Nf−3 ×U(1)4
]

/U(1)diag gauge theory based on

the Dynkin diagram of SO(2Nf ) group. The fields include Nf − 3 U(2) vector superfields

which are made of N = 2 U(1) vector superfields Ul and neutral chiral superfields Tl, SU(2)

vector superfields Tl and adjoint chiral superfields Sl, l = 1, . . . , Nf − 3. Also, there are

four additional U(1) vector superfields which consist of N = 2 vector superfields UNf−2,. . . ,

UNf+1 and neutral chiral superfields TNf−2,. . . , TNf+1. Factorization of the diagonal U(1)

implies the constraints
Nf+1
∑

p=1

Up = 0 ,

Nf+1
∑

p=0

Tp = 0 .

Matter fields include twisted Nf−4 matter hypermultiplets made ofN = 2 chiral multiplets

qr and q̃r, transforming as

qr → U(2)r+1qr U(2)+r , q̃r → U(2)r q̃r U(2)+r+1 , r = 1, . . . , Nf − 4 .

We also have four additional twisted matter hypermultiplets which decompose with respect

to N = 2 as chiral superfields (X1, X̃1), . . . , (X4, X̃4). X1 (X̃1) has charge +1 (−1) under

U(1)Nf−2 and transforms according to (anti-)fundamental representation of U(2)1; X2

(X̃2) has U(1)Nf−1 charge +1 (−1) and is belongs to (anti-)fundamental representation of

U(2)Nf−3; X3 (X̃3) has a charge +1 (−1) under U(1)Nf and transforms according to (anti-

)fundamental representation of U(2)1; X4 (X̃4) has a charge +1 (−1) under U(1)Nf+1 and

is transformed according to (anti-)fundamental representation of U(2)Nf−3. Superpotential

is given by

W = i
√
2

{

X̃1

(

T1 + S1 − TNf−2
)

X1 + X̃2

(

TNf−3 + SNf−3 − TNf−1
)

X2 +

+ X̃3

(

T1 + S1 − TNf
)

X3 + X̃4

(

TNf−3 + SNf−3 − TNf+1

)

X4 +

+

Nf−4
∑

r=1

q̃r (Sr+1 + Tr+1 − Sr − Tr) qr
}

.

The two dimensional Higgs branch doesn’t receive quantum corrections and is given by a

hyper-Kahler quotient parameterized by x, y, and z subject to a constraint

x2 + y2z = zNf−1 . (3.7)

4We will use this convention throughout the paper.
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Explicit form of these coordinates is given in ref. [35]:

z = −Xa1
1 X̃3|a1X

b1
3 X̃1|b1 , (3.8)

and (for even Nf )

x = 2Xa1
1 qa21|a1 . . . q

aNf−3

Nf−4|aNf−4
X̃2|aNf−3

X
bNf−3

2 q̃
bNf−4

Nf−4|bNf−3
. . . q̃b11|b2X̃3|b1X

c1
3 X̃1|c1 ,

y = 2Xa1
3 qa21|a1 . . . q

aNf−3

Nf−4|aNf−4
X̃2|aNf−3

X
bNf−3

2 q̃
bNf−4

Nf−4|bNf−3
. . . q̃b11|b2X̃3|b1+(−z)Nf /2−1 . (3.9)

4Nf − 6 dimensional Coulomb branch is parameterized by Nf + 1 dual U(1) photons V±|r
(for a given r, V+|r and V−|r are used as coordinates on two distinct patches) subject to

the constraints
∏

r

V+|r =
∏

r

V−|r = 1 ,

Nf independent chirals T , 2Nf − 6 independent coordinates analogous to the ones given

in eq. (3.1).

3.3 Mirror symmetry

Since mirror symmetry exchanges mass and Fayet-Iliopoulos terms, we identify Nf complex

mass terms Q̃sQs (no sum over s) with Nf independent chirals T . Therefore chirals T and

S have baryon charge 2 whereas baryon charges of X, X̃, q, and q̃ are −1. Baryon charges

of x, y, and z are 2 − 2Nf , 4 − 2Nf , and −4 respectively which can be deduced both

from the defining equations (3.8)–(3.9) and from the hyper-Kahler quotient equation (3.7).

Likewise, T and S have vanishing U(1)N charges, whereas X, X̃ , q, and q̃ have a charge

+1. Finally, U(1)N charges of x, y, and z are 2Nf − 2, 2Nf − 4, and 4 respectively. We

also have R(x) = Nf − 1, R(y) = Nf − 2, as well as R(z) = 2.

It follows that charges of z are independent of Nf and coincide with that of w =

2 Tr Φ2. Also comparing eq. (3.2) with eq. (3.7) we obtain an identification

u ∼ x , v ∼ y , w ∼ z .

Thus, the mirror symmetry predicts the following charges for operators defined in eq. (3.1)

N B R

u 2Nf − 2 2− 2Nf Nf − 1

v 2Nf − 4 4− 2Nf Nf − 2

w 4 −4 2

Since x, y, and z are chiral primary operators which are polynomials of the electrically

charged fields, operators u, v, and w are also chiral primaries and describe the sector with

nontrivial magnetic charge. As explained in ref. [20], the conformal dimension of N = 4

(anti-)chiral primary operator equals (minus) the corresponding U(1)R charge.
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3.4 Quantum numbers

Quantum numbers of the (Anti)BPS monopole state receive contributions from both matter

hypermultipletQ and vector multiplet V. The former is proportional to Nf and is dominant

in the large Nf limit, whereas the latter gives correction of the form O(1). Let us determine

the matter contributions first.

Energy spectra of matter fields in (Anti)BPS backgrounds are given in the appendix.

Since matter fermionic particles and antiparticles have different energy spectra we adopt

the “symmetric ” ordering for the bilinear fermionic observables

ψ̄Oψ → 1

2
ψ̄Oψ − 1

2
ψOT ψ̄ , (3.10)

where O is some operator independent of the fields. To regulate expression on the r.h.s. of

eq. (3.10) we use a substraction technique. This procedure gives

EFermions
Casimir =

1

2

(

∑

E− −
∑

E+
)

− ”the same”|q=0 ,

where E+, E− are positive and negative energies respectively. To define the formal sums

appearing in this section we use

∑

E →
∑

Ee−β|E|

regularization and take β → 0 limit at the end of calculations. Matter bosonic particles

and antiparticles have identical energy spectra and standard prescription can be used. In

our model the matter contribution to the Casimir energy is equal to hQ = Nf |q| for both

BPS and AntiBPS monopole backgrounds. For matter part of the R-charge operator we

have

RQ =
1

4

[

∑

(a+ψaψ − aψa+ψ ) +
∑

(bψb
+
ψ − b+ψ bψ) +

∑

(a+
ψ̃
aψ̃ − aψ̃a+ψ̃ ) +

+
∑

(bψ̃b
+
ψ̃
− b+

ψ̃
bψ̃)−

∑

(a+AaA + bAb
+
A)−

∑

(a+
Ã
aÃ + bÃb

+
Ã
)

]

+ const ,

where a+ (b+) and a (b) denote the corresponding (anti)particle creation and annihilation

operators respectively. To fix a constant we define a vacuum state with zero magnetic

charge |0〉 to have vanishing R-charge. It follows that

〈RQ〉q =







∑

E−
ψ

|E−ψ | −
∑

E+
ψ

E+
ψ +

∑

E+
A

E+
A −

∑

E−
A

|E−A |






−′′ the same′′|q=0 .

As a result we have 〈RQ〉 = ±hQ. For N and B charges similar calculations give 〈NQ〉q =
−〈BQ〉q = ±2Nf |q|.
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Now we will consider the vector multiplet contribution to the quantum numbers of the

vacuum state. Relevant charges are summarized in the table

N B R

λ 1 0 1

λ̄ −1 0 −1
η 1 −2 0

η̄ −1 2 0

φ 2 −2 1

φ∗ −2 2 −1
χ 0 0 0

Integration over the hypermultiplet Q produces an induced action for the vector multiplet

SInd[V] proportional to Nf . Let us assume that supersymmetric monopole configuration

minimizes vector multiplet effective action in the IR region. Changing V → Vmon+V̂/
√

Nf

gives

SInd[V] = S
(2)
Ind[V̂] +O

(

1
√

Nf

)

,

where S
(2)
Ind[V̂] is quadratic in V̂ and independent from Nf . The full effective action for V̂ is

SEff [V] =
S0[V]
e2

+ SInd[V] = Nf
S0[Vmon]

ê2
+
S
(2)
0 [V̂]
ê2

+ S
(2)
Ind[V̂ ] +O

(

1
√

Nf

)

,

where S0 is original action for a vector superfield and ê2 = e2Nf . Linear term proportional

to δS0
δV [Vmon] V̂ vanishes because supersymmetric field configuration Vmon automatically

minimizes the action S0.

The superconformal algebra arising in the IR limit has generators S and S̄ which are

superpartners of the special conformal transformations K:

[K,Q] ∼ S̄ ,
[

K, Q̄
]

∼ S .

In the euclidean space we have Q+ = S and Q̄+ = S̄, hence special conformal transfor-

mations generated by S̄ (S) leave the (Anti)BPS background invariant. The (Anti)BPS

background breaks some of the global symmetries, and the full Hilbert space of states is

given by a tensor product of the physical Fock space constructed from a vacuum state and

a space of superfunctions on the appropriate supercoset [20]. In ref. [34] it was shown that

unitarity condition applied to the anticommutator {Q̄, S̄} in the N = 2 supersymmetric

theory implies that the conformal weight h and infrared R-charge RIR of any state satisfy

h ≥ RIR. Also, it follows from the anticommutator {Q,S} that h ≥ −RIR in a unitary

theory. As explained in ref. [20], the infrared R-charge RIR coincides with U(1)R charge R.

Thus for the physical Fock space constructed from the (Anti)BPS vacuum, the unbroken

subalgebra of the three-dimensional superconformal algebra implies that (minus) R-charge

of a state can not exceed its conformal dimension:

h ≥ ±R , (3.11)

with the lower bound saturated by the (anti-)chiral primary operators with vanishing spin.
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Let us focus on the gluino contribution to the R-charge. We have two sets of gluinos

λ̂ and η̂. Since U(1)R symmetry acts trivially on η̂, the only contribution comes from λ̂.

Relevant quadratic terms in the effective action have the form (in R3):

S
(2)
0 [λ̂, ˆ̄λ] =

∫

dx

(

iˆ̄λ+

[

~σ
(

~∇− i~V mon
)

± q

r

]

λ̂+ + iˆ̄λ−

[

~σ
(

~∇+ i~V
)

∓ q

r

]

λ̂− +

+ iˆ̄λ3~σ~∇λ̂3
)

,

S
(2)
Ind[λ̂,

ˆ̄λ] =

∫

dxdy

(

ˆ̄λ+(x)O
(+)(x, y)λ̂+(y) +

ˆ̄λ−(x)O
(−)(x, y)λ̂−(y)

+ ˆ̄λ3(x)O(3)(x, y)λ̂3(y)

)

,

with λ̂+ = (λ̂1 + iλ̂2)/
√
2, λ̂− = (λ̂1 − iλ̂2)/

√
2, and

O(+)(x, y) ∼
〈

ψ̄1(x)ψ1(y)
〉 〈

A2(x)A
+
2 (y)

〉

, O(−)(x, y) ∼
〈

ψ̄2(x)ψ2(y)
〉 〈

A1(x)A
+
1 (y)

〉

,

O(3)(x, y) ∼
〈

ψ̄1(x)ψ1(y)
〉 〈

A1(x)A
+
1 (y)

〉

+
〈

ψ̄2(x)ψ2(y)
〉 〈

A2(x)A
+
2 (y)

〉

,

where we used the identities
〈

¯̃
ψ1(x)ψ̃1(y)

〉

=
〈

ψ̄2(x)ψ2(y)
〉

,
〈

¯̃
ψ2(x)ψ̃2(y)

〉

=
〈

ψ̄1(x)ψ1(y)
〉

,
〈

Ã1(x)Ã
+
1 (y)

〉

=
〈

A2(x)A
+
2 (y)

〉

,
〈

Ã2(x)Ã
+
2 (y)

〉

=
〈

A1(x)A
+
1 (y)

〉

.

R-charge contribution of λ̂+ and ˆ̄λ+ can be expressed in terms of η-invariant of the hamil-

tonian associated with O(+). If λ̂+ has zero-energy modes in the Fock space, it may lead

to ambiguities in the R-charge computation. Let us show that such modes are not present.

Induced action equation of motion δS
(2)
Ind/δ

ˆ̄λ+ = 0 has the form
∫

dyO(+)(x, y)λ̂+(y) = 0 . (3.12)

Transforming to S2 ×R and assuming λ̂+ independent of τ , we obtain
∫

dτydϕydθyO
(+)(ϕx, θx, τx;ϕy, θy, τy)λ̂+(ϕy, θy) = 0 . (3.13)

If eq. (3.13) has a non-trivial solution corresponding to an operator acting in the Fock

space, SU(2)R symmetry implies that η̂+ = (η̂1 + iη̂2) /
√
2 also has a zero-energy mode.

Then it follows from the supersymmetry transformation

δφ̂∗+ =
√
2ξ̄ ˆ̄η+e

−τ/2 ,

that φ̂+ has a mode with energy −1/2 in the Fock space associated with BPS monopole

background. Let us denote the corresponding creation operator as b
+{|E−|=1/2}

φ̂+
. Using the

explicit form of the matter field energy modes it is straightforward to check that

O(−) = O(+)|ϕx→−ϕx,ϕy→−ϕy ,

which implies that there is a zero-energy solution for λ̂− as well. Hence, η̂− has zero-

energy mode and φ̂− has a mode with energy −1/2 which we denote as b
+{|E−|=1/2}

φ̂−
. The
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product b
+{|E−|=1/2}

φ̂+
b
+{|E−|=1/2}

φ̂−
is U(1)gauge invariant operator which has R-charge 2 and

energy (conformal dimension) 1. Repeated action of this operator on any physical state

with definite R-charge and conformal dimension will finally give a state with R-charge

greater than the conformal dimension which violates the unitarity bound (3.11). Thus we

conclude that λ̂+ does not have zero-energy modes in the Fock space constructed from

the BPS vacuum. For AntiBPS monopole background similar analysis gives analogous

conclusion.

Action S
(2)
Eff acquires explicit τ -dependence on S2×R as a reminiscence of the fact that

theory is not conformal invariant for 0 < ê2 < ∞. Let us define g2 = eτ ê2 and consider

the resulting theory S
(2)
g , which can be viewed as conformal invariant deformation of S

(2)
Ind

with constant g being a deformation parameter. Let {Ek(g)} be the energy spectrum of

λ̂+, then the R-charge contribution is
〈

R
λ̂+,

ˆ̄
λ+

〉

q

= lim
β→0

(Z(q, β)− Z(0, β)) , Z(q, β) =
1

2

∑

k

sign [Ek (g)] e
−β|Ek(g)| . (3.14)

Since Z(q, β) is proportional to η-invariant, 〈R
λ̂+,

ˆ̄
λ+

〉q is expected to be independent from g

and, hence, can be computed in the region of small g. To make this argument rigorous it is

necessary to show that λ̂+ does not have zero-energy modes for all values of the constant g.

We hope to return to this problem in the future. If g is small the induced action terms can

be ignored and we have gluinos moving in a monopole background Vmon. The hamiltonian

eigen-value equation has a form
(

Hψ2 |q→2q −
1

2

)

λ̂+ = Eλ̂+ ,

where Hψ2 is hamiltonian for the matter field ψ2. Using energy spectrum of ψ2 given in the

appendix, we find that the spectrum of λ̂+ in the limit of small g is given by (n = 1, 2, . . . )

E = −|q| − n− 1

2
, ∓|q| − 1

2
, |q|+ n− 1

2
,

where each energy level has degeneracy |2E+1|. We mention that energy level E = ∓|q|− 1
2

has degeneracy 2|q| and is not present if q = 0. Using eq. (3.14) in the small g region we

obtain < R
λ̂+,

ˆ̄
λ+

>q= ∓|q|.
Similar analysis can be implemented for λ̂− and λ̂3. R-charge contribution of λ̂− is

identical to that of λ̂+, whereas in the small g limit λ̂3 is moving in the trivial (V = 0)

background and does not contribute to the R-charge. Besides gluinos λ̂, the only vector

multiplet fields charged under the U(1)R symmetry are scalars φ and φ∗. Analogous cal-

culations show that they do not contribute to the O(1) terms of the R-charge. Therefore,

in the large Nf limit, we have

〈R〉q = ± (Nf − 2) |q| .
For the N -charge we have 〈NV〉q =< N

λ̂,
ˆ̄
λ
>q + < N

η̂, ˆ̄η
>q= 2 < N

λ̂,
ˆ̄
λ
>q, where we used

invariance of the (Anti)BPS background under SU(2)R:

S
(2)
Ind[η̂, ˆ̄η] = S

(2)
Ind[λ̂,

ˆ̄λ]
∣

∣

∣

λ̂→η̂,
ˆ̄
λ→ ˆ̄η

.
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Calculations similar to those for the R-charge give 〈NV〉q = ∓4|q|, which implies

〈N〉q = ± (2Nf − 4) |q|, 〈B〉q = ±(4− 2Nf )|q| .

3.5 Comparison with the mirror symmetry predictions

Mirror symmetry implications for the quantum numbers of w (see eq. (3.1)) are trivially

satisfied. Thus we conclude that w ∼ z. Let us consider a physical state |vac〉q. It is the

lowest energy state and, therefore, a superconformal primary. Since (Anti)BPS background

is annihilated by a supercharge Q̄ (Q), a state Q̄ |vac〉q
(

Q |vac〉q
)

belongs to the Fock space

associated with |vac〉q. Since supercharge Q̄ (Q) raises energy by 1/2 and has U(1)R charge

(minus) one, we find that there is no such a physical state in the Fock space. Therefore,

a state |vac〉q is annihilated by Q̄ (Q) and corresponds to the insertion of the (anti-)chiral

primary operator at the origin of R3. Thus, conformal weight of |vac〉q equals its R-charge,
i.e., ± (Nf − 2) |q|. Background Φ = 0 also corresponds to the (Anti)BPS monopoles in

N = 2 SU(2) gauge theory which can be obtained by giving mass to the adjoint chiral

field Φ. Therefore, matter contribution to the quantum numbers of the N = 2 (Anti)BPS

monopoles is the same as in the N = 4 theory. We also note that chiral primaries u and w

are present for N = 4 only and absent in N = 2 theory. This observation implies

|vac〉BPS|q|=1 ∝ v(0) |0〉 , |vac〉AntiBPS
|q|=1 ∝ v+(0) |0〉 .

Identity of |vac〉BPS|q|=1 and y quantum numbers gives v ∼ y.

To obtain another (anti-)chiral primary state in the physical Fock space, we must act

on a state |vac〉(Anti)BPS
|q|=1 with an U(1)gauge invariant operator f such that it raises energy

by R(f) (−R(f)). It is easy to see that f can not be made of matter fields only. Indeed,

the most general expression for (anti-)chiral primary f (Q) |vac〉q would be a superposition

of gauge invariant states of the form
(

a+Q
)m (

b+Q
)p |vac〉q with some non-negative integers

m and p. However,

E
(

a+Q
)

> ±R
(

a+Q
)

, E
(

b+Q
)

> ±R
(

b+Q
)

,

and the state
(

a+Q
)m (

b+Q
)p |vac〉q is not an (anti-)chiral primary, unless m = p = 0.

Now we consider energy spectra of fields which belong to the vector multiplet. In

the IR limit the only terms in the vector multiplet effective action are those induced by

integration over the matter hypermultiplets. Let us show that gluinos η̂, ˆ̄η, λ̂, ˆ̄λ do not have

(anti-)chiral primary creation operators in the Fock space associated with the (Anti)BPS

background. It follows from eq. (3.11) that such modes can not be present in ˆ̄η and
ˆ̄λ, (η̂ and λ̂). Since R-charge of η̂ vanishes, the (anti-)chiral primary creation operator

corresponds to a mode with zero energy. It was shown in section 3.4 that η̂+ and η̂−,

(ˆ̄η+ and ˆ̄η−), do not have zero-energy modes. If a gauge invariant field η̂(3) (ˆ̄η(3)) has a

creation operator with zero energy, then SU(2)R symmetry implies existence of b
+{E=0}

λ̂(3)
,

(a
+{E=0}

λ̂(3)
), which is incompatable with eq. (3.11). If present, an (anti-)chiral primary

creation operator of λ̂α (ˆ̄λα) has the form b
+{|E−|=1}

λ̂α
, (a

+{|E−|=1}

λ̂α
). Then SU(2)R symmetry

ensures existence of b
+{|E−|=1}
η̂α , (a

+{|E−|=1}
η̂α ). The supersymmetry transformation δφ̂∗α =
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√
2ξ̄ ˆ̄ηαe−τ/2, (δφ̂α =

√
2ξη̂αeτ/2), implies a presence of φ̂α mode with energy |E−| = 3/2:

φ̂α ∼ e3τ/2, φ̂∗α ∼ e−3τ/2. Such modes should annihilate the right-hand-side of S2 × R

counterpart of eq. (3.5), (eq. (3.6)), for all ξ̄ (ξ) in the (Anti)BPS monopole background

to ensure that an operator b
+{|E−|=1}
η̂α , (a

+{|E−|=1}
η̂α ) is annihilated by Q̄ (Q). It is easy to

see that it can not be the case. Thus we conclude that gluinos do not have (anti-)chiral

primary creation operators in the Fock space. Similar arguments reveal that it is true for

χ̂α and V̂ α
i as well. Thus φ̂ and φ̂∗ are the only fields which could have such modes.

It follows from eq. (3.11) that energy spectrum of φ̂α satisfies |E−| ≥ R(φ̂α) = 1,

(E+ ≥ −R(φ̂∗α) = 1). The (Anti)BPS background under consideration has vanishing

expectation values of U(1)gauge invariant fields φ(3) and φ∗(3). However, as it follows from

eqs. (3.3)–(3.6), setting φ(3) = c, (φ∗(3) = c),5 with constant c in R3 leaves the (Anti)BPS

background invariant under Q̄ (Q). Therefore, the action SEff [V] is stationary on these field

configurations. Since the constant c is arbitrary, quadratic part of SEff [V̂ ] is stationary as

well. In the IR limit it implies existence of the creation operator b
+{|E−|=1}

φ̂(3)
(a

+{E+=1}

φ̂(3)
),

corresponding to the spinless mode of φ̂(3) (φ̂∗(3)) on S2×R. In the (Anti)BPS background

any creation operator of φ̂(3) (φ̂∗(3)) corresponding to a mode with energy |E−| = 1 (E+ =

1) saturates the unitarity bound given by eq. (3.11). Hence, this mode has vanishing spin

and is given by const× eτ on S2 ×R. Thus the (anti-)chiral primary mode of φ̂(3) (φ̂∗(3))

in the (Anti)BPS background is unique. Acting with the corresponding creation operators

on the state |vac〉(Anti)BPS
|q|=1 we obtain chiral primaries with the quantum numbers identical

to those predicted for u (u+). We have

b
+{|E−|=1}

φ̂(3)
|vac〉BPS|q|=1 ∝ u(0) |0〉 , a

+{E+=1}

φ̂(3)
|vac〉AntiBPS

|q|=1 ∝ u+(0) |0〉 .

The BPS background breaks the Weyl subgroup Z2 spontaneously and Z2 invariance of the

physical states is not required. However, it might be instructive to construct Z2 invariant

(anti-)chiral primary states by ”integrating” the physical states over Z2. Let us introduce

a pair of gauge equivalent states

|vac〉BPSq=1 ∝ Y+ |0〉 , |vac〉BPSq=−1 ∝ Y− |0〉 .

Then,

v(0) |0〉 ∝ |vac〉BPSq=1 + |vac〉BPSq=−1 , u(0) |0〉 ∝ φ(3)
(

|vac〉BPSq=1 − |vac〉BPSq=−1

)

.

Similar construction can be made for the AntiBPS monopole operators as well.

4. Discussion

We have studied monopole operators in non-supersymmetric SU(Nc) gauge theories as

well as (Anti)BPS monopole operators in N = 4 SU(2) gauge theories in the limit of large

Nf . In the case of SU(Nc) non-supersymmetric gauge theories we found that monopole

operators with minimum magnetic charge have zero spin and transform nontrivially under

the flavor symmetry group. Conformal dimensions of these operators have leading terms

of the order Nf and further sub-leading corrections are expected.

5It also implies setting φ∗(3) (φ(3)) to c∗/r2 in R3.
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In the case of N = 4 SU(2) gauge theory, the mirror symmetry predicts existence of

two (anti-)chiral primary monopole operators corresponding to the (anti-)chiral primary

operators x (x+) and y (y+) in the dual theory. The (anti-)chiral primary operator dual

to y (y+) exists in N = 2 theory as well, whereas existence of the (anti-)chiral primary

dual to x (x+) is a special feature of N = 4 theory. Using the radial quantization we

have shown that a state |vac〉(Anti)BPS
|q|=1 corresponds to the insertion of the (anti-)chiral

primary monopole operator which is dual to the operator y (y+) in the large Nf limit. We

demonstrated that there is unique (anti-)chiral primary monopole operator with quantum

numbers matching those of x (x+). However we note that the relation in the chiral ring

implied by eq. (3.7) remains obscure.

We have shown that (Anti)BPS monopole operators of N = 4 supersymmetric theory

are scalars under the SU(2)rot and transform trivially under the flavor symmetry group.

Transformation properties under the global symmetries have been computed in the large

Nf limit providing a new nontrivial verification of three-dimensional mirror symmetry.

Although we perform calculations using 1/Nf expansion, our result for quantum numbers

of the (Anti)BPS monopole operators are exact and do not receive O(1/Nf ) corrections.

The reason is that the charges which correspond to U(1) subgroups of the compact R-

symmetry group must be integral.

It might be interesting to generalize the analysis of the present paper to the monopole

operators of N = 4 SU(Nc) gauge theories with Nc > 2.
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A. Radial quantization of three-dimensional N = 4 SU(2) gauge theory

We start with N = 2 lagrangian density in four dimensional Minkowski space6 for the

vector multiplet V in the adjoint representation of SU(2) and hypermultiplets Qs in the

fundamental representation of the gauge group

LR3,1

V =
1

8e2

(∫

d2θ Tr (W αWα)|θ̄=0 + h.c.

)

+
1

e2

∫

d2θd2θ̄Tr(Φ+e2V Φ) ,

LR3,1

Q =

∫

d2θd2θ̄

Nf
∑

s=1

(

Qs+e2VQs + Q̃se−2V Q̃s+
)

+

(∫

d2θW + h.c.

)

,

where a superpotential W = i
√
2
∑Nf

s=1 Q̃
sΦQs. Let us perform the Wick rotation to R4

LR4 = −LR3,1 |x0=−it , V α
0 |R3,1 = iχα|R4 ,

6We adopt the notations of Wess and Bagger, ref. [36].
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and assume that all fields are independent of the euclidean time t. This procedure gives

N = 4 supersymmetric lagrangian density in three-dimensional euclidean space:

LR3

Q = iψ̄~σ
(

~∇+ i~V
)

ψ + iψ̄χψ +
([

~∇+ i~V
]

A
)+ ([

~∇+ i~V
]

A
)

+A+χ2A+

+i
√
2
(

ψ̄λ̄A−A+λψ
)

− F+F −A+DA+ i
¯̃
ψ~σ(~∇− i~V T )ψ̃ − i ¯̃ψχT ψ̃ +

+
([

~∇+ i~V
]

Ã+
)+ ([

~∇+ i~V
]

Ã+
)

+ Ãχ2Ã+ −

−F̃ F̃+ + ÃDÃ+ − i
√
2
(

Ãλ̄ ¯̃ψ − ψ̃λÃ+
)

+ · · · ,

where the dots denote terms originated from the superpotential and summations over color

and flavor indices are implied. To obtain a theory on S2×R we perform the Weyl rescaling

gij → r2gij and introduce τ = ln r. The matter fields transform as

(

ψ, ψ̄, ψ̃,
¯̃
ψ
)

→ e−τ
(

ψ, ψ̄, ψ̃,
¯̃
ψ
)

,
(

A,A+, Ã, Ã+
)

→ e−
τ
2

(

A,A+, Ã, Ã+
)

.

For fields in the vector multiplet we have

(

χ, φ, φ+
)

→ e−τ
(

χ, φ, φ+
)

, ~V → ~V ,
(

λ, λ̄, η, η̄
)

→ e−
3
2
τ
(

λ, λ̄, η, η̄
)

.

The (Anti)BPS background is diagonal in color indices and, therefore, we may use results

of ref. [20] for matter energy spectra in a background of U(1) monopole with a substitution

q → q/2. Solutions with energy E have the form Q, Q̃ ∼ e−Eτ , whereas Q+, Q̃+ ∼ eEτ . To

summarize we have, (n = 1, 2, . . . ):

E = −|q|
2
− n , ∓|q|

2
,

|q|
2

+ n , (A.1)

for ψsa, ψ̃
s
a and

E = −|q|
2
− n , ±|q|

2
,

|q|
2

+ n ,

for ψ̄sa and
¯̃
ψsa. Scalar fields A

s
a, Ã

s
a, A

s+
a , and Ãs+a have

E = −|q| − 1

2
− n , |q| − 1

2
+ n .

Each energy level with energy E has a spin j = |E| − 1/2 and a degeneracy 2|E|. We

notice that fermionic spectrum is not invariant under E → −E. The fact that A and Ã+

have identical energy spectra is consistent with the action of SU(2)R symmetry. On the

other hand fields ψ and ¯̃ψ have different energy spectra which conforms with the breaking

of SU(2)N symmetry to a U(1)N subgroup which doesn’t mix these fermionic fields.
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